Abstract

A conductive layer of Ti, with a sheet resistance of about 220 Ω/sq, was placed in the dielectric spacer of an Al/SiOx/Al metamaterial terahertz absorber at various depths to probe the effect on the absorption of terahertz radiation. For a square size of 15 µm and a periodicity of 21 µm, and dielectric thickness approximately 1.6 µm, maximum absorption was 60%, 88%, and 94% for Ti layers 297, 765, and 1270 nm deep into the SiOx. Finite element simulations of the absorption correlated well with that of the measurements. This indicates that metamaterials with an embedded high temperature coefficient of resistance (TCR) conducting layer can be used for fabrication of microbolometers with tuned spectral sensitivity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol.25(1), 40–46 (2012).
    [CrossRef]
  2. K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudoh, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. Rapid Publ.3, 08027 (2008).
    [CrossRef]
  3. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
    [CrossRef]
  4. S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
    [CrossRef]
  5. Z. D. Taylor, R. S. Singh, M. O. Culjat, J. Y. Suen, W. S. Grundfest, H. Lee, and E. R. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett.33(11), 1258–1260 (2008).
    [CrossRef] [PubMed]
  6. R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys.29(2/3), 179–185 (2003).
    [CrossRef] [PubMed]
  7. A. G. Davies and E. H. Linfield, “Bridging the terahertz gap,” Phys. World14, 37–41 (2004).
  8. A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett.30(19), 2563–2565 (2005).
    [CrossRef] [PubMed]
  9. A. W. M. Lee, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
    [CrossRef]
  10. B. N. Behnken, M. Lowe, G. Karunasiri, D. Chamberlin, P. R. Robrish, and J. Faist, “Detection of 3.4 THz radiation from a quantum cascade laser using a microbolometer infrared camera,” Proc. SPIE6549, 65490C, 65490C–7 (2007).
    [CrossRef]
  11. N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE6940, 69402Y, 69402Y–12 (2008).
    [CrossRef]
  12. Z. Yin and F. W. Smith, “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: Experimental results and effective-medium-approximation analysis,” Phys. Rev. B Condens. Matter42(6), 3666–3675 (1990).
    [CrossRef] [PubMed]
  13. H. Budzier and G. Gerlach, Thermal Infrared Sensors: Theory, Optimization and Practice (Wiley, 2011), Chap. 6.
  14. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012) (and references therein).
    [CrossRef] [PubMed]
  15. B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
    [CrossRef]
  16. F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett.37(11), 1886–1888 (2012).
    [CrossRef] [PubMed]
  17. T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett.35(22), 3766–3768 (2010).
    [CrossRef] [PubMed]
  18. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett.34(19), 3012–3014 (2009).
    [CrossRef] [PubMed]
  19. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
    [CrossRef]
  20. F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano-scale metal films for terahertz applications,” Opt. Eng.51(6), 063801 (2012).
    [CrossRef]

2013

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
[CrossRef]

2012

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett.37(11), 1886–1888 (2012).
[CrossRef] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012) (and references therein).
[CrossRef] [PubMed]

A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol.25(1), 40–46 (2012).
[CrossRef]

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano-scale metal films for terahertz applications,” Opt. Eng.51(6), 063801 (2012).
[CrossRef]

2011

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

2010

2009

2008

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE6940, 69402Y, 69402Y–12 (2008).
[CrossRef]

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudoh, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. Rapid Publ.3, 08027 (2008).
[CrossRef]

Z. D. Taylor, R. S. Singh, M. O. Culjat, J. Y. Suen, W. S. Grundfest, H. Lee, and E. R. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett.33(11), 1258–1260 (2008).
[CrossRef] [PubMed]

2007

B. N. Behnken, M. Lowe, G. Karunasiri, D. Chamberlin, P. R. Robrish, and J. Faist, “Detection of 3.4 THz radiation from a quantum cascade laser using a microbolometer infrared camera,” Proc. SPIE6549, 65490C, 65490C–7 (2007).
[CrossRef]

2006

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

A. W. M. Lee, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

2005

A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett.30(19), 2563–2565 (2005).
[CrossRef] [PubMed]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

2004

A. G. Davies and E. H. Linfield, “Bridging the terahertz gap,” Phys. World14, 37–41 (2004).

2003

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys.29(2/3), 179–185 (2003).
[CrossRef] [PubMed]

1990

Z. Yin and F. W. Smith, “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: Experimental results and effective-medium-approximation analysis,” Phys. Rev. B Condens. Matter42(6), 3666–3675 (1990).
[CrossRef] [PubMed]

Alves, F.

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
[CrossRef]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett.37(11), 1886–1888 (2012).
[CrossRef] [PubMed]

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano-scale metal films for terahertz applications,” Opt. Eng.51(6), 063801 (2012).
[CrossRef]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Behnken, B. N.

B. N. Behnken, M. Lowe, G. Karunasiri, D. Chamberlin, P. R. Robrish, and J. Faist, “Detection of 3.4 THz radiation from a quantum cascade laser using a microbolometer infrared camera,” Proc. SPIE6549, 65490C, 65490C–7 (2007).
[CrossRef]

Bourne, N.

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys.29(2/3), 179–185 (2003).
[CrossRef] [PubMed]

Brown, E. R.

Brückl, H.

Brueckl, H.

Chamberlin, D.

B. N. Behnken, M. Lowe, G. Karunasiri, D. Chamberlin, P. R. Robrish, and J. Faist, “Detection of 3.4 THz radiation from a quantum cascade laser using a microbolometer infrared camera,” Proc. SPIE6549, 65490C, 65490C–7 (2007).
[CrossRef]

Clothier, R. H.

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys.29(2/3), 179–185 (2003).
[CrossRef] [PubMed]

Culjat, M. O.

Davies, A. G.

A. G. Davies and E. H. Linfield, “Bridging the terahertz gap,” Phys. World14, 37–41 (2004).

Faist, J.

B. N. Behnken, M. Lowe, G. Karunasiri, D. Chamberlin, P. R. Robrish, and J. Faist, “Detection of 3.4 THz radiation from a quantum cascade laser using a microbolometer infrared camera,” Proc. SPIE6549, 65490C, 65490C–7 (2007).
[CrossRef]

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Ford, J.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Fukunaga, K.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudoh, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. Rapid Publ.3, 08027 (2008).
[CrossRef]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Giovannini, M.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Gowen, A. A.

A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol.25(1), 40–46 (2012).
[CrossRef]

Grbovic, D.

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
[CrossRef]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett.37(11), 1886–1888 (2012).
[CrossRef] [PubMed]

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano-scale metal films for terahertz applications,” Opt. Eng.51(6), 063801 (2012).
[CrossRef]

Grundfest, W. S.

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Harris, G.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Harris, J. S.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Hatami, F.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Hosako, I.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudoh, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. Rapid Publ.3, 08027 (2008).
[CrossRef]

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE6940, 69402Y, 69402Y–12 (2008).
[CrossRef]

Hoyler, N.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Hu, Q.

A. W. M. Lee, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett.30(19), 2563–2565 (2005).
[CrossRef] [PubMed]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Irie, T.

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE6940, 69402Y, 69402Y–12 (2008).
[CrossRef]

Karamitros, A.

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano-scale metal films for terahertz applications,” Opt. Eng.51(6), 063801 (2012).
[CrossRef]

Karunasiri, G.

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
[CrossRef]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett.37(11), 1886–1888 (2012).
[CrossRef] [PubMed]

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano-scale metal films for terahertz applications,” Opt. Eng.51(6), 063801 (2012).
[CrossRef]

B. N. Behnken, M. Lowe, G. Karunasiri, D. Chamberlin, P. R. Robrish, and J. Faist, “Detection of 3.4 THz radiation from a quantum cascade laser using a microbolometer infrared camera,” Proc. SPIE6549, 65490C, 65490C–7 (2007).
[CrossRef]

Kearney, B.

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
[CrossRef]

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano-scale metal films for terahertz applications,” Opt. Eng.51(6), 063801 (2012).
[CrossRef]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett.37(11), 1886–1888 (2012).
[CrossRef] [PubMed]

Kim, S. M.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

King, D.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Kurashina, S.

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE6940, 69402Y, 69402Y–12 (2008).
[CrossRef]

Kurian, A. W.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Lee, A. W. M.

A. W. M. Lee, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett.30(19), 2563–2565 (2005).
[CrossRef] [PubMed]

Lee, H.

Linfield, E. H.

A. G. Davies and E. H. Linfield, “Bridging the terahertz gap,” Phys. World14, 37–41 (2004).

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012) (and references therein).
[CrossRef] [PubMed]

Lowe, M.

B. N. Behnken, M. Lowe, G. Karunasiri, D. Chamberlin, P. R. Robrish, and J. Faist, “Detection of 3.4 THz radiation from a quantum cascade laser using a microbolometer infrared camera,” Proc. SPIE6549, 65490C, 65490C–7 (2007).
[CrossRef]

Maier, T.

O’Donnell, C. P.

A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol.25(1), 40–46 (2012).
[CrossRef]

O’Sullivan, C.

A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol.25(1), 40–46 (2012).
[CrossRef]

Oda, N.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudoh, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. Rapid Publ.3, 08027 (2008).
[CrossRef]

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE6940, 69402Y, 69402Y–12 (2008).
[CrossRef]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012) (and references therein).
[CrossRef] [PubMed]

Qiu, M.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Reno, J. L.

A. W. M. Lee, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

Robrish, P. R.

B. N. Behnken, M. Lowe, G. Karunasiri, D. Chamberlin, P. R. Robrish, and J. Faist, “Detection of 3.4 THz radiation from a quantum cascade laser using a microbolometer infrared camera,” Proc. SPIE6549, 65490C, 65490C–7 (2007).
[CrossRef]

Sano, M.

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE6940, 69402Y, 69402Y–12 (2008).
[CrossRef]

Sasaki, T.

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE6940, 69402Y, 69402Y–12 (2008).
[CrossRef]

Scalari, G.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Sekine, N.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudoh, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. Rapid Publ.3, 08027 (2008).
[CrossRef]

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE6940, 69402Y, 69402Y–12 (2008).
[CrossRef]

Singh, R. S.

Smith, F. W.

Z. Yin and F. W. Smith, “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: Experimental results and effective-medium-approximation analysis,” Phys. Rev. B Condens. Matter42(6), 3666–3675 (1990).
[CrossRef] [PubMed]

Sudoh, T.

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE6940, 69402Y, 69402Y–12 (2008).
[CrossRef]

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudoh, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. Rapid Publ.3, 08027 (2008).
[CrossRef]

Suen, J. Y.

Taylor, Z. D.

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012) (and references therein).
[CrossRef] [PubMed]

Williams, B. S.

A. W. M. Lee, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

Yin, Z.

Z. Yin and F. W. Smith, “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: Experimental results and effective-medium-approximation analysis,” Phys. Rev. B Condens. Matter42(6), 3666–3675 (1990).
[CrossRef] [PubMed]

Yoneyama, H.

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE6940, 69402Y, 69402Y–12 (2008).
[CrossRef]

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudoh, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. Rapid Publ.3, 08027 (2008).
[CrossRef]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Adv. Mater.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012) (and references therein).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

A. W. M. Lee, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

J. Biol. Phys.

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys.29(2/3), 179–185 (2003).
[CrossRef] [PubMed]

J. Eur. Opt. Soc. Rapid Publ.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudoh, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. Rapid Publ.3, 08027 (2008).
[CrossRef]

Opt. Eng.

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
[CrossRef]

F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano-scale metal films for terahertz applications,” Opt. Eng.51(6), 063801 (2012).
[CrossRef]

Opt. Lett.

Phys. Rev. B

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Phys. Rev. B Condens. Matter

Z. Yin and F. W. Smith, “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: Experimental results and effective-medium-approximation analysis,” Phys. Rev. B Condens. Matter42(6), 3666–3675 (1990).
[CrossRef] [PubMed]

Phys. World

A. G. Davies and E. H. Linfield, “Bridging the terahertz gap,” Phys. World14, 37–41 (2004).

Proc. SPIE

B. N. Behnken, M. Lowe, G. Karunasiri, D. Chamberlin, P. R. Robrish, and J. Faist, “Detection of 3.4 THz radiation from a quantum cascade laser using a microbolometer infrared camera,” Proc. SPIE6549, 65490C, 65490C–7 (2007).
[CrossRef]

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE6940, 69402Y, 69402Y–12 (2008).
[CrossRef]

Semicond. Sci. Technol.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Trends Food Sci. Technol.

A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol.25(1), 40–46 (2012).
[CrossRef]

Other

H. Budzier and G. Gerlach, Thermal Infrared Sensors: Theory, Optimization and Practice (Wiley, 2011), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic (a) and top view micrograph (b) of a metamaterial absorber with a bolometric layer embedded in the dielectric. The square size and pitch were selected to have an absorption peak within the 1-10 THz band.

Fig. 2
Fig. 2

(a) Experimental (solid) and FE model (dashed) absorption spectra for samples A (black), B (red), and C (green). (b) Theoretical absorption curves for sample A for a set of sheet resistivites in the bolometric layer. Square size is 15 μm with 21 μm periodicity for both plots.

Fig. 3
Fig. 3

E-field magnitude plots from COMSOL FE simulations at 4.7 THz for samples A (a), B (b), and C (c). All plots use the same color scale, with warmer colors indicating more intense E-fields. Material types of different regions are labeled in (a). E-field, H-field, and propagation vectors of the incident THz waves are shown on (b).

Tables (1)

Tables Icon

Table 1 Thickness of the Dielectric Spacer Layers (in nm) of Each Sample

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R th = dT P 0 = η G th 1+ ω 2 τ 2

Metrics