Abstract

We report, for the first time, the laser oscillation from 2% Ho3+:Lu2O3 hot pressed ceramic. We have synthesized optical quality Lu2O3 nano-powders doped with concentrations as high as 5% Ho3+. The powders were synthesized by a co-precipitation method beginning with nitrates of holmium and lutetium. The nano-powders were hot pressed into optical quality ceramic discs. The optical transmission of the ceramic discs is excellent, nearly approaching the theoretical limit. The optical, spectral and morphological properties as well as the preliminary lasing performance from highly transparent ceramics are presented.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, 1996).
  2. M. Schellhorn, “Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser,” Appl. Phys. B85(4), 549–552 (2006).
    [CrossRef]
  3. P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron.6(4), 629–635 (2000).
    [CrossRef]
  4. P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” OSA Trends Opt. Photon.19, 204–206 (1998).
  5. P. A. Budni, L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, J. R. Mosto, and E. P. Chicklis, “Mid-IR laser based on ZnGeP and unsensitized Ho:YAG,” OSA Trends Opt. Photon.26, 454–457 (1999).
  6. D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding pumped tunable Tm: silica-fibre laser,” Appl. Phys. B79(5), 559–561 (2004).
    [CrossRef]
  7. M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9 μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett.18(4), 628–630 (2006).
    [CrossRef]
  8. C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-gm diode lasers,” IEEE J. Quantum Electron.31(9), 1603–1605 (1995).
    [CrossRef]
  9. V. Bolz, A. Peters, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth237–239, 879–883 (2002).
  10. S. Bowman, S. O’Connor, N. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE8638, 863803, 863803-6 (2013).
    [CrossRef]
  11. P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and H. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12μm,” Opt. Mater. Express1(8), 1447–1456 (2011).
    [CrossRef]
  12. M. Galceran, M. C. Pujol, P. Gluchowski, W. Stręk, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “A promising Lu2−xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93(11), 3764–3772 (2010).
    [CrossRef]
  13. W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
    [CrossRef]
  14. J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
    [CrossRef]
  15. J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
    [CrossRef]
  16. C. Baker, W. Kim, J. Sanghera, R. Goswami, G. Villalobos, B. Sadowski, and I. Aggarwal, “Flame spray synthesis of Lu2O3 nanoparticles,” Mater. Lett.66(1), 132–134 (2012).
    [CrossRef]
  17. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
    [CrossRef]
  18. G. Villalobos, J. S. Sanghera, and I. D. Aggarwal, “Degradation of magnesium aluminum spinel by lithium fluoride sintering aid,” J. Am. Ceram. Soc.88(5), 1321–1322 (2005).
    [CrossRef]

2013 (1)

S. Bowman, S. O’Connor, N. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE8638, 863803, 863803-6 (2013).
[CrossRef]

2012 (1)

C. Baker, W. Kim, J. Sanghera, R. Goswami, G. Villalobos, B. Sadowski, and I. Aggarwal, “Flame spray synthesis of Lu2O3 nanoparticles,” Mater. Lett.66(1), 132–134 (2012).
[CrossRef]

2011 (4)

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and H. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12μm,” Opt. Mater. Express1(8), 1447–1456 (2011).
[CrossRef]

2010 (1)

M. Galceran, M. C. Pujol, P. Gluchowski, W. Stręk, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “A promising Lu2−xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93(11), 3764–3772 (2010).
[CrossRef]

2008 (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

2006 (2)

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9 μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett.18(4), 628–630 (2006).
[CrossRef]

M. Schellhorn, “Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser,” Appl. Phys. B85(4), 549–552 (2006).
[CrossRef]

2005 (1)

G. Villalobos, J. S. Sanghera, and I. D. Aggarwal, “Degradation of magnesium aluminum spinel by lithium fluoride sintering aid,” J. Am. Ceram. Soc.88(5), 1321–1322 (2005).
[CrossRef]

2004 (1)

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding pumped tunable Tm: silica-fibre laser,” Appl. Phys. B79(5), 559–561 (2004).
[CrossRef]

2002 (1)

V. Bolz, A. Peters, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth237–239, 879–883 (2002).

2000 (1)

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron.6(4), 629–635 (2000).
[CrossRef]

1999 (1)

P. A. Budni, L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, J. R. Mosto, and E. P. Chicklis, “Mid-IR laser based on ZnGeP and unsensitized Ho:YAG,” OSA Trends Opt. Photon.26, 454–457 (1999).

1998 (1)

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” OSA Trends Opt. Photon.19, 204–206 (1998).

1995 (1)

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-gm diode lasers,” IEEE J. Quantum Electron.31(9), 1603–1605 (1995).
[CrossRef]

Abdolvand, A.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding pumped tunable Tm: silica-fibre laser,” Appl. Phys. B79(5), 559–561 (2004).
[CrossRef]

Aggarwal, I.

C. Baker, W. Kim, J. Sanghera, R. Goswami, G. Villalobos, B. Sadowski, and I. Aggarwal, “Flame spray synthesis of Lu2O3 nanoparticles,” Mater. Lett.66(1), 132–134 (2012).
[CrossRef]

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Aggarwal, I. D.

G. Villalobos, J. S. Sanghera, and I. D. Aggarwal, “Degradation of magnesium aluminum spinel by lithium fluoride sintering aid,” J. Am. Ceram. Soc.88(5), 1321–1322 (2005).
[CrossRef]

Aguiló, M.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Stręk, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “A promising Lu2−xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93(11), 3764–3772 (2010).
[CrossRef]

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Baker, C.

C. Baker, W. Kim, J. Sanghera, R. Goswami, G. Villalobos, B. Sadowski, and I. Aggarwal, “Flame spray synthesis of Lu2O3 nanoparticles,” Mater. Lett.66(1), 132–134 (2012).
[CrossRef]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

Bayya, S.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Bolz, V.

V. Bolz, A. Peters, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth237–239, 879–883 (2002).

Bowman, S.

S. Bowman, S. O’Connor, N. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE8638, 863803, 863803-6 (2013).
[CrossRef]

Budni, P. A.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron.6(4), 629–635 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, J. R. Mosto, and E. P. Chicklis, “Mid-IR laser based on ZnGeP and unsensitized Ho:YAG,” OSA Trends Opt. Photon.26, 454–457 (1999).

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” OSA Trends Opt. Photon.19, 204–206 (1998).

Carvajal, J. J.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Stręk, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “A promising Lu2−xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93(11), 3764–3772 (2010).
[CrossRef]

Chicklis, E. P.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron.6(4), 629–635 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, J. R. Mosto, and E. P. Chicklis, “Mid-IR laser based on ZnGeP and unsensitized Ho:YAG,” OSA Trends Opt. Photon.26, 454–457 (1999).

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” OSA Trends Opt. Photon.19, 204–206 (1998).

Choi, H. K.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-gm diode lasers,” IEEE J. Quantum Electron.31(9), 1603–1605 (1995).
[CrossRef]

Clarkson, W. A.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding pumped tunable Tm: silica-fibre laser,” Appl. Phys. B79(5), 559–561 (2004).
[CrossRef]

Condon, N.

S. Bowman, S. O’Connor, N. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE8638, 863803, 863803-6 (2013).
[CrossRef]

Cooper, L. J.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding pumped tunable Tm: silica-fibre laser,” Appl. Phys. B79(5), 559–561 (2004).
[CrossRef]

DeSandre, L.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Díaz, F.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Stręk, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “A promising Lu2−xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93(11), 3764–3772 (2010).
[CrossRef]

Dubinskiy, M.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Dygan, B. K.

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” OSA Trends Opt. Photon.19, 204–206 (1998).

Fan, T. Y.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-gm diode lasers,” IEEE J. Quantum Electron.31(9), 1603–1605 (1995).
[CrossRef]

Frantz, J.

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

Friebele, E. J.

S. Bowman, S. O’Connor, N. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE8638, 863803, 863803-6 (2013).
[CrossRef]

Fuhrberg, P.

Galceran, M.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Stręk, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “A promising Lu2−xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93(11), 3764–3772 (2010).
[CrossRef]

Gluchowski, P.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Stręk, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “A promising Lu2−xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93(11), 3764–3772 (2010).
[CrossRef]

Goswami, R.

C. Baker, W. Kim, J. Sanghera, R. Goswami, G. Villalobos, B. Sadowski, and I. Aggarwal, “Flame spray synthesis of Lu2O3 nanoparticles,” Mater. Lett.66(1), 132–134 (2012).
[CrossRef]

Huber, G.

V. Bolz, A. Peters, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth237–239, 879–883 (2002).

Huber, H.

Hunt, M.

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Kaufel, G.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9 μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett.18(4), 628–630 (2006).
[CrossRef]

Kelemen, M. T.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9 μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett.18(4), 628–630 (2006).
[CrossRef]

Kim, W.

S. Bowman, S. O’Connor, N. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE8638, 863803, 863803-6 (2013).
[CrossRef]

C. Baker, W. Kim, J. Sanghera, R. Goswami, G. Villalobos, B. Sadowski, and I. Aggarwal, “Flame spray synthesis of Lu2O3 nanoparticles,” Mater. Lett.66(1), 132–134 (2012).
[CrossRef]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

Koopmann, P.

Kung, F.

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Lamar, C.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Lamrini, S.

Langston, P.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Lemons, M. L.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron.6(4), 629–635 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, J. R. Mosto, and E. P. Chicklis, “Mid-IR laser based on ZnGeP and unsensitized Ho:YAG,” OSA Trends Opt. Photon.26, 454–457 (1999).

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” OSA Trends Opt. Photon.19, 204–206 (1998).

Lutz, A.

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

Mateos, X.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Stręk, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “A promising Lu2−xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93(11), 3764–3772 (2010).
[CrossRef]

Miklos, R.

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Mikulla, M.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9 μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett.18(4), 628–630 (2006).
[CrossRef]

Miller, C. A.

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” OSA Trends Opt. Photon.19, 204–206 (1998).

Moritz, R.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9 μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett.18(4), 628–630 (2006).
[CrossRef]

Mosto, J. R.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron.6(4), 629–635 (2000).
[CrossRef]

P. A. Budni, L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, J. R. Mosto, and E. P. Chicklis, “Mid-IR laser based on ZnGeP and unsensitized Ho:YAG,” OSA Trends Opt. Photon.26, 454–457 (1999).

Nabors, C. D.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-gm diode lasers,” IEEE J. Quantum Electron.31(9), 1603–1605 (1995).
[CrossRef]

O’Connor, S.

S. Bowman, S. O’Connor, N. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE8638, 863803, 863803-6 (2013).
[CrossRef]

Ochoa, J.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-gm diode lasers,” IEEE J. Quantum Electron.31(9), 1603–1605 (1995).
[CrossRef]

Ogloza, A.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Peplinski, S.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Petermann, K.

V. Bolz, A. Peters, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth237–239, 879–883 (2002).

Peters, A.

V. Bolz, A. Peters, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth237–239, 879–883 (2002).

Pollak, T. M.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, J. R. Mosto, and E. P. Chicklis, “Mid-IR laser based on ZnGeP and unsensitized Ho:YAG,” OSA Trends Opt. Photon.26, 454–457 (1999).

Pomeranz, L. A.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, J. R. Mosto, and E. P. Chicklis, “Mid-IR laser based on ZnGeP and unsensitized Ho:YAG,” OSA Trends Opt. Photon.26, 454–457 (1999).

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” OSA Trends Opt. Photon.19, 204–206 (1998).

Pujol, M. C.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Stręk, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “A promising Lu2−xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93(11), 3764–3772 (2010).
[CrossRef]

Quimby, R. S.

S. Bowman, S. O’Connor, N. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE8638, 863803, 863803-6 (2013).
[CrossRef]

Rattunde, M.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9 μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett.18(4), 628–630 (2006).
[CrossRef]

Reicher, D.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Sadowski, B.

C. Baker, W. Kim, J. Sanghera, R. Goswami, G. Villalobos, B. Sadowski, and I. Aggarwal, “Flame spray synthesis of Lu2O3 nanoparticles,” Mater. Lett.66(1), 132–134 (2012).
[CrossRef]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

Sanchez, A.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-gm diode lasers,” IEEE J. Quantum Electron.31(9), 1603–1605 (1995).
[CrossRef]

Sanghera, J.

C. Baker, W. Kim, J. Sanghera, R. Goswami, G. Villalobos, B. Sadowski, and I. Aggarwal, “Flame spray synthesis of Lu2O3 nanoparticles,” Mater. Lett.66(1), 132–134 (2012).
[CrossRef]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

Sanghera, J. S.

G. Villalobos, J. S. Sanghera, and I. D. Aggarwal, “Degradation of magnesium aluminum spinel by lithium fluoride sintering aid,” J. Am. Ceram. Soc.88(5), 1321–1322 (2005).
[CrossRef]

Schäfer, M.

Schellhorn, M.

M. Schellhorn, “Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser,” Appl. Phys. B85(4), 549–552 (2006).
[CrossRef]

Schmitz, J.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9 μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett.18(4), 628–630 (2006).
[CrossRef]

Scholle, K.

Schunemann, P. G.

P. A. Budni, L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, J. R. Mosto, and E. P. Chicklis, “Mid-IR laser based on ZnGeP and unsensitized Ho:YAG,” OSA Trends Opt. Photon.26, 454–457 (1999).

Shaw, B.

S. Bowman, S. O’Connor, N. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE8638, 863803, 863803-6 (2013).
[CrossRef]

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Shen, D. Y.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding pumped tunable Tm: silica-fibre laser,” Appl. Phys. B79(5), 559–561 (2004).
[CrossRef]

Strek, W.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Stręk, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “A promising Lu2−xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93(11), 3764–3772 (2010).
[CrossRef]

Turner, G. W.

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-gm diode lasers,” IEEE J. Quantum Electron.31(9), 1603–1605 (1995).
[CrossRef]

Varmette, P.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Villalobos, G.

C. Baker, W. Kim, J. Sanghera, R. Goswami, G. Villalobos, B. Sadowski, and I. Aggarwal, “Flame spray synthesis of Lu2O3 nanoparticles,” Mater. Lett.66(1), 132–134 (2012).
[CrossRef]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

G. Villalobos, J. S. Sanghera, and I. D. Aggarwal, “Degradation of magnesium aluminum spinel by lithium fluoride sintering aid,” J. Am. Ceram. Soc.88(5), 1321–1322 (2005).
[CrossRef]

Wagner, J.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9 μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett.18(4), 628–630 (2006).
[CrossRef]

Weber, J.

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9 μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett.18(4), 628–630 (2006).
[CrossRef]

Appl. Phys. B (2)

M. Schellhorn, “Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser,” Appl. Phys. B85(4), 549–552 (2006).
[CrossRef]

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding pumped tunable Tm: silica-fibre laser,” Appl. Phys. B79(5), 559–561 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. D. Nabors, J. Ochoa, T. Y. Fan, A. Sanchez, H. K. Choi, and G. W. Turner, “Ho:YAG laser pumped by 1.9-gm diode lasers,” IEEE J. Quantum Electron.31(9), 1603–1605 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron.6(4), 629–635 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9 μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett.18(4), 628–630 (2006).
[CrossRef]

J. Am. Ceram. Soc. (3)

M. Galceran, M. C. Pujol, P. Gluchowski, W. Stręk, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “A promising Lu2−xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93(11), 3764–3772 (2010).
[CrossRef]

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

G. Villalobos, J. S. Sanghera, and I. D. Aggarwal, “Degradation of magnesium aluminum spinel by lithium fluoride sintering aid,” J. Am. Ceram. Soc.88(5), 1321–1322 (2005).
[CrossRef]

J. Cryst. Growth (1)

V. Bolz, A. Peters, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth237–239, 879–883 (2002).

Mater. Lett. (1)

C. Baker, W. Kim, J. Sanghera, R. Goswami, G. Villalobos, B. Sadowski, and I. Aggarwal, “Flame spray synthesis of Lu2O3 nanoparticles,” Mater. Lett.66(1), 132–134 (2012).
[CrossRef]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Opt. Mater. (2)

J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, and I. Aggarwal, “Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic,” Opt. Mater.33(5), 670–674 (2011).
[CrossRef]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater.33(3), 511–518 (2011).
[CrossRef]

Opt. Mater. Express (1)

OSA Trends Opt. Photon. (2)

P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P. Chicklis, “CW and Q-switched Ho:YAG pumped by Tm:YALO,” OSA Trends Opt. Photon.19, 204–206 (1998).

P. A. Budni, L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, J. R. Mosto, and E. P. Chicklis, “Mid-IR laser based on ZnGeP and unsensitized Ho:YAG,” OSA Trends Opt. Photon.26, 454–457 (1999).

Proc. SPIE (1)

S. Bowman, S. O’Connor, N. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE8638, 863803, 863803-6 (2013).
[CrossRef]

Other (1)

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a). XRD patterns for 0.1, 2, and 5% Ho-doped Lu2O3 and (b) SEM image of 2% Ho-doped Lu2O3.

Fig. 2
Fig. 2

(a) Ho3+:Lu2O3 ceramic fabricated using NRL powder. (0.1%, 1%, 2% and 5% Ho3+ concentration from left to right) (b) Optical microscope picture of 2% Ho3+:Lu2O3 ceramic showing average grain size of 40~50μm.

Fig. 3
Fig. 3

Optical transmission plot of the polished 2% Ho-doped Lu2O3 ceramic (2.2 mm thick). Insert shows the corresponding ceramic. Theoretical transmission was calculated using refractive indices in Fig. 5.

Fig. 4
Fig. 4

Fluorescence lifetime plot of 2% Ho-doped Lu2O3 ceramic fabricated using high purity powder.

Fig. 5
Fig. 5

Plot of refractive indices of transparent Ho-doped Lu2O3 ceramics of various doping concentrations measured using ellipsometry.

Fig. 6
Fig. 6

A plot of output power versus absorbed power for a 2% Ho3+-doped Lu2O3 ceramic.

Tables (1)

Tables Icon

Table 1 Glow Discharge Mass Spectroscopy (GDMS) Chemical Analysis Results of the Synthesized 2% Ho:Lu2O3 Powder and Ceramic

Metrics