Abstract

Fluoride phosphate glass has the ability to detect ionizing radiation, and thus can be utilized in various forms for the purposes of dosimetry. To further understand the potential of this material, the luminescence properties have been studied using techniques such as thermoluminescence (TL) and optically stimulated luminescence (OSL). Short luminescent lifetimes and shallow electron trap depths were measured. At the main TL peak at 60 °C, the activation energy was calculated to be 0.5 eV with a frequency factor of 1.9×106 s−1 and lifetime of 2.1×102 s at 293 K. Fast timing results yield an OSL rise-time of 12.2 μs. Results indicate the material studied is well suited for monitoring applications where the time between radiation exposure and OSL read-out is in the order of several minutes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc.94, 474–477 (2011).
    [CrossRef]
  2. C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express2, 62–70 (2012).
    [CrossRef]
  3. M. J. Aitken, Thermoluminescence Dating (Academic Press, 1985).
  4. S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University Press, 1985).
    [CrossRef]
  5. J. R. Prescott, P. J. Fox, R. A. Akber, and H. E. Jensen, “Thermoluminescence emission spectrometer,” Appl. Opt.27, 3496–3502 (1988).
    [CrossRef] [PubMed]
  6. D. J. Huntley and M. Lamothe, “Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating,” Can. J. Earth Sci.38, 1093–1106 (2001).
    [CrossRef]
  7. P. D. Townsend and A. P. Rowlands, “Extended defect models for thermoluminescence,” Radiat. Prot. Dosim.84, 7–12 (1999).
    [CrossRef]
  8. R. H. Templer, “Thermoluminescence techniques for dating zircon inclusions,” Doctor of Philosophy Thesis (Baliol College, Oxford, 1986).
  9. J. T. Randall and M. H. F. Wilkins, “Phosphorescence and electron traps I: The study of trap distributions,” Proc. R. Soc. London, Ser. A184, 365–389 (1945).
    [CrossRef]
  10. J. T. Randall and M. H. F. Wilkins, “Phosphorescence and electron traps II: The interpretation of long-period phosphorescence,” Proc. R. Soc. London, Ser. A184, 390–407 (1945).
    [CrossRef]
  11. M. Yun and D. Hong, “Investigations of Al2O3:C for dosimetry using luminescence stimulated by blue light,” J. Korean Phys. Soc.57, 223–226 (2010).
    [CrossRef]
  12. S. M. S. Damkjær and C. E. Andersen, “Memory effects and systematic errors in the RL signal from fiber coupled Al2O3:C for medical dosimetry,” Radiat. Meas.45, 671–673 (2010).
    [CrossRef]
  13. J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters,” Radiat. Prot. Dosim.119, 368–374 (2006).
    [CrossRef]
  14. C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas.46, 1090–1098 (2011).
    [CrossRef]

2012

2011

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas.46, 1090–1098 (2011).
[CrossRef]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc.94, 474–477 (2011).
[CrossRef]

2010

M. Yun and D. Hong, “Investigations of Al2O3:C for dosimetry using luminescence stimulated by blue light,” J. Korean Phys. Soc.57, 223–226 (2010).
[CrossRef]

S. M. S. Damkjær and C. E. Andersen, “Memory effects and systematic errors in the RL signal from fiber coupled Al2O3:C for medical dosimetry,” Radiat. Meas.45, 671–673 (2010).
[CrossRef]

2006

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters,” Radiat. Prot. Dosim.119, 368–374 (2006).
[CrossRef]

2001

D. J. Huntley and M. Lamothe, “Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating,” Can. J. Earth Sci.38, 1093–1106 (2001).
[CrossRef]

1999

P. D. Townsend and A. P. Rowlands, “Extended defect models for thermoluminescence,” Radiat. Prot. Dosim.84, 7–12 (1999).
[CrossRef]

1988

1945

J. T. Randall and M. H. F. Wilkins, “Phosphorescence and electron traps I: The study of trap distributions,” Proc. R. Soc. London, Ser. A184, 365–389 (1945).
[CrossRef]

J. T. Randall and M. H. F. Wilkins, “Phosphorescence and electron traps II: The interpretation of long-period phosphorescence,” Proc. R. Soc. London, Ser. A184, 390–407 (1945).
[CrossRef]

Aitken, M. J.

M. J. Aitken, Thermoluminescence Dating (Academic Press, 1985).

Akber, R. A.

Akselrod, M. S.

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters,” Radiat. Prot. Dosim.119, 368–374 (2006).
[CrossRef]

Andersen, C. E.

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas.46, 1090–1098 (2011).
[CrossRef]

S. M. S. Damkjær and C. E. Andersen, “Memory effects and systematic errors in the RL signal from fiber coupled Al2O3:C for medical dosimetry,” Radiat. Meas.45, 671–673 (2010).
[CrossRef]

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters,” Radiat. Prot. Dosim.119, 368–374 (2006).
[CrossRef]

Aznar, M. C.

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas.46, 1090–1098 (2011).
[CrossRef]

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters,” Radiat. Prot. Dosim.119, 368–374 (2006).
[CrossRef]

Bøtter-Jensen, L.

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters,” Radiat. Prot. Dosim.119, 368–374 (2006).
[CrossRef]

Damkjær, S. M. S.

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas.46, 1090–1098 (2011).
[CrossRef]

S. M. S. Damkjær and C. E. Andersen, “Memory effects and systematic errors in the RL signal from fiber coupled Al2O3:C for medical dosimetry,” Radiat. Meas.45, 671–673 (2010).
[CrossRef]

Ebendorff-Heidepriem, H.

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express2, 62–70 (2012).
[CrossRef]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc.94, 474–477 (2011).
[CrossRef]

Edmund, J. M.

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters,” Radiat. Prot. Dosim.119, 368–374 (2006).
[CrossRef]

Fox, P. J.

Greilich, S.

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas.46, 1090–1098 (2011).
[CrossRef]

Hong, D.

M. Yun and D. Hong, “Investigations of Al2O3:C for dosimetry using luminescence stimulated by blue light,” J. Korean Phys. Soc.57, 223–226 (2010).
[CrossRef]

Huntley, D. J.

D. J. Huntley and M. Lamothe, “Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating,” Can. J. Earth Sci.38, 1093–1106 (2001).
[CrossRef]

Jensen, H. E.

Kalnins, C. A. G.

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express2, 62–70 (2012).
[CrossRef]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc.94, 474–477 (2011).
[CrossRef]

Kertzscher, G.

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas.46, 1090–1098 (2011).
[CrossRef]

Lamothe, M.

D. J. Huntley and M. Lamothe, “Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating,” Can. J. Earth Sci.38, 1093–1106 (2001).
[CrossRef]

Marckmann, C. J.

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters,” Radiat. Prot. Dosim.119, 368–374 (2006).
[CrossRef]

McKeever, S. W. S.

S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University Press, 1985).
[CrossRef]

Monro, T. M.

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express2, 62–70 (2012).
[CrossRef]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc.94, 474–477 (2011).
[CrossRef]

Prescott, J. R.

Randall, J. T.

J. T. Randall and M. H. F. Wilkins, “Phosphorescence and electron traps I: The study of trap distributions,” Proc. R. Soc. London, Ser. A184, 365–389 (1945).
[CrossRef]

J. T. Randall and M. H. F. Wilkins, “Phosphorescence and electron traps II: The interpretation of long-period phosphorescence,” Proc. R. Soc. London, Ser. A184, 390–407 (1945).
[CrossRef]

Rowlands, A. P.

P. D. Townsend and A. P. Rowlands, “Extended defect models for thermoluminescence,” Radiat. Prot. Dosim.84, 7–12 (1999).
[CrossRef]

Spooner, N. A.

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express2, 62–70 (2012).
[CrossRef]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc.94, 474–477 (2011).
[CrossRef]

Templer, R. H.

R. H. Templer, “Thermoluminescence techniques for dating zircon inclusions,” Doctor of Philosophy Thesis (Baliol College, Oxford, 1986).

Townsend, P. D.

P. D. Townsend and A. P. Rowlands, “Extended defect models for thermoluminescence,” Radiat. Prot. Dosim.84, 7–12 (1999).
[CrossRef]

Wilkins, M. H. F.

J. T. Randall and M. H. F. Wilkins, “Phosphorescence and electron traps II: The interpretation of long-period phosphorescence,” Proc. R. Soc. London, Ser. A184, 390–407 (1945).
[CrossRef]

J. T. Randall and M. H. F. Wilkins, “Phosphorescence and electron traps I: The study of trap distributions,” Proc. R. Soc. London, Ser. A184, 365–389 (1945).
[CrossRef]

Yun, M.

M. Yun and D. Hong, “Investigations of Al2O3:C for dosimetry using luminescence stimulated by blue light,” J. Korean Phys. Soc.57, 223–226 (2010).
[CrossRef]

Appl. Opt.

Can. J. Earth Sci.

D. J. Huntley and M. Lamothe, “Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating,” Can. J. Earth Sci.38, 1093–1106 (2001).
[CrossRef]

J. Am. Ceram. Soc.

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry,” J. Am. Ceram. Soc.94, 474–477 (2011).
[CrossRef]

J. Korean Phys. Soc.

M. Yun and D. Hong, “Investigations of Al2O3:C for dosimetry using luminescence stimulated by blue light,” J. Korean Phys. Soc.57, 223–226 (2010).
[CrossRef]

Opt. Mater. Express

Proc. R. Soc. London, Ser. A

J. T. Randall and M. H. F. Wilkins, “Phosphorescence and electron traps I: The study of trap distributions,” Proc. R. Soc. London, Ser. A184, 365–389 (1945).
[CrossRef]

J. T. Randall and M. H. F. Wilkins, “Phosphorescence and electron traps II: The interpretation of long-period phosphorescence,” Proc. R. Soc. London, Ser. A184, 390–407 (1945).
[CrossRef]

Radiat. Meas.

S. M. S. Damkjær and C. E. Andersen, “Memory effects and systematic errors in the RL signal from fiber coupled Al2O3:C for medical dosimetry,” Radiat. Meas.45, 671–673 (2010).
[CrossRef]

C. E. Andersen, S. M. S. Damkjær, G. Kertzscher, S. Greilich, and M. C. Aznar, “Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams,” Radiat. Meas.46, 1090–1098 (2011).
[CrossRef]

Radiat. Prot. Dosim.

J. M. Edmund, C. E. Andersen, C. J. Marckmann, M. C. Aznar, M. S. Akselrod, and L. Bøtter-Jensen, “CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters,” Radiat. Prot. Dosim.119, 368–374 (2006).
[CrossRef]

P. D. Townsend and A. P. Rowlands, “Extended defect models for thermoluminescence,” Radiat. Prot. Dosim.84, 7–12 (1999).
[CrossRef]

Other

R. H. Templer, “Thermoluminescence techniques for dating zircon inclusions,” Doctor of Philosophy Thesis (Baliol College, Oxford, 1986).

M. J. Aitken, Thermoluminescence Dating (Academic Press, 1985).

S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University Press, 1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Thermoluminescence of fluoride phosphate glass. Filtered data was taken using Schott BG39 and Corning 7–59 filters, and therefore shows the thermoluminescence emission centered at 400 nm. Transmission window FWHM = 100 nm.

Fig. 2
Fig. 2

Thermoluminescence emission spectra of fluoride phosphate glass, measured after administering a 1 Gy dose.

Fig. 3
Fig. 3

Initial rise thermoluminescence of fluoride phosphate glass for successive heating to the temperatures (in °C) as shown.

Fig. 4
Fig. 4

Fit of optically stimulated isothermal decay data to (a) ln(I/I0) vs. t and (b) (I/I0)(1−b)/b vs. t. Data shown is for measurements taken at ambient temperature.

Fig. 5
Fig. 5

Fast-timing decay kinetics of fluoride phosphate glass. The pulse width of the optical stimulation for each measurement is shown.

Tables (1)

Tables Icon

Table 1 Activation Energy (E), Frequency Factor (s) and Lifetimes at T = 293 K (τ) for Fluoride Phosphate Glass Using Initial Rise Data

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I t = c . exp [ E k T ]
β E k T m 2 = s exp [ E k T m ]
τ = 1 s exp [ E k T ]

Metrics