Abstract

We present fabrication and optical characterization of Si microstructure-ZnO nanowire (NWs) hierarchical structures for light management. Random and periodic hierarchical structures constituting Si micro pillar or micro pyramid arrays with overgrown ZnO NWs have been fabricated. Inexpensive colloidal lithography in combination with dry and wet chemical etching is used to fabricate Si microstructures, and ZnO NWs are grown by hydrothermal synthesis. The periodic Si micro pyramid-ZnO NWs hierarchical structure shows broadband antireflection with average reflectance as low as 2.5% in the 300-1000 nm wavelength range. A tenfold enhancement in Raman intensity is observed in this structure compared to planar Si sample. These hierarchical structures with enriched optical properties and high surface to volume ratio are promising for photovoltaic (PV) and sensor applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Zhu, H. B. Yang, K. Du, W. Y. Fu, L. X. Chang, X. F. Pang, Y. Zeng, and G. T. Zou, “Preparation of SiC and SiC/ZnO Nano composites and its properties,” Mater. Lett.61(21), 4242–4245 (2007).
    [CrossRef]
  2. J. Li and J. Z. Zhang, “Optical properties and applications of hybrid semiconductor nanomaterials,” Coord. Chem. Rev.253(23–24), 3015–3041 (2009).
    [CrossRef]
  3. J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer micro lens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express1(2), 259–269 (2011).
    [CrossRef]
  4. L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater.5(11), 893–900 (2006).
    [CrossRef] [PubMed]
  5. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
    [CrossRef] [PubMed]
  6. S. H. Baek, S. B. Kim, J. K. Shin, and J. H. Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells96, 251–256 (2012).
    [CrossRef]
  7. R. Yang, Y. L. Chueh, J. R. Morber, R. Snyder, L. J. Chou, and Z. L. Wang, “Single-crystalline branched zinc phosphide nanostructures: synthesis, properties, and optoelectronic devices,” Nano Lett.7(2), 269–275 (2007).
    [CrossRef] [PubMed]
  8. U. K. Gautam, X. Fang, Y. Bando, J. Zhan, and D. Golberg, “Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures,” ACS Nano2(5), 1015–1021 (2008).
    [CrossRef] [PubMed]
  9. Y. Liu, A. Das, S. Xu, Z. Lin, C. Xu, Z. L. Wang, A. Rohatgi, and C. P. Wong, “Hybridizing ZnO nanowires with micro pyramid silicon wafers as super hydrophobic high-efficiency solar cells,” Adv. Energy Mater.2(1), 47–51 (2012).
    [CrossRef]
  10. S. H. Lee, G. E. Jellison, C. E. Duty, and J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett.99(15), 153113 (2011).
    [CrossRef]
  11. K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
    [CrossRef] [PubMed]
  12. Y. F. Chan, H. J. Xu, L. Cao, Y. Tang, D. Y. Li, and X. M. Sun, “ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study,” J. Appl. Phys.111(3), 033104 (2012).
    [CrossRef]
  13. J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater.22(38), 4249–4269 (2010).
    [CrossRef] [PubMed]
  14. R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express2(11), 1671–1679 (2012).
    [CrossRef]
  15. B. Wu, A. Kumar, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys.108(5), 051101 (2010).
    [CrossRef]
  16. Y. Hung, S. Lee, B. J. Thibeault, and L. A. Coldren, “Fabrication of highly ordered silicon nanowire arrays with controllable sidewall profiles for achieving low-surface reflection,” IEEE J. Sel. Top. Quantum Electron.17(4), 869–877 (2011).
    [CrossRef]
  17. M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, “Differences in anisotropic etching properties of KOH and TMAH solutions,” Sens. Actuators A Phys.80(2), 179–188 (2000).
    [CrossRef]
  18. X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
    [CrossRef]
  19. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
    [CrossRef] [PubMed]
  20. H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
    [CrossRef]
  21. K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectron. J.37(6), 519–525 (2006).
    [CrossRef]
  22. M. A. Vergés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous solutions,” J. Chem. Soc., Faraday Trans.86(6), 959–963 (1990).
    [CrossRef]
  23. Y. S. Bae, D. C. Kim, C. H. Ahn, J. H. Kim, and H. K. Cho, “Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures,” Surf. Interface Anal.42(6–7), 978–982 (2010).
    [CrossRef]
  24. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
    [CrossRef] [PubMed]
  25. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
    [CrossRef] [PubMed]
  26. S. Chattopadhyay, Y. F. Huang, Y. J. Jend, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng.69(1–3), 1–35 (2010).

2013 (1)

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

2012 (6)

Y. Liu, A. Das, S. Xu, Z. Lin, C. Xu, Z. L. Wang, A. Rohatgi, and C. P. Wong, “Hybridizing ZnO nanowires with micro pyramid silicon wafers as super hydrophobic high-efficiency solar cells,” Adv. Energy Mater.2(1), 47–51 (2012).
[CrossRef]

S. H. Baek, S. B. Kim, J. K. Shin, and J. H. Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells96, 251–256 (2012).
[CrossRef]

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

Y. F. Chan, H. J. Xu, L. Cao, Y. Tang, D. Y. Li, and X. M. Sun, “ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study,” J. Appl. Phys.111(3), 033104 (2012).
[CrossRef]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express2(11), 1671–1679 (2012).
[CrossRef]

2011 (4)

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer micro lens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express1(2), 259–269 (2011).
[CrossRef]

S. H. Lee, G. E. Jellison, C. E. Duty, and J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett.99(15), 153113 (2011).
[CrossRef]

Y. Hung, S. Lee, B. J. Thibeault, and L. A. Coldren, “Fabrication of highly ordered silicon nanowire arrays with controllable sidewall profiles for achieving low-surface reflection,” IEEE J. Sel. Top. Quantum Electron.17(4), 869–877 (2011).
[CrossRef]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

2010 (4)

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater.22(38), 4249–4269 (2010).
[CrossRef] [PubMed]

B. Wu, A. Kumar, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys.108(5), 051101 (2010).
[CrossRef]

S. Chattopadhyay, Y. F. Huang, Y. J. Jend, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng.69(1–3), 1–35 (2010).

Y. S. Bae, D. C. Kim, C. H. Ahn, J. H. Kim, and H. K. Cho, “Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures,” Surf. Interface Anal.42(6–7), 978–982 (2010).
[CrossRef]

2009 (2)

J. Li and J. Z. Zhang, “Optical properties and applications of hybrid semiconductor nanomaterials,” Coord. Chem. Rev.253(23–24), 3015–3041 (2009).
[CrossRef]

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

2008 (2)

U. K. Gautam, X. Fang, Y. Bando, J. Zhan, and D. Golberg, “Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures,” ACS Nano2(5), 1015–1021 (2008).
[CrossRef] [PubMed]

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

2007 (2)

H. Y. Zhu, H. B. Yang, K. Du, W. Y. Fu, L. X. Chang, X. F. Pang, Y. Zeng, and G. T. Zou, “Preparation of SiC and SiC/ZnO Nano composites and its properties,” Mater. Lett.61(21), 4242–4245 (2007).
[CrossRef]

R. Yang, Y. L. Chueh, J. R. Morber, R. Snyder, L. J. Chou, and Z. L. Wang, “Single-crystalline branched zinc phosphide nanostructures: synthesis, properties, and optoelectronic devices,” Nano Lett.7(2), 269–275 (2007).
[CrossRef] [PubMed]

2006 (2)

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater.5(11), 893–900 (2006).
[CrossRef] [PubMed]

K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectron. J.37(6), 519–525 (2006).
[CrossRef]

2005 (1)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

2000 (1)

M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, “Differences in anisotropic etching properties of KOH and TMAH solutions,” Sens. Actuators A Phys.80(2), 179–188 (2000).
[CrossRef]

1990 (1)

M. A. Vergés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous solutions,” J. Chem. Soc., Faraday Trans.86(6), 959–963 (1990).
[CrossRef]

Aguinaldo, R.

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

Ahn, C. H.

Y. S. Bae, D. C. Kim, C. H. Ahn, J. H. Kim, and H. K. Cho, “Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures,” Surf. Interface Anal.42(6–7), 978–982 (2010).
[CrossRef]

Alexander, D. T. L.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Anand, S.

Anttu, N.

Awan, K. M.

Bae, Y. S.

Y. S. Bae, D. C. Kim, C. H. Ahn, J. H. Kim, and H. K. Cho, “Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures,” Surf. Interface Anal.42(6–7), 978–982 (2010).
[CrossRef]

Baek, S. H.

S. H. Baek, S. B. Kim, J. K. Shin, and J. H. Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells96, 251–256 (2012).
[CrossRef]

Ballif, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Bando, Y.

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

U. K. Gautam, X. Fang, Y. Bando, J. Zhan, and D. Golberg, “Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures,” ACS Nano2(5), 1015–1021 (2008).
[CrossRef] [PubMed]

Banu, K.

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

Battaglia, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Biswas, K.

K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectron. J.37(6), 519–525 (2006).
[CrossRef]

Boccard, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Boiko, D. L.

Brauer, N. B.

Brugger, J.

Cantoni, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Cao, L.

Y. F. Chan, H. J. Xu, L. Cao, Y. Tang, D. Y. Li, and X. M. Sun, “ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study,” J. Appl. Phys.111(3), 033104 (2012).
[CrossRef]

Chan, Y. F.

Y. F. Chan, H. J. Xu, L. Cao, Y. Tang, D. Y. Li, and X. M. Sun, “ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study,” J. Appl. Phys.111(3), 033104 (2012).
[CrossRef]

Chang, L. X.

H. Y. Zhu, H. B. Yang, K. Du, W. Y. Fu, L. X. Chang, X. F. Pang, Y. Zeng, and G. T. Zou, “Preparation of SiC and SiC/ZnO Nano composites and its properties,” Mater. Lett.61(21), 4242–4245 (2007).
[CrossRef]

Charbon, E.

Charrière, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Chattopadhyay, S.

S. Chattopadhyay, Y. F. Huang, Y. J. Jend, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng.69(1–3), 1–35 (2010).

Chen, K. H.

S. Chattopadhyay, Y. F. Huang, Y. J. Jend, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng.69(1–3), 1–35 (2010).

Chen, L. C.

S. Chattopadhyay, Y. F. Huang, Y. J. Jend, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng.69(1–3), 1–35 (2010).

Cho, H. K.

Y. S. Bae, D. C. Kim, C. H. Ahn, J. H. Kim, and H. K. Cho, “Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures,” Surf. Interface Anal.42(6–7), 978–982 (2010).
[CrossRef]

Chou, L. J.

R. Yang, Y. L. Chueh, J. R. Morber, R. Snyder, L. J. Chou, and Z. L. Wang, “Single-crystalline branched zinc phosphide nanostructures: synthesis, properties, and optoelectronic devices,” Nano Lett.7(2), 269–275 (2007).
[CrossRef] [PubMed]

Chueh, Y. L.

R. Yang, Y. L. Chueh, J. R. Morber, R. Snyder, L. J. Chou, and Z. L. Wang, “Single-crystalline branched zinc phosphide nanostructures: synthesis, properties, and optoelectronic devices,” Nano Lett.7(2), 269–275 (2007).
[CrossRef] [PubMed]

Coldren, L. A.

Y. Hung, S. Lee, B. J. Thibeault, and L. A. Coldren, “Fabrication of highly ordered silicon nanowire arrays with controllable sidewall profiles for achieving low-surface reflection,” IEEE J. Sel. Top. Quantum Electron.17(4), 869–877 (2011).
[CrossRef]

Cui, Y.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Das, A.

Y. Liu, A. Das, S. Xu, Z. Lin, C. Xu, Z. L. Wang, A. Rohatgi, and C. P. Wong, “Hybridizing ZnO nanowires with micro pyramid silicon wafers as super hydrophobic high-efficiency solar cells,” Adv. Energy Mater.2(1), 47–51 (2012).
[CrossRef]

de Boer, M. J.

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

Despeisse, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Du, K.

H. Y. Zhu, H. B. Yang, K. Du, W. Y. Fu, L. X. Chang, X. F. Pang, Y. Zeng, and G. T. Zou, “Preparation of SiC and SiC/ZnO Nano composites and its properties,” Mater. Lett.61(21), 4242–4245 (2007).
[CrossRef]

Duty, C. E.

S. H. Lee, G. E. Jellison, C. E. Duty, and J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett.99(15), 153113 (2011).
[CrossRef]

Ebraert, E.

Ee, Y. K.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

Elwenspoek, M. C.

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

Escarré, J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Facchetti, A.

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater.5(11), 893–900 (2006).
[CrossRef] [PubMed]

Fakhfouri, V.

Fang, X.

U. K. Gautam, X. Fang, Y. Bando, J. Zhan, and D. Golberg, “Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures,” ACS Nano2(5), 1015–1021 (2008).
[CrossRef] [PubMed]

Fu, W. Y.

H. Y. Zhu, H. B. Yang, K. Du, W. Y. Fu, L. X. Chang, X. F. Pang, Y. Zeng, and G. T. Zou, “Preparation of SiC and SiC/ZnO Nano composites and its properties,” Mater. Lett.61(21), 4242–4245 (2007).
[CrossRef]

Ganguly, A.

S. Chattopadhyay, Y. F. Huang, Y. J. Jend, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng.69(1–3), 1–35 (2010).

Gautam, U. K.

U. K. Gautam, X. Fang, Y. Bando, J. Zhan, and D. Golberg, “Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures,” ACS Nano2(5), 1015–1021 (2008).
[CrossRef] [PubMed]

Gilchrist, J. F.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

Golberg, D.

U. K. Gautam, X. Fang, Y. Bando, J. Zhan, and D. Golberg, “Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures,” ACS Nano2(5), 1015–1021 (2008).
[CrossRef] [PubMed]

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Grutzner, G.

Haug, F. J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Hsu, C. M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Hsu, J. W. P.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Huang, Y. F.

S. Chattopadhyay, Y. F. Huang, Y. J. Jend, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng.69(1–3), 1–35 (2010).

Hung, Y.

Y. Hung, S. Lee, B. J. Thibeault, and L. A. Coldren, “Fabrication of highly ordered silicon nanowire arrays with controllable sidewall profiles for achieving low-surface reflection,” IEEE J. Sel. Top. Quantum Electron.17(4), 869–877 (2011).
[CrossRef]

Jansen, H. V.

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

Jellison, G. E.

S. H. Lee, G. E. Jellison, C. E. Duty, and J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett.99(15), 153113 (2011).
[CrossRef]

Jend, Y. J.

S. Chattopadhyay, Y. F. Huang, Y. J. Jend, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng.69(1–3), 1–35 (2010).

Jing, Y.

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Kal, S.

K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectron. J.37(6), 519–525 (2006).
[CrossRef]

Kargar, A.

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

Kim, D. C.

Y. S. Bae, D. C. Kim, C. H. Ahn, J. H. Kim, and H. K. Cho, “Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures,” Surf. Interface Anal.42(6–7), 978–982 (2010).
[CrossRef]

Kim, J. H.

S. H. Baek, S. B. Kim, J. K. Shin, and J. H. Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells96, 251–256 (2012).
[CrossRef]

Y. S. Bae, D. C. Kim, C. H. Ahn, J. H. Kim, and H. K. Cho, “Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures,” Surf. Interface Anal.42(6–7), 978–982 (2010).
[CrossRef]

Kim, J. Y.

Kim, S. B.

S. H. Baek, S. B. Kim, J. K. Shin, and J. H. Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells96, 251–256 (2012).
[CrossRef]

Kumar, A.

B. Wu, A. Kumar, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys.108(5), 051101 (2010).
[CrossRef]

Kumnorkaew, P.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Lee, S.

Y. Hung, S. Lee, B. J. Thibeault, and L. A. Coldren, “Fabrication of highly ordered silicon nanowire arrays with controllable sidewall profiles for achieving low-surface reflection,” IEEE J. Sel. Top. Quantum Electron.17(4), 869–877 (2011).
[CrossRef]

Lee, S. H.

S. H. Lee, G. E. Jellison, C. E. Duty, and J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett.99(15), 153113 (2011).
[CrossRef]

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Li, C.

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

Li, D. Y.

Y. F. Chan, H. J. Xu, L. Cao, Y. Tang, D. Y. Li, and X. M. Sun, “ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study,” J. Appl. Phys.111(3), 033104 (2012).
[CrossRef]

Li, J.

J. Li and J. Z. Zhang, “Optical properties and applications of hybrid semiconductor nanomaterials,” Coord. Chem. Rev.253(23–24), 3015–3041 (2009).
[CrossRef]

Li, X. H.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

Li, Y.

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater.22(38), 4249–4269 (2010).
[CrossRef] [PubMed]

Lin, Z.

Y. Liu, A. Das, S. Xu, Z. Lin, C. Xu, Z. L. Wang, A. Rohatgi, and C. P. Wong, “Hybridizing ZnO nanowires with micro pyramid silicon wafers as super hydrophobic high-efficiency solar cells,” Adv. Energy Mater.2(1), 47–51 (2012).
[CrossRef]

Liu, G.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Liu, G. Y.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

Liu, Y.

Y. Liu, A. Das, S. Xu, Z. Lin, C. Xu, Z. L. Wang, A. Rohatgi, and C. P. Wong, “Hybridizing ZnO nanowires with micro pyramid silicon wafers as super hydrophobic high-efficiency solar cells,” Adv. Energy Mater.2(1), 47–51 (2012).
[CrossRef]

Liu, Z.

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

Louwerse, M. C.

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

Lu, G.

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater.5(11), 893–900 (2006).
[CrossRef] [PubMed]

Madsen, K.

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

Marks, T. J.

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater.5(11), 893–900 (2006).
[CrossRef] [PubMed]

Mawst, L. J.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Mifsud, A.

M. A. Vergés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous solutions,” J. Chem. Soc., Faraday Trans.86(6), 959–963 (1990).
[CrossRef]

Morber, J. R.

R. Yang, Y. L. Chueh, J. R. Morber, R. Snyder, L. J. Chou, and Z. L. Wang, “Single-crystalline branched zinc phosphide nanostructures: synthesis, properties, and optoelectronic devices,” Nano Lett.7(2), 269–275 (2007).
[CrossRef] [PubMed]

Naureen, S.

Pamarthy, S.

B. Wu, A. Kumar, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys.108(5), 051101 (2010).
[CrossRef]

Pang, X. F.

H. Y. Zhu, H. B. Yang, K. Du, W. Y. Fu, L. X. Chang, X. F. Pang, Y. Zeng, and G. T. Zou, “Preparation of SiC and SiC/ZnO Nano composites and its properties,” Mater. Lett.61(21), 4242–4245 (2007).
[CrossRef]

Park, J. H.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Rohatgi, A.

Y. Liu, A. Das, S. Xu, Z. Lin, C. Xu, Z. L. Wang, A. Rohatgi, and C. P. Wong, “Hybridizing ZnO nanowires with micro pyramid silicon wafers as super hydrophobic high-efficiency solar cells,” Adv. Energy Mater.2(1), 47–51 (2012).
[CrossRef]

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Sanatinia, R.

Sato, K.

M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, “Differences in anisotropic etching properties of KOH and TMAH solutions,” Sens. Actuators A Phys.80(2), 179–188 (2000).
[CrossRef]

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Serna, C. J.

M. A. Vergés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous solutions,” J. Chem. Soc., Faraday Trans.86(6), 959–963 (1990).
[CrossRef]

Shikida, M.

M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, “Differences in anisotropic etching properties of KOH and TMAH solutions,” Sens. Actuators A Phys.80(2), 179–188 (2000).
[CrossRef]

Shin, J. K.

S. H. Baek, S. B. Kim, J. K. Shin, and J. H. Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells96, 251–256 (2012).
[CrossRef]

Snyder, R.

R. Yang, Y. L. Chueh, J. R. Morber, R. Snyder, L. J. Chou, and Z. L. Wang, “Single-crystalline branched zinc phosphide nanostructures: synthesis, properties, and optoelectronic devices,” Nano Lett.7(2), 269–275 (2007).
[CrossRef] [PubMed]

Söderström, K.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Song, R. B.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

Sun, K.

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

Sun, X. M.

Y. F. Chan, H. J. Xu, L. Cao, Y. Tang, D. Y. Li, and X. M. Sun, “ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study,” J. Appl. Phys.111(3), 033104 (2012).
[CrossRef]

Tang, Y.

Y. F. Chan, H. J. Xu, L. Cao, Y. Tang, D. Y. Li, and X. M. Sun, “ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study,” J. Appl. Phys.111(3), 033104 (2012).
[CrossRef]

Tansu, N.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Thibeault, B. J.

Y. Hung, S. Lee, B. J. Thibeault, and L. A. Coldren, “Fabrication of highly ordered silicon nanowire arrays with controllable sidewall profiles for achieving low-surface reflection,” IEEE J. Sel. Top. Quantum Electron.17(4), 869–877 (2011).
[CrossRef]

Tokoro, K.

M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, “Differences in anisotropic etching properties of KOH and TMAH solutions,” Sens. Actuators A Phys.80(2), 179–188 (2000).
[CrossRef]

Uchikawa, D.

M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, “Differences in anisotropic etching properties of KOH and TMAH solutions,” Sens. Actuators A Phys.80(2), 179–188 (2000).
[CrossRef]

Unnikrishnan, S.

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

Vergés, M. A.

M. A. Vergés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous solutions,” J. Chem. Soc., Faraday Trans.86(6), 959–963 (1990).
[CrossRef]

Wang, D.

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

Wang, L.

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater.5(11), 893–900 (2006).
[CrossRef] [PubMed]

Wang, Z. L.

Y. Liu, A. Das, S. Xu, Z. Lin, C. Xu, Z. L. Wang, A. Rohatgi, and C. P. Wong, “Hybridizing ZnO nanowires with micro pyramid silicon wafers as super hydrophobic high-efficiency solar cells,” Adv. Energy Mater.2(1), 47–51 (2012).
[CrossRef]

R. Yang, Y. L. Chueh, J. R. Morber, R. Snyder, L. J. Chou, and Z. L. Wang, “Single-crystalline branched zinc phosphide nanostructures: synthesis, properties, and optoelectronic devices,” Nano Lett.7(2), 269–275 (2007).
[CrossRef] [PubMed]

Wong, C. P.

Y. Liu, A. Das, S. Xu, Z. Lin, C. Xu, Z. L. Wang, A. Rohatgi, and C. P. Wong, “Hybridizing ZnO nanowires with micro pyramid silicon wafers as super hydrophobic high-efficiency solar cells,” Adv. Energy Mater.2(1), 47–51 (2012).
[CrossRef]

Wu, B.

B. Wu, A. Kumar, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys.108(5), 051101 (2010).
[CrossRef]

Xu, C.

Y. Liu, A. Das, S. Xu, Z. Lin, C. Xu, Z. L. Wang, A. Rohatgi, and C. P. Wong, “Hybridizing ZnO nanowires with micro pyramid silicon wafers as super hydrophobic high-efficiency solar cells,” Adv. Energy Mater.2(1), 47–51 (2012).
[CrossRef]

Xu, H. J.

Y. F. Chan, H. J. Xu, L. Cao, Y. Tang, D. Y. Li, and X. M. Sun, “ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study,” J. Appl. Phys.111(3), 033104 (2012).
[CrossRef]

Xu, J.

S. H. Lee, G. E. Jellison, C. E. Duty, and J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett.99(15), 153113 (2011).
[CrossRef]

Xu, S.

Y. Liu, A. Das, S. Xu, Z. Lin, C. Xu, Z. L. Wang, A. Rohatgi, and C. P. Wong, “Hybridizing ZnO nanowires with micro pyramid silicon wafers as super hydrophobic high-efficiency solar cells,” Adv. Energy Mater.2(1), 47–51 (2012).
[CrossRef]

Yang, B.

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater.22(38), 4249–4269 (2010).
[CrossRef] [PubMed]

Yang, H. B.

H. Y. Zhu, H. B. Yang, K. Du, W. Y. Fu, L. X. Chang, X. F. Pang, Y. Zeng, and G. T. Zou, “Preparation of SiC and SiC/ZnO Nano composites and its properties,” Mater. Lett.61(21), 4242–4245 (2007).
[CrossRef]

Yang, P.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Yang, R.

R. Yang, Y. L. Chueh, J. R. Morber, R. Snyder, L. J. Chou, and Z. L. Wang, “Single-crystalline branched zinc phosphide nanostructures: synthesis, properties, and optoelectronic devices,” Nano Lett.7(2), 269–275 (2007).
[CrossRef] [PubMed]

Yang, Y.

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater.5(11), 893–900 (2006).
[CrossRef] [PubMed]

Yoon, M. H.

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater.5(11), 893–900 (2006).
[CrossRef] [PubMed]

Zeng, Y.

H. Y. Zhu, H. B. Yang, K. Du, W. Y. Fu, L. X. Chang, X. F. Pang, Y. Zeng, and G. T. Zou, “Preparation of SiC and SiC/ZnO Nano composites and its properties,” Mater. Lett.61(21), 4242–4245 (2007).
[CrossRef]

Zhan, J.

U. K. Gautam, X. Fang, Y. Bando, J. Zhan, and D. Golberg, “Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures,” ACS Nano2(5), 1015–1021 (2008).
[CrossRef] [PubMed]

Zhang, J.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater.22(38), 4249–4269 (2010).
[CrossRef] [PubMed]

Zhang, J. Z.

J. Li and J. Z. Zhang, “Optical properties and applications of hybrid semiconductor nanomaterials,” Coord. Chem. Rev.253(23–24), 3015–3041 (2009).
[CrossRef]

Zhang, X.

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater.22(38), 4249–4269 (2010).
[CrossRef] [PubMed]

Zhao, H.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Zhou, Y.

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

Zhu, H. Y.

H. Y. Zhu, H. B. Yang, K. Du, W. Y. Fu, L. X. Chang, X. F. Pang, Y. Zeng, and G. T. Zou, “Preparation of SiC and SiC/ZnO Nano composites and its properties,” Mater. Lett.61(21), 4242–4245 (2007).
[CrossRef]

Zhu, P. F.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

Zou, G. T.

H. Y. Zhu, H. B. Yang, K. Du, W. Y. Fu, L. X. Chang, X. F. Pang, Y. Zeng, and G. T. Zou, “Preparation of SiC and SiC/ZnO Nano composites and its properties,” Mater. Lett.61(21), 4242–4245 (2007).
[CrossRef]

ACS Nano (2)

U. K. Gautam, X. Fang, Y. Bando, J. Zhan, and D. Golberg, “Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures,” ACS Nano2(5), 1015–1021 (2008).
[CrossRef] [PubMed]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Adv. Energy Mater. (1)

Y. Liu, A. Das, S. Xu, Z. Lin, C. Xu, Z. L. Wang, A. Rohatgi, and C. P. Wong, “Hybridizing ZnO nanowires with micro pyramid silicon wafers as super hydrophobic high-efficiency solar cells,” Adv. Energy Mater.2(1), 47–51 (2012).
[CrossRef]

Adv. Mater. (1)

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater.22(38), 4249–4269 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. H. Lee, G. E. Jellison, C. E. Duty, and J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett.99(15), 153113 (2011).
[CrossRef]

Coord. Chem. Rev. (1)

J. Li and J. Z. Zhang, “Optical properties and applications of hybrid semiconductor nanomaterials,” Coord. Chem. Rev.253(23–24), 3015–3041 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Hung, S. Lee, B. J. Thibeault, and L. A. Coldren, “Fabrication of highly ordered silicon nanowire arrays with controllable sidewall profiles for achieving low-surface reflection,” IEEE J. Sel. Top. Quantum Electron.17(4), 869–877 (2011).
[CrossRef]

J. Appl. Phys. (2)

B. Wu, A. Kumar, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys.108(5), 051101 (2010).
[CrossRef]

Y. F. Chan, H. J. Xu, L. Cao, Y. Tang, D. Y. Li, and X. M. Sun, “ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study,” J. Appl. Phys.111(3), 033104 (2012).
[CrossRef]

J. Chem. Soc., Faraday Trans. (1)

M. A. Vergés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous solutions,” J. Chem. Soc., Faraday Trans.86(6), 959–963 (1990).
[CrossRef]

J. Disp. Technol. (1)

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

J. Micromech. Microeng. (1)

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

Mater. Lett. (1)

H. Y. Zhu, H. B. Yang, K. Du, W. Y. Fu, L. X. Chang, X. F. Pang, Y. Zeng, and G. T. Zou, “Preparation of SiC and SiC/ZnO Nano composites and its properties,” Mater. Lett.61(21), 4242–4245 (2007).
[CrossRef]

Mater. Sci. Eng. (1)

S. Chattopadhyay, Y. F. Huang, Y. J. Jend, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng.69(1–3), 1–35 (2010).

Microelectron. J. (1)

K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectron. J.37(6), 519–525 (2006).
[CrossRef]

Nano Lett. (2)

R. Yang, Y. L. Chueh, J. R. Morber, R. Snyder, L. J. Chou, and Z. L. Wang, “Single-crystalline branched zinc phosphide nanostructures: synthesis, properties, and optoelectronic devices,” Nano Lett.7(2), 269–275 (2007).
[CrossRef] [PubMed]

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Nanoscale (1)

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Nat. Mater. (2)

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater.5(11), 893–900 (2006).
[CrossRef] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Opt. Mater. Express (2)

Sens. Actuators A Phys. (1)

M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, “Differences in anisotropic etching properties of KOH and TMAH solutions,” Sens. Actuators A Phys.80(2), 179–188 (2000).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

S. H. Baek, S. B. Kim, J. K. Shin, and J. H. Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells96, 251–256 (2012).
[CrossRef]

Surf. Interface Anal. (1)

Y. S. Bae, D. C. Kim, C. H. Ahn, J. H. Kim, and H. K. Cho, “Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures,” Surf. Interface Anal.42(6–7), 978–982 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a)-(d): Schematics of Si micro pillar fabrication process steps. (a) SiO2 colloidal particles dispersed on a Si substrate. (b) Size reduction (by RIE) of as-dispersed SiO2 colloidal particles. (c) Anisotropic ICP-RIE etching of Si to produce Si micro pillars. (d) Si micro pillars after removal of SiO2 particles in HF. (e) Representative SEM images (top view) of hexagonal close-packed array of SiO2 particles after dispersion; image corresponds to process step shown on Fig. 1(a). (f) Tilted (30 degree) SEM image of Si micro pillar arrays; image corresponds to process step shown on Fig. 1(d).

Fig. 2
Fig. 2

(a)-(d): Schematic sketches of Si micro pyramid fabrication process steps. (a) ICP-RIE etched Si micro pillar arrays (b) and (c) Different stage of KOH etching of Si pillar to form Si micro pyramid (d) As etched micro pyramid arrays. (e) Representative SEM cross section images of Si micro pillar arrays and (f) corresponding Si micro pyramid arrays.

Fig. 3
Fig. 3

SEM images showing the growth of ZnO NWs on Si samples: (a) Si micro pillar arrays before ZnO NWs growth and (b) after 30 minutes (c) after 50 minutes (d) after 70 minutes of ZnO NW growth (magnified). (e) Representative cross sectional SEM image of a hierarchical Si micro pillar-ZnO NWs structure. (f) SEM top view of as-grown ZnO NWs on a planar Si substrate.

Fig. 4
Fig. 4

SEM top views of (a) periodic Si micro pyramid arrays without ZnO NWs, (b) hierarchical ZnO NWs on periodic Si micro pyramid arrays, and (c) hierarchical ZnO NWs on random Si micro pyramids. (d) Cross sectional SEM showing conformal ZnO NWs growth on the Si micro pyramid structure.

Fig. 5
Fig. 5

Total reflectance spectra of different structures with and without ZnO NWs: (a) planar Si with ZnO NWs grown for different durations; (b) and (c) - Si micro pillar arrays of 2 and 3 micrometer period, respectively, with ZnO NWs grown for different durations; and (d) Planar Si, Si micro pyramid arrays and random Si micro pyramid structure.

Fig. 6
Fig. 6

Raman spectra of different Si structures, with and without ZnO NWs.

Metrics