Abstract

We demonstrate the use of plasmonic extraordinary transmission at IR wavelengths for surface-enhanced infrared absorption (SEIRA) spectroscopy in gas sensing. Gas detection was performed through non-dispersive infrared (NDIR) absorption. The sensitivity of SF6 gas detection is increased around ∼27 times with metal hole array (MHA) microstructures placed on the gas cell mirrors, as compared with non-structured mirrors; an absorption change of 2% per 100 ppm was obtained on a standard commercial pyroelectric detector. Down-sizing of IR-sensors to a sub-1 mm gas cell width, delivering ∼ 40 nM (or 1 ppm) of SF6 sensitivity, can be foreseen with a simple source-detector setup.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kumar, J. Huang, J. R. Cushnir, P. Spanel, D. Smith, and G. B. Hanna, “Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-exophageal cancer,” Anal. Chem.84, 9550–9557 (2012).
    [PubMed]
  2. M. Ueda, N. Teshima, and T. Sakai, “Development of formaldehyde standard gas generator based on gravitational dispensing-vaporization and its application to breath formaldehyde determination,” Bunseki Kagaku57, 605–612 (2008).
    [CrossRef]
  3. M. Zhang, H. C. Su, Y. Rheem, C. M. Hangarter, and N. V. Myung, “A rapid room-temperature NO2sensor based on tellurium-SWNT hybrid nanostructures,” J. Phys. Chem. C116, 20067–20074 (2012).
    [CrossRef]
  4. J. Hodgkinson, R. Smith, W. O. Hob, J. R. Saffell, and R. Tatam, “A low cost, optically efficient carbon dioxide sensor based on nondispersive infra-red (NDIR) measurement at 4.2 mm,” Proc. SPIE8439, 843919 (2012).
    [CrossRef]
  5. N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010).
    [CrossRef] [PubMed]
  6. H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
    [CrossRef]
  7. H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano1, 669–675 (2013).
    [CrossRef]
  8. Y. Nishijima, H. Nigorinuma, L. Rosa, and S. Juodkazis, “Selective enhancement of infrared absorption with metal hole arrays,” Opt. Mater. Express2, 1367–1377 (2012).
    [CrossRef]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
    [CrossRef]
  10. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–46 (2007).
    [CrossRef] [PubMed]
  11. E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
    [CrossRef]
  12. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
    [CrossRef] [PubMed]
  13. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
    [CrossRef]
  14. H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
    [CrossRef] [PubMed]
  15. J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).
  16. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).
  17. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).
    [CrossRef]
  18. G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159, 39–43 (2011).
    [CrossRef]
  19. M. L. Kurth and D. K. Gramotnev, “Nanofluidic delivery of molecules: integrated plasmonic sensing with nanoholes,” Microfluid. Nanofluid.14, 743–751 (2013).
    [CrossRef]
  20. A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
    [CrossRef] [PubMed]

2013 (2)

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano1, 669–675 (2013).
[CrossRef]

M. L. Kurth and D. K. Gramotnev, “Nanofluidic delivery of molecules: integrated plasmonic sensing with nanoholes,” Microfluid. Nanofluid.14, 743–751 (2013).
[CrossRef]

2012 (5)

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Y. Nishijima, H. Nigorinuma, L. Rosa, and S. Juodkazis, “Selective enhancement of infrared absorption with metal hole arrays,” Opt. Mater. Express2, 1367–1377 (2012).
[CrossRef]

S. Kumar, J. Huang, J. R. Cushnir, P. Spanel, D. Smith, and G. B. Hanna, “Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-exophageal cancer,” Anal. Chem.84, 9550–9557 (2012).
[PubMed]

M. Zhang, H. C. Su, Y. Rheem, C. M. Hangarter, and N. V. Myung, “A rapid room-temperature NO2sensor based on tellurium-SWNT hybrid nanostructures,” J. Phys. Chem. C116, 20067–20074 (2012).
[CrossRef]

J. Hodgkinson, R. Smith, W. O. Hob, J. R. Saffell, and R. Tatam, “A low cost, optically efficient carbon dioxide sensor based on nondispersive infra-red (NDIR) measurement at 4.2 mm,” Proc. SPIE8439, 843919 (2012).
[CrossRef]

2011 (1)

G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159, 39–43 (2011).
[CrossRef]

2010 (1)

N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010).
[CrossRef] [PubMed]

2008 (1)

M. Ueda, N. Teshima, and T. Sakai, “Development of formaldehyde standard gas generator based on gravitational dispensing-vaporization and its application to breath formaldehyde determination,” Bunseki Kagaku57, 605–612 (2008).
[CrossRef]

2007 (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–46 (2007).
[CrossRef] [PubMed]

2006 (1)

H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
[CrossRef]

2005 (2)

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
[CrossRef]

2003 (1)

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).

2000 (1)

E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
[CrossRef]

1999 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

Alaverdyan, Y.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Aouani, H.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano1, 669–675 (2013).
[CrossRef]

Artaxo, P.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Berntsen, T.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Betts, R.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Bolivar, P. H.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).

Bonod, N.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Buividas, R.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Capoulade, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Chou, A.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Cushnir, J. R.

S. Kumar, J. Huang, J. R. Cushnir, P. Spanel, D. Smith, and G. B. Hanna, “Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-exophageal cancer,” Anal. Chem.84, 9550–9557 (2012).
[PubMed]

Dahlin, A.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Day, D.

G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159, 39–43 (2011).
[CrossRef]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
[CrossRef]

Dintinger, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–46 (2007).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

Enoch, S.

E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
[CrossRef]

Fahey, D. W.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Forster, P.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Fredericks, P. M.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–46 (2007).
[CrossRef] [PubMed]

Gervinskas, G.

G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159, 39–43 (2011).
[CrossRef]

Ghaemi, H. F.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

Gramotnev, D. K.

M. L. Kurth and D. K. Gramotnev, “Nanofluidic delivery of molecules: integrated plasmonic sensing with nanoholes,” Microfluid. Nanofluid.14, 743–751 (2013).
[CrossRef]

Hangarter, C. M.

M. Zhang, H. C. Su, Y. Rheem, C. M. Hangarter, and N. V. Myung, “A rapid room-temperature NO2sensor based on tellurium-SWNT hybrid nanostructures,” J. Phys. Chem. C116, 20067–20074 (2012).
[CrossRef]

Hanna, G. B.

S. Kumar, J. Huang, J. R. Cushnir, P. Spanel, D. Smith, and G. B. Hanna, “Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-exophageal cancer,” Anal. Chem.84, 9550–9557 (2012).
[PubMed]

Haywood, J.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Hegnerova, K.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano1, 669–675 (2013).
[CrossRef]

Hob, W. O.

J. Hodgkinson, R. Smith, W. O. Hob, J. R. Saffell, and R. Tatam, “A low cost, optically efficient carbon dioxide sensor based on nondispersive infra-red (NDIR) measurement at 4.2 mm,” Proc. SPIE8439, 843919 (2012).
[CrossRef]

Hodgkinson, J.

J. Hodgkinson, R. Smith, W. O. Hob, J. R. Saffell, and R. Tatam, “A low cost, optically efficient carbon dioxide sensor based on nondispersive infra-red (NDIR) measurement at 4.2 mm,” Proc. SPIE8439, 843919 (2012).
[CrossRef]

Homola, J.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano1, 669–675 (2013).
[CrossRef]

Hong, M.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano1, 669–675 (2013).
[CrossRef]

Hook, F.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Hosono, E.

H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
[CrossRef]

Huang, J.

S. Kumar, J. Huang, J. R. Cushnir, P. Spanel, D. Smith, and G. B. Hanna, “Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-exophageal cancer,” Anal. Chem.84, 9550–9557 (2012).
[PubMed]

Izake, E. L.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Jaatinen, E.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Juodkazis, S.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Y. Nishijima, H. Nigorinuma, L. Rosa, and S. Juodkazis, “Selective enhancement of infrared absorption with metal hole arrays,” Opt. Mater. Express2, 1367–1377 (2012).
[CrossRef]

G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159, 39–43 (2011).
[CrossRef]

Kall, M.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Kumar, S.

S. Kumar, J. Huang, J. R. Cushnir, P. Spanel, D. Smith, and G. B. Hanna, “Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-exophageal cancer,” Anal. Chem.84, 9550–9557 (2012).
[PubMed]

Kurth, M. L.

M. L. Kurth and D. K. Gramotnev, “Nanofluidic delivery of molecules: integrated plasmonic sensing with nanoholes,” Microfluid. Nanofluid.14, 743–751 (2013).
[CrossRef]

Kurz, H.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).

Lean, J.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Lenne, P. F.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

Lowe, D. C.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Maier, S. A.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano1, 669–675 (2013).
[CrossRef]

Miyatake, H.

H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
[CrossRef]

Myhre, G.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Myung, N. V.

M. Zhang, H. C. Su, Y. Rheem, C. M. Hangarter, and N. V. Myung, “A rapid room-temperature NO2sensor based on tellurium-SWNT hybrid nanostructures,” J. Phys. Chem. C116, 20067–20074 (2012).
[CrossRef]

Navarro-Cia, M.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano1, 669–675 (2013).
[CrossRef]

Neviere, M.

E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
[CrossRef]

Nganga, J.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Nigorinuma, H.

Nishijima, Y.

Nomura, K.

N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010).
[CrossRef] [PubMed]

Ohta, N.

N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010).
[CrossRef] [PubMed]

Okada, T.

H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
[CrossRef]

Osawa, M.

H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
[CrossRef]

Popov, E.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
[CrossRef]

Prinn, R.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Raga, G.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Rahmani, M.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano1, 669–675 (2013).
[CrossRef]

Ramaswamy, V.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Reinisc, R.

E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
[CrossRef]

Rheem, Y.

M. Zhang, H. C. Su, Y. Rheem, C. M. Hangarter, and N. V. Myung, “A rapid room-temperature NO2sensor based on tellurium-SWNT hybrid nanostructures,” J. Phys. Chem. C116, 20067–20074 (2012).
[CrossRef]

Rigneault, H.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Rivas, J. G.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).

Rosa, L.

Saffell, J. R.

J. Hodgkinson, R. Smith, W. O. Hob, J. R. Saffell, and R. Tatam, “A low cost, optically efficient carbon dioxide sensor based on nondispersive infra-red (NDIR) measurement at 4.2 mm,” Proc. SPIE8439, 843919 (2012).
[CrossRef]

Sakai, T.

M. Ueda, N. Teshima, and T. Sakai, “Development of formaldehyde standard gas generator based on gravitational dispensing-vaporization and its application to breath formaldehyde determination,” Bunseki Kagaku57, 605–612 (2008).
[CrossRef]

Schltz, M.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Schotsch, C.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).

Seniutinas, G.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Sipova, H.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano1, 669–675 (2013).
[CrossRef]

Smith, D.

S. Kumar, J. Huang, J. R. Cushnir, P. Spanel, D. Smith, and G. B. Hanna, “Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-exophageal cancer,” Anal. Chem.84, 9550–9557 (2012).
[PubMed]

Smith, R.

J. Hodgkinson, R. Smith, W. O. Hob, J. R. Saffell, and R. Tatam, “A low cost, optically efficient carbon dioxide sensor based on nondispersive infra-red (NDIR) measurement at 4.2 mm,” Proc. SPIE8439, 843919 (2012).
[CrossRef]

Spanel, P.

S. Kumar, J. Huang, J. R. Cushnir, P. Spanel, D. Smith, and G. B. Hanna, “Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-exophageal cancer,” Anal. Chem.84, 9550–9557 (2012).
[PubMed]

Su, H. C.

M. Zhang, H. C. Su, Y. Rheem, C. M. Hangarter, and N. V. Myung, “A rapid room-temperature NO2sensor based on tellurium-SWNT hybrid nanostructures,” J. Phys. Chem. C116, 20067–20074 (2012).
[CrossRef]

Sutherland, D. S.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Tatam, R.

J. Hodgkinson, R. Smith, W. O. Hob, J. R. Saffell, and R. Tatam, “A low cost, optically efficient carbon dioxide sensor based on nondispersive infra-red (NDIR) measurement at 4.2 mm,” Proc. SPIE8439, 843919 (2012).
[CrossRef]

Teshima, N.

M. Ueda, N. Teshima, and T. Sakai, “Development of formaldehyde standard gas generator based on gravitational dispensing-vaporization and its application to breath formaldehyde determination,” Bunseki Kagaku57, 605–612 (2008).
[CrossRef]

Thio, T.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

Ueda, M.

M. Ueda, N. Teshima, and T. Sakai, “Development of formaldehyde standard gas generator based on gravitational dispensing-vaporization and its application to breath formaldehyde determination,” Bunseki Kagaku57, 605–612 (2008).
[CrossRef]

Van Dorland, R.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Wegner, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Wolff, P. A.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

Yagi, I.

N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010).
[CrossRef] [PubMed]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
[CrossRef]

Zhang, M.

M. Zhang, H. C. Su, Y. Rheem, C. M. Hangarter, and N. V. Myung, “A rapid room-temperature NO2sensor based on tellurium-SWNT hybrid nanostructures,” J. Phys. Chem. C116, 20067–20074 (2012).
[CrossRef]

ACS Nano (1)

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano1, 669–675 (2013).
[CrossRef]

Anal. Chem. (1)

S. Kumar, J. Huang, J. R. Cushnir, P. Spanel, D. Smith, and G. B. Hanna, “Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-exophageal cancer,” Anal. Chem.84, 9550–9557 (2012).
[PubMed]

Bunseki Kagaku (1)

M. Ueda, N. Teshima, and T. Sakai, “Development of formaldehyde standard gas generator based on gravitational dispensing-vaporization and its application to breath formaldehyde determination,” Bunseki Kagaku57, 605–612 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

M. Zhang, H. C. Su, Y. Rheem, C. M. Hangarter, and N. V. Myung, “A rapid room-temperature NO2sensor based on tellurium-SWNT hybrid nanostructures,” J. Phys. Chem. C116, 20067–20074 (2012).
[CrossRef]

Langmuir (1)

N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010).
[CrossRef] [PubMed]

Microfluid. Nanofluid. (1)

M. L. Kurth and D. K. Gramotnev, “Nanofluidic delivery of molecules: integrated plasmonic sensing with nanoholes,” Microfluid. Nanofluid.14, 743–751 (2013).
[CrossRef]

Nano Lett. (1)

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005).
[CrossRef] [PubMed]

Nanoscale (1)

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–46 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004).
[CrossRef]

Opt. Mater. Express (1)

Phys. Rev. B (2)

E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000).
[CrossRef]

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).

Phys. Rev. Lett. (1)

H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Hodgkinson, R. Smith, W. O. Hob, J. R. Saffell, and R. Tatam, “A low cost, optically efficient carbon dioxide sensor based on nondispersive infra-red (NDIR) measurement at 4.2 mm,” Proc. SPIE8439, 843919 (2012).
[CrossRef]

Sens. Actuators B (1)

G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159, 39–43 (2011).
[CrossRef]

Other (1)

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the SF6 gas detection set up used in the experiments. The IR light source is a IRS-001C (IRS, Ltd.) and the SF6 detector is a LIM-122 (Infratec, LLC). The gas cell mirrors were replaced with Si substrates carrying silver multi hole arrays (MHA) for augmented sensitivity. Size reference: the output diameter of the parabolic mirror is ∼ 2.5 cm, the window diameter of the gas cell is 1.5 cm, and a single window on the detector cap measures 3.5 × 2.5 mm2.

Fig. 2
Fig. 2

(a) Normalized optical transmission of the silver hexagonal MHAs with hole diameters / periods (c, a), measured right-to-left in μm: (1.4, 2.9), (1.5, 3.1), (1.6, 3.3), (1.7, 3.5), (1.8, 3.7), (1.9, 3.9), (2.1, 4.2), and (2.3, 4.6). The inset shows the optical micro-photograph of the fabricated MHA with (c, a) = (1.6, 3.3). (b) Plot of the peak wavelength as a function of the period a. The arrows mark the MHA used for SF6 detection at 950 cm−1, which is shown in the inset of the (a) panel.

Fig. 3
Fig. 3

(a) Transmission spectra of gas cell with two Si:MHA windows filled with air (transmission of single MHA was up to 40%). (b) SF6 gas absorption spectrum measured in a gas cell filled with SF6. The inset shows the asymmetric stretching mode of the SF6 molecule; the corresponding band at 943 cm−1 is pointed at by an arrow in panel (b).

Fig. 4
Fig. 4

(a) Output signal dependence on the SF6 concentration. The insets show schematically the configuration of the gas cell windows (whether the MHA is exposed to the inside of the gas cell or not). (b) Absorption change ΔA = −log(I/I0) as a function of SF6 concentration; the hashed region marks the detection threshold at ∼ 0.1%. The line is the linear fitting by the least-squares method. The inset figure shows the log-log plot of absorption and concentrations. The lines are drawn as eye guides for the linear dependence.

Fig. 5
Fig. 5

(a) Simulation layout of the Ag MHA of period a = 3.3 μm and hole diameter c = a/2, the box indicates the footprint of the elementary simulation cell, made periodic through the boundaries. (b) Normalized power reflected (RX) and transmitted (TX) out of a 10-μm long gas cell realized with Si:MHA mirrors as in the black inset of Fig. 4(a), for different thickness t of the Ag MHA. (c) xz-plane cross-section of a Si:MHA mirror with t = 100 nm illuminated from bottom, depicting E-field intensity enhancement at 10.6 μm wavelength; (d) same for t = 20 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ max = 3 2 a i 2 + i j + j 2 ε 1 ε 2 ε 1 + ε 2 ,

Metrics