Abstract

Titania inverse opal heterostructures demonstrating two distinctive photonic stopgaps were fabricated by repetitive vertical self-assembly and atomic layer deposition (ALD). Angle resolved reflectance measurements of the inverse opal heterostructure are reported for the first time. The comparison with the spectra of constituents show that the ΓL stopgaps of the heterostructure obey the superposition principle and the angular dispersion of their stopgaps is well-fitted with the modified Bragg’s law at low incidence angles. Numerical simulations were used to predict the dominant features in the reflectance spectra. The total (specular and diffuse) transmission and reflectance measurements of the single inverse opals and the heterostructure reveal that the diffuse scattering could severely impair the photonic properties of the buried layers in the multi-stack photonic crystal (PhC) configurations. Ascending stacking is proposed as a means to improve the performance of the multi-layer coatings.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Braun, S. A. Rinne, and F. García-Santamaría, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater.18(20), 2665–2678 (2006).
    [CrossRef]
  2. K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol.17(2), 72–82 (2006).
    [CrossRef]
  3. J. Ballato and A. James, “A ceramic photonic crystal temperature sensor,” J. Am. Ceram. Soc.82(8), 2273–2275 (1999).
    [CrossRef]
  4. A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” in Proceedings of the Eleventh International Meeting on Chemical Sensors IMCS-11 IMCS 2006 IMCS 11 130 (2008), pp. 567–573.
    [CrossRef]
  5. A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
    [CrossRef]
  6. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007).
    [CrossRef] [PubMed]
  7. B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A.107(23), 10354–10359 (2010).
    [CrossRef] [PubMed]
  8. A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhng, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett.26(2), 024210 (2009).
    [CrossRef]
  9. P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater.13(6), 389–393 (2001).
    [CrossRef]
  10. R. V. Nair and R. Vijaya, “Three-dimensionally ordered photonic crystal heterostructures with a double photonic stop band,” J. Appl. Phys.102(5), 056102 (2007).
    [CrossRef]
  11. Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir24(5), 1796–1800 (2008).
    [CrossRef] [PubMed]
  12. W. Khunsin, S. G. Romanov, C. M. Sotomayor Torres, J. Ye, and R. Zentell, “Optical transmission in triple-film hetero-opals,” J. Appl. Phys.104(1), 013527 (2008).
    [CrossRef]
  13. Z.-Q. Liu, T.-H. Feng, Q.-F. Dai, L.-J. Wu, and L. Sheng, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chinese Physics B18(6), 2383–2388 (2009).
    [CrossRef]
  14. S. G. Romanov, M. Egen, R. Zentel, and C. M. Sotomayor Torres, “Propagation and scattering of light in opal heterojunctions,” in Proceedings of the 12th International Conference on Modulated Semiconductor Structures Proceedings of the 12th International Conference on Modulated Semiconductor Structures (2006), Vol. 32, pp. 476–479.
    [CrossRef]
  15. C. M. Soukoulis, Photonic Crystals and Light Localization in the 21st Century (Kluwer Academic, 2001).
  16. A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
    [CrossRef]
  17. D.-K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
    [CrossRef]
  18. A. Wang, S.-L. Chen, P. Dong, and Z. Zhou, “Preparation of photonic crystal heterostructures composed of two TiO2 inverse opal films with different filling factors,” Synth. Met.161(5-6), 504–507 (2011).
    [CrossRef]
  19. Z. Cai, Y. J. Liu, J. Teng, and X. Lu, “Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres,” ACS Appl. Mater. Interfaces4(10), 5562–5569 (2012).
    [CrossRef] [PubMed]
  20. H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. Schneider, and M. Eich, “Thermal radiation transmission and reflection properties of ceramic 3D photonic crystals,” J. Opt. Soc. Am. B29(3), 450–457 (2012).
    [CrossRef]
  21. R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, and G. A. Schneider, “Stacking of ceramic inverse opals with different lattice constants,” J. Am. Ceram. Soc.95(7), 2226–2235 (2012).
    [CrossRef]
  22. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
    [CrossRef] [PubMed]
  23. Available at www.cst.com .
  24. A. F. Koenderink and W. L. Vos, “Optical properties of real photonic crystals: anomalous diffuse transmission,” J. Opt. Soc. Am. B22(5), 1075–1084 (2005).
    [CrossRef]
  25. H. M. van Driel and W. L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B62(15), 9872–9875 (2000).
    [CrossRef]
  26. S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.63(5), 056603 (2001).
    [CrossRef] [PubMed]
  27. J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
    [CrossRef]
  28. M. Ishii, M. Harada, A. Tsukigase, and H. Nakamura, “Three-dimensional structure analysis of opaline photonic crystals by angle-resolved reflection spectroscopy,” J. Opt. A9(9), S372–S376 (2007).
    [CrossRef]
  29. R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
    [CrossRef]
  30. Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li, J. Ding, and Y. Chi, “Fabrication of anatase titania inverse opal films using polystyrene templates,” Superlattices Microstruct.40(3), 155–160 (2006).
    [CrossRef]
  31. M. Lanata, M. Cherchi, A. Zappettini, S. M. Pietralunga, and M. Martinelli, “Titania inverse opals for infrared optical applications,” Opt. Mater.17(1-2), 11–14 (2001).
    [CrossRef]
  32. J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater.13(12), 4486–4499 (2001).
    [CrossRef]
  33. J. S. King, E. Graugnard, and C. J. Summers, “TiO2 inverse opals fabricated using low-temperature atomic layer deposition,” Adv. Mater.17(8), 1010–1013 (2005).
    [CrossRef]
  34. Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett.76(12), 1627–1629 (2000).
    [CrossRef]
  35. J. F. Galisteo Lòpez and W. L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: effects of disorder,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(3 Pt 2B), 036616 (2002).
    [CrossRef] [PubMed]
  36. A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B72(15), 153102 (2005).
    [CrossRef]

2012 (3)

Z. Cai, Y. J. Liu, J. Teng, and X. Lu, “Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres,” ACS Appl. Mater. Interfaces4(10), 5562–5569 (2012).
[CrossRef] [PubMed]

H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. Schneider, and M. Eich, “Thermal radiation transmission and reflection properties of ceramic 3D photonic crystals,” J. Opt. Soc. Am. B29(3), 450–457 (2012).
[CrossRef]

R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, and G. A. Schneider, “Stacking of ceramic inverse opals with different lattice constants,” J. Am. Ceram. Soc.95(7), 2226–2235 (2012).
[CrossRef]

2011 (1)

A. Wang, S.-L. Chen, P. Dong, and Z. Zhou, “Preparation of photonic crystal heterostructures composed of two TiO2 inverse opal films with different filling factors,” Synth. Met.161(5-6), 504–507 (2011).
[CrossRef]

2010 (1)

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A.107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

2009 (3)

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhng, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett.26(2), 024210 (2009).
[CrossRef]

Z.-Q. Liu, T.-H. Feng, Q.-F. Dai, L.-J. Wu, and L. Sheng, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chinese Physics B18(6), 2383–2388 (2009).
[CrossRef]

D.-K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
[CrossRef]

2008 (4)

A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
[CrossRef]

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir24(5), 1796–1800 (2008).
[CrossRef] [PubMed]

W. Khunsin, S. G. Romanov, C. M. Sotomayor Torres, J. Ye, and R. Zentell, “Optical transmission in triple-film hetero-opals,” J. Appl. Phys.104(1), 013527 (2008).
[CrossRef]

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

2007 (3)

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

R. V. Nair and R. Vijaya, “Three-dimensionally ordered photonic crystal heterostructures with a double photonic stop band,” J. Appl. Phys.102(5), 056102 (2007).
[CrossRef]

M. Ishii, M. Harada, A. Tsukigase, and H. Nakamura, “Three-dimensional structure analysis of opaline photonic crystals by angle-resolved reflection spectroscopy,” J. Opt. A9(9), S372–S376 (2007).
[CrossRef]

2006 (3)

Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li, J. Ding, and Y. Chi, “Fabrication of anatase titania inverse opal films using polystyrene templates,” Superlattices Microstruct.40(3), 155–160 (2006).
[CrossRef]

P. V. Braun, S. A. Rinne, and F. García-Santamaría, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater.18(20), 2665–2678 (2006).
[CrossRef]

K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol.17(2), 72–82 (2006).
[CrossRef]

2005 (3)

A. F. Koenderink and W. L. Vos, “Optical properties of real photonic crystals: anomalous diffuse transmission,” J. Opt. Soc. Am. B22(5), 1075–1084 (2005).
[CrossRef]

J. S. King, E. Graugnard, and C. J. Summers, “TiO2 inverse opals fabricated using low-temperature atomic layer deposition,” Adv. Mater.17(8), 1010–1013 (2005).
[CrossRef]

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B72(15), 153102 (2005).
[CrossRef]

2003 (1)

J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
[CrossRef]

2002 (2)

J. F. Galisteo Lòpez and W. L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: effects of disorder,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(3 Pt 2B), 036616 (2002).
[CrossRef] [PubMed]

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
[CrossRef]

2001 (5)

M. Lanata, M. Cherchi, A. Zappettini, S. M. Pietralunga, and M. Martinelli, “Titania inverse opals for infrared optical applications,” Opt. Mater.17(1-2), 11–14 (2001).
[CrossRef]

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater.13(12), 4486–4499 (2001).
[CrossRef]

S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.63(5), 056603 (2001).
[CrossRef] [PubMed]

P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater.13(6), 389–393 (2001).
[CrossRef]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
[CrossRef] [PubMed]

2000 (2)

H. M. van Driel and W. L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B62(15), 9872–9875 (2000).
[CrossRef]

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett.76(12), 1627–1629 (2000).
[CrossRef]

1999 (1)

J. Ballato and A. James, “A ceramic photonic crystal temperature sensor,” J. Am. Ceram. Soc.82(8), 2273–2275 (1999).
[CrossRef]

Aizenberg, J.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A.107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Al-Daous, M.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
[CrossRef]

Anta, J. A.

A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
[CrossRef]

Ballato, J.

J. Ballato and A. James, “A ceramic photonic crystal temperature sensor,” J. Am. Ceram. Soc.82(8), 2273–2275 (1999).
[CrossRef]

Bechger, L.

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater.13(12), 4486–4499 (2001).
[CrossRef]

Bermel, P.

Bielawny, A.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

Blanford, C. F.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
[CrossRef]

Braun, P. V.

P. V. Braun, S. A. Rinne, and F. García-Santamaría, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater.18(20), 2665–2678 (2006).
[CrossRef]

Cai, X.-G.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhng, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett.26(2), 024210 (2009).
[CrossRef]

Cai, Z.

Z. Cai, Y. J. Liu, J. Teng, and X. Lu, “Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres,” ACS Appl. Mater. Interfaces4(10), 5562–5569 (2012).
[CrossRef] [PubMed]

Calvo, M. E.

A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
[CrossRef]

Cao, H.

D.-K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
[CrossRef]

Cao, Y.

Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li, J. Ding, and Y. Chi, “Fabrication of anatase titania inverse opal films using polystyrene templates,” Superlattices Microstruct.40(3), 155–160 (2006).
[CrossRef]

Carius, R.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

Cassagne, D.

S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.63(5), 056603 (2001).
[CrossRef] [PubMed]

Castillo-Martínez, E.

J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
[CrossRef]

Chang, R. P. H.

D.-K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
[CrossRef]

Chen, H.

Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li, J. Ding, and Y. Chi, “Fabrication of anatase titania inverse opal films using polystyrene templates,” Superlattices Microstruct.40(3), 155–160 (2006).
[CrossRef]

Chen, S.-L.

A. Wang, S.-L. Chen, P. Dong, and Z. Zhou, “Preparation of photonic crystal heterostructures composed of two TiO2 inverse opal films with different filling factors,” Synth. Met.161(5-6), 504–507 (2011).
[CrossRef]

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhng, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett.26(2), 024210 (2009).
[CrossRef]

Cherchi, M.

M. Lanata, M. Cherchi, A. Zappettini, S. M. Pietralunga, and M. Martinelli, “Titania inverse opals for infrared optical applications,” Opt. Mater.17(1-2), 11–14 (2001).
[CrossRef]

Chi, Y.

Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li, J. Ding, and Y. Chi, “Fabrication of anatase titania inverse opal films using polystyrene templates,” Superlattices Microstruct.40(3), 155–160 (2006).
[CrossRef]

Chiang, Y.-M.

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir24(5), 1796–1800 (2008).
[CrossRef] [PubMed]

Colvin, V. L.

P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater.13(6), 389–393 (2001).
[CrossRef]

Dai, Q.-F.

Z.-Q. Liu, T.-H. Feng, Q.-F. Dai, L.-J. Wu, and L. Sheng, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chinese Physics B18(6), 2383–2388 (2009).
[CrossRef]

Davis, S.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A.107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Deutsch, M.

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett.76(12), 1627–1629 (2000).
[CrossRef]

Ding, J.

Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li, J. Ding, and Y. Chi, “Fabrication of anatase titania inverse opal films using polystyrene templates,” Superlattices Microstruct.40(3), 155–160 (2006).
[CrossRef]

Dong, P.

A. Wang, S.-L. Chen, P. Dong, and Z. Zhou, “Preparation of photonic crystal heterostructures composed of two TiO2 inverse opal films with different filling factors,” Synth. Met.161(5-6), 504–507 (2011).
[CrossRef]

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhng, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett.26(2), 024210 (2009).
[CrossRef]

Egen, M.

S. G. Romanov, M. Egen, R. Zentel, and C. M. Sotomayor Torres, “Propagation and scattering of light in opal heterojunctions,” in Proceedings of the 12th International Conference on Modulated Semiconductor Structures Proceedings of the 12th International Conference on Modulated Semiconductor Structures (2006), Vol. 32, pp. 476–479.
[CrossRef]

Eich, M.

H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. Schneider, and M. Eich, “Thermal radiation transmission and reflection properties of ceramic 3D photonic crystals,” J. Opt. Soc. Am. B29(3), 450–457 (2012).
[CrossRef]

R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, and G. A. Schneider, “Stacking of ceramic inverse opals with different lattice constants,” J. Am. Ceram. Soc.95(7), 2226–2235 (2012).
[CrossRef]

Feng, T.-H.

Z.-Q. Liu, T.-H. Feng, Q.-F. Dai, L.-J. Wu, and L. Sheng, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chinese Physics B18(6), 2383–2388 (2009).
[CrossRef]

Galisteo Lòpez, J. F.

J. F. Galisteo Lòpez and W. L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: effects of disorder,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(3 Pt 2B), 036616 (2002).
[CrossRef] [PubMed]

Galisteo-López, J. F.

J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
[CrossRef]

García-Santamaría, F.

P. V. Braun, S. A. Rinne, and F. García-Santamaría, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater.18(20), 2665–2678 (2006).
[CrossRef]

Graugnard, E.

J. S. King, E. Graugnard, and C. J. Summers, “TiO2 inverse opals fabricated using low-temperature atomic layer deposition,” Adv. Mater.17(8), 1010–1013 (2005).
[CrossRef]

Harada, M.

M. Ishii, M. Harada, A. Tsukigase, and H. Nakamura, “Three-dimensional structure analysis of opaline photonic crystals by angle-resolved reflection spectroscopy,” J. Opt. A9(9), S372–S376 (2007).
[CrossRef]

Hatton, B.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A.107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Hu, C.-T.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhng, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett.26(2), 024210 (2009).
[CrossRef]

Hwang, D.-K.

D.-K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
[CrossRef]

Ishii, M.

M. Ishii, M. Harada, A. Tsukigase, and H. Nakamura, “Three-dimensional structure analysis of opaline photonic crystals by angle-resolved reflection spectroscopy,” J. Opt. A9(9), S372–S376 (2007).
[CrossRef]

James, A.

J. Ballato and A. James, “A ceramic photonic crystal temperature sensor,” J. Am. Ceram. Soc.82(8), 2273–2275 (1999).
[CrossRef]

Janssen, R.

R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, and G. A. Schneider, “Stacking of ceramic inverse opals with different lattice constants,” J. Am. Ceram. Soc.95(7), 2226–2235 (2012).
[CrossRef]

Jiang, P.

P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater.13(6), 389–393 (2001).
[CrossRef]

Joannopoulos, J.

Joannopoulos, J. D.

Johnson, S.

Jouanin, C.

S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.63(5), 056603 (2001).
[CrossRef] [PubMed]

Khunsin, W.

W. Khunsin, S. G. Romanov, C. M. Sotomayor Torres, J. Ye, and R. Zentell, “Optical transmission in triple-film hetero-opals,” J. Appl. Phys.104(1), 013527 (2008).
[CrossRef]

Kim, R. H.

K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol.17(2), 72–82 (2006).
[CrossRef]

Kimerling, L. C.

King, J. S.

J. S. King, E. Graugnard, and C. J. Summers, “TiO2 inverse opals fabricated using low-temperature atomic layer deposition,” Adv. Mater.17(8), 1010–1013 (2005).
[CrossRef]

Knez, M.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

Koenderink, A. F.

A. F. Koenderink and W. L. Vos, “Optical properties of real photonic crystals: anomalous diffuse transmission,” J. Opt. Soc. Am. B22(5), 1075–1084 (2005).
[CrossRef]

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B72(15), 153102 (2005).
[CrossRef]

Kubrin, R.

R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, and G. A. Schneider, “Stacking of ceramic inverse opals with different lattice constants,” J. Am. Ceram. Soc.95(7), 2226–2235 (2012).
[CrossRef]

H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. Schneider, and M. Eich, “Thermal radiation transmission and reflection properties of ceramic 3D photonic crystals,” J. Opt. Soc. Am. B29(3), 450–457 (2012).
[CrossRef]

Lagendijk, A.

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B72(15), 153102 (2005).
[CrossRef]

Lambertz, A.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

Lanata, M.

M. Lanata, M. Cherchi, A. Zappettini, S. M. Pietralunga, and M. Martinelli, “Titania inverse opals for infrared optical applications,” Opt. Mater.17(1-2), 11–14 (2001).
[CrossRef]

Lederer, F.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

Lee, H. S.

H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. Schneider, and M. Eich, “Thermal radiation transmission and reflection properties of ceramic 3D photonic crystals,” J. Opt. Soc. Am. B29(3), 450–457 (2012).
[CrossRef]

R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, and G. A. Schneider, “Stacking of ceramic inverse opals with different lattice constants,” J. Am. Ceram. Soc.95(7), 2226–2235 (2012).
[CrossRef]

Lee, K.-S.

K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol.17(2), 72–82 (2006).
[CrossRef]

Lee, S.-M.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

Li, Z.

Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li, J. Ding, and Y. Chi, “Fabrication of anatase titania inverse opal films using polystyrene templates,” Superlattices Microstruct.40(3), 155–160 (2006).
[CrossRef]

Liu, Y. J.

Z. Cai, Y. J. Liu, J. Teng, and X. Lu, “Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres,” ACS Appl. Mater. Interfaces4(10), 5562–5569 (2012).
[CrossRef] [PubMed]

Liu, Z.-Q.

Z.-Q. Liu, T.-H. Feng, Q.-F. Dai, L.-J. Wu, and L. Sheng, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chinese Physics B18(6), 2383–2388 (2009).
[CrossRef]

López, C.

J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
[CrossRef]

Lu, X.

Z. Cai, Y. J. Liu, J. Teng, and X. Lu, “Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres,” ACS Appl. Mater. Interfaces4(10), 5562–5569 (2012).
[CrossRef] [PubMed]

Luo, C.

Maka, T.

S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.63(5), 056603 (2001).
[CrossRef] [PubMed]

Manzanares-Martinez, J.

S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.63(5), 056603 (2001).
[CrossRef] [PubMed]

Martinelli, M.

M. Lanata, M. Cherchi, A. Zappettini, S. M. Pietralunga, and M. Martinelli, “Titania inverse opals for infrared optical applications,” Opt. Mater.17(1-2), 11–14 (2001).
[CrossRef]

Miclea, P. T.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

Miguez, H.

A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
[CrossRef]

Mihi, A.

A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
[CrossRef]

Mishchenko, L.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A.107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Mittleman, D. M.

P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater.13(6), 389–393 (2001).
[CrossRef]

Müller, M.

S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.63(5), 056603 (2001).
[CrossRef] [PubMed]

Nair, R. V.

R. V. Nair and R. Vijaya, “Three-dimensionally ordered photonic crystal heterostructures with a double photonic stop band,” J. Appl. Phys.102(5), 056102 (2007).
[CrossRef]

Nakamura, H.

M. Ishii, M. Harada, A. Tsukigase, and H. Nakamura, “Three-dimensional structure analysis of opaline photonic crystals by angle-resolved reflection spectroscopy,” J. Opt. A9(9), S372–S376 (2007).
[CrossRef]

Narat, R.

P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater.13(6), 389–393 (2001).
[CrossRef]

Nielsch, K.

H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. Schneider, and M. Eich, “Thermal radiation transmission and reflection properties of ceramic 3D photonic crystals,” J. Opt. Soc. Am. B29(3), 450–457 (2012).
[CrossRef]

R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, and G. A. Schneider, “Stacking of ceramic inverse opals with different lattice constants,” J. Am. Ceram. Soc.95(7), 2226–2235 (2012).
[CrossRef]

Noh, H.

D.-K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
[CrossRef]

Norris, D. J.

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett.76(12), 1627–1629 (2000).
[CrossRef]

Ostojic, G. N.

P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater.13(6), 389–393 (2001).
[CrossRef]

Palacios-Lidón, E.

J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
[CrossRef]

Park, S. H.

K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol.17(2), 72–82 (2006).
[CrossRef]

Peters, M.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

Petrov, A. Y.

Pietralunga, S. M.

M. Lanata, M. Cherchi, A. Zappettini, S. M. Pietralunga, and M. Martinelli, “Titania inverse opals for infrared optical applications,” Opt. Mater.17(1-2), 11–14 (2001).
[CrossRef]

Rinne, S. A.

P. V. Braun, S. A. Rinne, and F. García-Santamaría, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater.18(20), 2665–2678 (2006).
[CrossRef]

Rockstuhl, C.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

Romanov, S. G.

W. Khunsin, S. G. Romanov, C. M. Sotomayor Torres, J. Ye, and R. Zentell, “Optical transmission in triple-film hetero-opals,” J. Appl. Phys.104(1), 013527 (2008).
[CrossRef]

S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.63(5), 056603 (2001).
[CrossRef] [PubMed]

S. G. Romanov, M. Egen, R. Zentel, and C. M. Sotomayor Torres, “Propagation and scattering of light in opal heterojunctions,” in Proceedings of the 12th International Conference on Modulated Semiconductor Structures Proceedings of the 12th International Conference on Modulated Semiconductor Structures (2006), Vol. 32, pp. 476–479.
[CrossRef]

Sandhage, K. H.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A.107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Schneider, G. A.

R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, and G. A. Schneider, “Stacking of ceramic inverse opals with different lattice constants,” J. Am. Ceram. Soc.95(7), 2226–2235 (2012).
[CrossRef]

H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. Schneider, and M. Eich, “Thermal radiation transmission and reflection properties of ceramic 3D photonic crystals,” J. Opt. Soc. Am. B29(3), 450–457 (2012).
[CrossRef]

Schroden, R. C.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
[CrossRef]

Shao, Q.

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir24(5), 1796–1800 (2008).
[CrossRef] [PubMed]

Sheng, L.

Z.-Q. Liu, T.-H. Feng, Q.-F. Dai, L.-J. Wu, and L. Sheng, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chinese Physics B18(6), 2383–2388 (2009).
[CrossRef]

Sotomayor Torres, C. M.

W. Khunsin, S. G. Romanov, C. M. Sotomayor Torres, J. Ye, and R. Zentell, “Optical transmission in triple-film hetero-opals,” J. Appl. Phys.104(1), 013527 (2008).
[CrossRef]

S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.63(5), 056603 (2001).
[CrossRef] [PubMed]

S. G. Romanov, M. Egen, R. Zentel, and C. M. Sotomayor Torres, “Propagation and scattering of light in opal heterojunctions,” in Proceedings of the 12th International Conference on Modulated Semiconductor Structures Proceedings of the 12th International Conference on Modulated Semiconductor Structures (2006), Vol. 32, pp. 476–479.
[CrossRef]

Steidl, L.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

Stein, A.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
[CrossRef]

Summers, C. J.

J. S. King, E. Graugnard, and C. J. Summers, “TiO2 inverse opals fabricated using low-temperature atomic layer deposition,” Adv. Mater.17(8), 1010–1013 (2005).
[CrossRef]

Teh, L. K.

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir24(5), 1796–1800 (2008).
[CrossRef] [PubMed]

Teng, J.

Z. Cai, Y. J. Liu, J. Teng, and X. Lu, “Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres,” ACS Appl. Mater. Interfaces4(10), 5562–5569 (2012).
[CrossRef] [PubMed]

Tsukigase, A.

M. Ishii, M. Harada, A. Tsukigase, and H. Nakamura, “Three-dimensional structure analysis of opaline photonic crystals by angle-resolved reflection spectroscopy,” J. Opt. A9(9), S372–S376 (2007).
[CrossRef]

Üpping, J.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

van Driel, H. M.

H. M. van Driel and W. L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B62(15), 9872–9875 (2000).
[CrossRef]

Vijaya, R.

R. V. Nair and R. Vijaya, “Three-dimensionally ordered photonic crystal heterostructures with a double photonic stop band,” J. Appl. Phys.102(5), 056102 (2007).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett.76(12), 1627–1629 (2000).
[CrossRef]

Vos, W. L.

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B72(15), 153102 (2005).
[CrossRef]

A. F. Koenderink and W. L. Vos, “Optical properties of real photonic crystals: anomalous diffuse transmission,” J. Opt. Soc. Am. B22(5), 1075–1084 (2005).
[CrossRef]

J. F. Galisteo Lòpez and W. L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: effects of disorder,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(3 Pt 2B), 036616 (2002).
[CrossRef] [PubMed]

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater.13(12), 4486–4499 (2001).
[CrossRef]

H. M. van Driel and W. L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B62(15), 9872–9875 (2000).
[CrossRef]

Wang, A.

A. Wang, S.-L. Chen, P. Dong, and Z. Zhou, “Preparation of photonic crystal heterostructures composed of two TiO2 inverse opal films with different filling factors,” Synth. Met.161(5-6), 504–507 (2011).
[CrossRef]

Wang, A.-J.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhng, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett.26(2), 024210 (2009).
[CrossRef]

Wang, Y.

Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li, J. Ding, and Y. Chi, “Fabrication of anatase titania inverse opal films using polystyrene templates,” Superlattices Microstruct.40(3), 155–160 (2006).
[CrossRef]

Wehrspohn, R. B.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

Wijnhoven, J. E. G. J.

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater.13(12), 4486–4499 (2001).
[CrossRef]

Wong, C. C.

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir24(5), 1796–1800 (2008).
[CrossRef] [PubMed]

Wu, L.-J.

Z.-Q. Liu, T.-H. Feng, Q.-F. Dai, L.-J. Wu, and L. Sheng, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chinese Physics B18(6), 2383–2388 (2009).
[CrossRef]

Yan, Q.

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir24(5), 1796–1800 (2008).
[CrossRef] [PubMed]

Yang, D.-Y.

K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol.17(2), 72–82 (2006).
[CrossRef]

Ye, J.

W. Khunsin, S. G. Romanov, C. M. Sotomayor Torres, J. Ye, and R. Zentell, “Optical transmission in triple-film hetero-opals,” J. Appl. Phys.104(1), 013527 (2008).
[CrossRef]

Yu. Petrov, A.

R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, and G. A. Schneider, “Stacking of ceramic inverse opals with different lattice constants,” J. Am. Ceram. Soc.95(7), 2226–2235 (2012).
[CrossRef]

Yuan, G.-M.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhng, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett.26(2), 024210 (2009).
[CrossRef]

Zappettini, A.

M. Lanata, M. Cherchi, A. Zappettini, S. M. Pietralunga, and M. Martinelli, “Titania inverse opals for infrared optical applications,” Opt. Mater.17(1-2), 11–14 (2001).
[CrossRef]

Zeng, L.

Zentel, R.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.63(5), 056603 (2001).
[CrossRef] [PubMed]

S. G. Romanov, M. Egen, R. Zentel, and C. M. Sotomayor Torres, “Propagation and scattering of light in opal heterojunctions,” in Proceedings of the 12th International Conference on Modulated Semiconductor Structures Proceedings of the 12th International Conference on Modulated Semiconductor Structures (2006), Vol. 32, pp. 476–479.
[CrossRef]

Zentell, R.

W. Khunsin, S. G. Romanov, C. M. Sotomayor Torres, J. Ye, and R. Zentell, “Optical transmission in triple-film hetero-opals,” J. Appl. Phys.104(1), 013527 (2008).
[CrossRef]

Zhng, D.-Z.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhng, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett.26(2), 024210 (2009).
[CrossRef]

Zhou, Q.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhng, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett.26(2), 024210 (2009).
[CrossRef]

Zhou, Z.

A. Wang, S.-L. Chen, P. Dong, and Z. Zhou, “Preparation of photonic crystal heterostructures composed of two TiO2 inverse opal films with different filling factors,” Synth. Met.161(5-6), 504–507 (2011).
[CrossRef]

Zhu, Y.

Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li, J. Ding, and Y. Chi, “Fabrication of anatase titania inverse opal films using polystyrene templates,” Superlattices Microstruct.40(3), 155–160 (2006).
[CrossRef]

Zierold, R.

H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. Schneider, and M. Eich, “Thermal radiation transmission and reflection properties of ceramic 3D photonic crystals,” J. Opt. Soc. Am. B29(3), 450–457 (2012).
[CrossRef]

R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, and G. A. Schneider, “Stacking of ceramic inverse opals with different lattice constants,” J. Am. Ceram. Soc.95(7), 2226–2235 (2012).
[CrossRef]

ACS Appl. Mater. Interfaces (1)

Z. Cai, Y. J. Liu, J. Teng, and X. Lu, “Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres,” ACS Appl. Mater. Interfaces4(10), 5562–5569 (2012).
[CrossRef] [PubMed]

Adv. Mater. (3)

J. S. King, E. Graugnard, and C. J. Summers, “TiO2 inverse opals fabricated using low-temperature atomic layer deposition,” Adv. Mater.17(8), 1010–1013 (2005).
[CrossRef]

P. V. Braun, S. A. Rinne, and F. García-Santamaría, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater.18(20), 2665–2678 (2006).
[CrossRef]

P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater.13(6), 389–393 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

D.-K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009).
[CrossRef]

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett.76(12), 1627–1629 (2000).
[CrossRef]

Chem. Mater. (2)

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
[CrossRef]

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater.13(12), 4486–4499 (2001).
[CrossRef]

Chin. Phys. Lett. (1)

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhng, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett.26(2), 024210 (2009).
[CrossRef]

Chinese Physics B (1)

Z.-Q. Liu, T.-H. Feng, Q.-F. Dai, L.-J. Wu, and L. Sheng, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chinese Physics B18(6), 2383–2388 (2009).
[CrossRef]

J. Am. Ceram. Soc. (2)

J. Ballato and A. James, “A ceramic photonic crystal temperature sensor,” J. Am. Ceram. Soc.82(8), 2273–2275 (1999).
[CrossRef]

R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, and G. A. Schneider, “Stacking of ceramic inverse opals with different lattice constants,” J. Am. Ceram. Soc.95(7), 2226–2235 (2012).
[CrossRef]

J. Appl. Phys. (2)

R. V. Nair and R. Vijaya, “Three-dimensionally ordered photonic crystal heterostructures with a double photonic stop band,” J. Appl. Phys.102(5), 056102 (2007).
[CrossRef]

W. Khunsin, S. G. Romanov, C. M. Sotomayor Torres, J. Ye, and R. Zentell, “Optical transmission in triple-film hetero-opals,” J. Appl. Phys.104(1), 013527 (2008).
[CrossRef]

J. Opt. A (1)

M. Ishii, M. Harada, A. Tsukigase, and H. Nakamura, “Three-dimensional structure analysis of opaline photonic crystals by angle-resolved reflection spectroscopy,” J. Opt. A9(9), S372–S376 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
[CrossRef]

Langmuir (1)

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir24(5), 1796–1800 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Mater. (1)

M. Lanata, M. Cherchi, A. Zappettini, S. M. Pietralunga, and M. Martinelli, “Titania inverse opals for infrared optical applications,” Opt. Mater.17(1-2), 11–14 (2001).
[CrossRef]

Phys. Rev. B (3)

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B72(15), 153102 (2005).
[CrossRef]

H. M. van Driel and W. L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B62(15), 9872–9875 (2000).
[CrossRef]

J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.63(5), 056603 (2001).
[CrossRef] [PubMed]

J. F. Galisteo Lòpez and W. L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: effects of disorder,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(3 Pt 2B), 036616 (2002).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008).
[CrossRef]

Polym. Adv. Technol. (1)

K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol.17(2), 72–82 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A.107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Superlattices Microstruct. (1)

Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li, J. Ding, and Y. Chi, “Fabrication of anatase titania inverse opal films using polystyrene templates,” Superlattices Microstruct.40(3), 155–160 (2006).
[CrossRef]

Synth. Met. (1)

A. Wang, S.-L. Chen, P. Dong, and Z. Zhou, “Preparation of photonic crystal heterostructures composed of two TiO2 inverse opal films with different filling factors,” Synth. Met.161(5-6), 504–507 (2011).
[CrossRef]

Other (4)

S. G. Romanov, M. Egen, R. Zentel, and C. M. Sotomayor Torres, “Propagation and scattering of light in opal heterojunctions,” in Proceedings of the 12th International Conference on Modulated Semiconductor Structures Proceedings of the 12th International Conference on Modulated Semiconductor Structures (2006), Vol. 32, pp. 476–479.
[CrossRef]

C. M. Soukoulis, Photonic Crystals and Light Localization in the 21st Century (Kluwer Academic, 2001).

A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” in Proceedings of the Eleventh International Meeting on Chemical Sensors IMCS-11 IMCS 2006 IMCS 11 130 (2008), pp. 567–573.
[CrossRef]

Available at www.cst.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The top-view (a-b) and the cross-sectional view (c-d) SEM images of the 608 nm/756 nm inverse opal heterostructure. Each stack of the film contains PhC with the average thickness of ~10 µm (top) and ~5 µm (bottom), respectively. Insets in (a) and (d) show the high magnification SEMs of {111} surfaces and the interface between the two PhC layers, respectively.

Fig. 2
Fig. 2

(a) Normalized 13° specular reflectance spectrums (red line) of a titania inverse opal heterostructure. The reflectance spectra of the constituent PhC films (black dotted lines) are plotted for comparison. The normal incidence total transmittance and 13° incidence total reflectance of the heterostructure are plotted in (b) and (c), respectively. Black lines represent measurements in the specular mode while the red dash-lines represent the transmitted or reflected intensity collected with an integrating sphere. Insets show the integrating sphere measurement configurations. S represents the sample and M represents the mirror.

Fig. 3
Fig. 3

Normalized angle resolved specular reflectance of: single inverse opal with pore sizes (a) 608nm (b) 756nm and (c) inverse opal heterostructure. The measurements were carried out in 2° resolution. Inset in (a) shows the angle resolved measurement configuration. The superposed spectrum (by multiplication of spectra from (a) and (b)) is plotted in (d) for comparison. The dotted lines in all graphs represent the curves fitting using Eq. (1).

Fig. 4
Fig. 4

(a) Calculated transmission spectra of a 10 layers titania inverse shell opal for various shell thicknesses. The grey arrow indicates the direction in which the shell thickness increases. b) Contour plot of reflectance spectra of the titania inverse opal for different incidence angles. The oscillations outside stopgap correspond to the Fabry-Pérot fringes due to the finite sample geometry.

Fig. 5
Fig. 5

Comparison of total transmittance (a) and total reflectance (b) of single inverse opals (dotted lines), the sandwiched structure (black solid line) and the heterostructure (olive solid line). Total reflectance of a “triple sandwich” inverse opal structure is plotted in (c). Insets on the right show the measurement configurations. The single inverse opals with a pore size of 476 nm, 608 nm and 756 nm are denoted by green-, blue- and red- colors, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ=2 d 111 n eff 2 sin 2 θ

Metrics