Abstract

We present a method for the preparation of transparent Tb doped zirconia (Tb:ZrO2) ceramics that luminesce in the visible. The visible luminescence is temperature dependent, yielding samples that have integrated temperatures sensing capabilities. Our approach is to simultaneously react and densify ZrO2 and Tb4O7 using current activated pressure assisted densification (CAPAD). The Tb dopant serves to both stabilize the tetragonal phase of zirconia and for emitting light. The Tb:ZrO2 ceramics have an excellent combination of structural and optical properties; the toughness is comparable to yttria stabilized zirconia and the transparency in the visible is high. Moreover, the luminescent lifetimes are long and amenable to luminescent thermometry. The ceramics have promise as thermal barrier materials and high-strength windows with “built-in” temperature measurement capabilities.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ghosh, D. Teweldebrhan, J. R. Morales, J. E. Garay, and A. A. Balandin, “Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia,” J. Appl. Phys.106(11), 113507 (2009).
    [CrossRef]
  2. J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
    [CrossRef]
  3. S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater.58(6), 516–519 (2008).
    [CrossRef]
  4. E. H. Penilla, Y. Kodera, and J. E. Garay, “Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD),” Mater. Sci. Eng. B177(14), 1178–1187 (2012).
    [CrossRef]
  5. A. T. Wieg, Y. Kodera, Z. Wang, T. Imai, C. Dames, and J. E. Garay, “Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity,” Appl. Phys. Lett.101(11), 111903 (2012).
    [CrossRef]
  6. M. D. Chambers and D. R. Clarke, “Doped oxides for high-temperature luminescence and lifetime thermometry,” Annu. Rev. Mater. Res.39(1), 325–359 (2009).
    [CrossRef]
  7. M. M. Gentleman and D. R. Clarke, “Luminescence sensing of temperature in pyrochlore zirconate materials for thermal barrier coatings,” Surf. Coat. Tech.200(5-6), 1264–1269 (2005).
    [CrossRef]
  8. Y. Shen, M. D. Chambers, and D. R. Clarke, “Effects of dopants and excitation wavelength on the temperature sensing of Ln3+-doped 7YSZ,” Surf. Coat. Tech.203(5-7), 456–460 (2008).
    [CrossRef]
  9. M. D. Chambers and D. R. Clarke, “Terbium as an alternative for luminescence sensing of temperature of thermal barrier coating materials,” Surf. Coat. Tech.202(4-7), 688–692 (2007).
    [CrossRef]
  10. S. Gutzov and W. Assmus, “The luminescence of holmium doped cubic yttria-stabilized zirconia,” J. Mater. Sci. Lett.19(4), 275–277 (2000).
    [CrossRef]
  11. Y. Kodera, C. L. Hardin, and J. E. Garay, “Transmitting, emitting and controlling light: processing of transparent ceramics using current activated pressure assisted densification,” Scr. Mater. (to be published).
  12. J. E. Garay, “Current activated pressure assisted densification of materials,” Annu. Rev. Mater. Res.40(1), 445–468 (2010).
    [CrossRef]
  13. K. Niihara, R. Morena, and D. Hasselman, “Evaluation of Kic of brittle solids by the indentation method with low crack-to-indent ratios,” J. Mater. Sci.1, 13–16 (1982).
  14. G. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements,” J. Am. Ceram. Soc.64(9), 533–538 (1981).
    [CrossRef]
  15. R. P. Ingel and D. Lewis, “Lattice parameters and density for Y2O3-stabilized ZrO2,” J. Am. Ceram. Soc.69(4), 325–332 (1986).
    [CrossRef]
  16. P. Manning, J. Sirman, R. De Souza, and J. Kilner, “The kinetics of oxygen transport in 9.5 mol% single crystal yttria stabilised zirconia,” Solid State Ion.100(1-2), 1–10 (1997).
    [CrossRef]
  17. V. B. Vykhodets, T. E. Kurennykh, G. Kesarev, M. V. Kuznetsov, V. V. Kondrat’ev, C. Hülsen, and U. Koester, “Diffusion of insoluble carbon in zirconium oxides,” JETP Lett.93(1), 5–9 (2011).
    [CrossRef]
  18. M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003).
    [CrossRef]
  19. J. Klimke, M. Trunec, and A. Krell, “Transparent tetragonal yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence,” J. Am. Ceram. Soc.94(6), 1850–1858 (2011).
    [CrossRef]
  20. G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience, 1968).

2012

E. H. Penilla, Y. Kodera, and J. E. Garay, “Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD),” Mater. Sci. Eng. B177(14), 1178–1187 (2012).
[CrossRef]

A. T. Wieg, Y. Kodera, Z. Wang, T. Imai, C. Dames, and J. E. Garay, “Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity,” Appl. Phys. Lett.101(11), 111903 (2012).
[CrossRef]

2011

V. B. Vykhodets, T. E. Kurennykh, G. Kesarev, M. V. Kuznetsov, V. V. Kondrat’ev, C. Hülsen, and U. Koester, “Diffusion of insoluble carbon in zirconium oxides,” JETP Lett.93(1), 5–9 (2011).
[CrossRef]

J. Klimke, M. Trunec, and A. Krell, “Transparent tetragonal yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence,” J. Am. Ceram. Soc.94(6), 1850–1858 (2011).
[CrossRef]

2010

J. E. Garay, “Current activated pressure assisted densification of materials,” Annu. Rev. Mater. Res.40(1), 445–468 (2010).
[CrossRef]

2009

M. D. Chambers and D. R. Clarke, “Doped oxides for high-temperature luminescence and lifetime thermometry,” Annu. Rev. Mater. Res.39(1), 325–359 (2009).
[CrossRef]

S. Ghosh, D. Teweldebrhan, J. R. Morales, J. E. Garay, and A. A. Balandin, “Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia,” J. Appl. Phys.106(11), 113507 (2009).
[CrossRef]

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
[CrossRef]

2008

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater.58(6), 516–519 (2008).
[CrossRef]

Y. Shen, M. D. Chambers, and D. R. Clarke, “Effects of dopants and excitation wavelength on the temperature sensing of Ln3+-doped 7YSZ,” Surf. Coat. Tech.203(5-7), 456–460 (2008).
[CrossRef]

2007

M. D. Chambers and D. R. Clarke, “Terbium as an alternative for luminescence sensing of temperature of thermal barrier coating materials,” Surf. Coat. Tech.202(4-7), 688–692 (2007).
[CrossRef]

2005

M. M. Gentleman and D. R. Clarke, “Luminescence sensing of temperature in pyrochlore zirconate materials for thermal barrier coatings,” Surf. Coat. Tech.200(5-6), 1264–1269 (2005).
[CrossRef]

2003

M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003).
[CrossRef]

2000

S. Gutzov and W. Assmus, “The luminescence of holmium doped cubic yttria-stabilized zirconia,” J. Mater. Sci. Lett.19(4), 275–277 (2000).
[CrossRef]

1997

P. Manning, J. Sirman, R. De Souza, and J. Kilner, “The kinetics of oxygen transport in 9.5 mol% single crystal yttria stabilised zirconia,” Solid State Ion.100(1-2), 1–10 (1997).
[CrossRef]

1986

R. P. Ingel and D. Lewis, “Lattice parameters and density for Y2O3-stabilized ZrO2,” J. Am. Ceram. Soc.69(4), 325–332 (1986).
[CrossRef]

1982

K. Niihara, R. Morena, and D. Hasselman, “Evaluation of Kic of brittle solids by the indentation method with low crack-to-indent ratios,” J. Mater. Sci.1, 13–16 (1982).

1981

G. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements,” J. Am. Ceram. Soc.64(9), 533–538 (1981).
[CrossRef]

Aguilar, G.

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
[CrossRef]

Alaniz, J. E.

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
[CrossRef]

Anstis, G.

G. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements,” J. Am. Ceram. Soc.64(9), 533–538 (1981).
[CrossRef]

Argirusis, C.

M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003).
[CrossRef]

Assmus, W.

S. Gutzov and W. Assmus, “The luminescence of holmium doped cubic yttria-stabilized zirconia,” J. Mater. Sci. Lett.19(4), 275–277 (2000).
[CrossRef]

Balandin, A. A.

S. Ghosh, D. Teweldebrhan, J. R. Morales, J. E. Garay, and A. A. Balandin, “Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia,” J. Appl. Phys.106(11), 113507 (2009).
[CrossRef]

Borchardt, G.

M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003).
[CrossRef]

Casolco, S. R.

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater.58(6), 516–519 (2008).
[CrossRef]

Chambers, M. D.

M. D. Chambers and D. R. Clarke, “Doped oxides for high-temperature luminescence and lifetime thermometry,” Annu. Rev. Mater. Res.39(1), 325–359 (2009).
[CrossRef]

Y. Shen, M. D. Chambers, and D. R. Clarke, “Effects of dopants and excitation wavelength on the temperature sensing of Ln3+-doped 7YSZ,” Surf. Coat. Tech.203(5-7), 456–460 (2008).
[CrossRef]

M. D. Chambers and D. R. Clarke, “Terbium as an alternative for luminescence sensing of temperature of thermal barrier coating materials,” Surf. Coat. Tech.202(4-7), 688–692 (2007).
[CrossRef]

Chantikul, P.

G. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements,” J. Am. Ceram. Soc.64(9), 533–538 (1981).
[CrossRef]

Clarke, D. R.

M. D. Chambers and D. R. Clarke, “Doped oxides for high-temperature luminescence and lifetime thermometry,” Annu. Rev. Mater. Res.39(1), 325–359 (2009).
[CrossRef]

Y. Shen, M. D. Chambers, and D. R. Clarke, “Effects of dopants and excitation wavelength on the temperature sensing of Ln3+-doped 7YSZ,” Surf. Coat. Tech.203(5-7), 456–460 (2008).
[CrossRef]

M. D. Chambers and D. R. Clarke, “Terbium as an alternative for luminescence sensing of temperature of thermal barrier coating materials,” Surf. Coat. Tech.202(4-7), 688–692 (2007).
[CrossRef]

M. M. Gentleman and D. R. Clarke, “Luminescence sensing of temperature in pyrochlore zirconate materials for thermal barrier coatings,” Surf. Coat. Tech.200(5-6), 1264–1269 (2005).
[CrossRef]

Dames, C.

A. T. Wieg, Y. Kodera, Z. Wang, T. Imai, C. Dames, and J. E. Garay, “Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity,” Appl. Phys. Lett.101(11), 111903 (2012).
[CrossRef]

De Souza, R.

P. Manning, J. Sirman, R. De Souza, and J. Kilner, “The kinetics of oxygen transport in 9.5 mol% single crystal yttria stabilised zirconia,” Solid State Ion.100(1-2), 1–10 (1997).
[CrossRef]

Garay, J. E.

A. T. Wieg, Y. Kodera, Z. Wang, T. Imai, C. Dames, and J. E. Garay, “Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity,” Appl. Phys. Lett.101(11), 111903 (2012).
[CrossRef]

E. H. Penilla, Y. Kodera, and J. E. Garay, “Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD),” Mater. Sci. Eng. B177(14), 1178–1187 (2012).
[CrossRef]

J. E. Garay, “Current activated pressure assisted densification of materials,” Annu. Rev. Mater. Res.40(1), 445–468 (2010).
[CrossRef]

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
[CrossRef]

S. Ghosh, D. Teweldebrhan, J. R. Morales, J. E. Garay, and A. A. Balandin, “Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia,” J. Appl. Phys.106(11), 113507 (2009).
[CrossRef]

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater.58(6), 516–519 (2008).
[CrossRef]

Y. Kodera, C. L. Hardin, and J. E. Garay, “Transmitting, emitting and controlling light: processing of transparent ceramics using current activated pressure assisted densification,” Scr. Mater. (to be published).

Gentleman, M. M.

M. M. Gentleman and D. R. Clarke, “Luminescence sensing of temperature in pyrochlore zirconate materials for thermal barrier coatings,” Surf. Coat. Tech.200(5-6), 1264–1269 (2005).
[CrossRef]

Ghosh, S.

S. Ghosh, D. Teweldebrhan, J. R. Morales, J. E. Garay, and A. A. Balandin, “Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia,” J. Appl. Phys.106(11), 113507 (2009).
[CrossRef]

Gutzov, S.

S. Gutzov and W. Assmus, “The luminescence of holmium doped cubic yttria-stabilized zirconia,” J. Mater. Sci. Lett.19(4), 275–277 (2000).
[CrossRef]

Hardin, C. L.

Y. Kodera, C. L. Hardin, and J. E. Garay, “Transmitting, emitting and controlling light: processing of transparent ceramics using current activated pressure assisted densification,” Scr. Mater. (to be published).

Hasselman, D.

K. Niihara, R. Morena, and D. Hasselman, “Evaluation of Kic of brittle solids by the indentation method with low crack-to-indent ratios,” J. Mater. Sci.1, 13–16 (1982).

Hülsen, C.

V. B. Vykhodets, T. E. Kurennykh, G. Kesarev, M. V. Kuznetsov, V. V. Kondrat’ev, C. Hülsen, and U. Koester, “Diffusion of insoluble carbon in zirconium oxides,” JETP Lett.93(1), 5–9 (2011).
[CrossRef]

Imai, T.

A. T. Wieg, Y. Kodera, Z. Wang, T. Imai, C. Dames, and J. E. Garay, “Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity,” Appl. Phys. Lett.101(11), 111903 (2012).
[CrossRef]

Ingel, R. P.

R. P. Ingel and D. Lewis, “Lattice parameters and density for Y2O3-stabilized ZrO2,” J. Am. Ceram. Soc.69(4), 325–332 (1986).
[CrossRef]

Kesarev, G.

V. B. Vykhodets, T. E. Kurennykh, G. Kesarev, M. V. Kuznetsov, V. V. Kondrat’ev, C. Hülsen, and U. Koester, “Diffusion of insoluble carbon in zirconium oxides,” JETP Lett.93(1), 5–9 (2011).
[CrossRef]

Kilner, J.

P. Manning, J. Sirman, R. De Souza, and J. Kilner, “The kinetics of oxygen transport in 9.5 mol% single crystal yttria stabilised zirconia,” Solid State Ion.100(1-2), 1–10 (1997).
[CrossRef]

Kilo, M.

M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003).
[CrossRef]

Klimke, J.

J. Klimke, M. Trunec, and A. Krell, “Transparent tetragonal yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence,” J. Am. Ceram. Soc.94(6), 1850–1858 (2011).
[CrossRef]

Kodera, Y.

E. H. Penilla, Y. Kodera, and J. E. Garay, “Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD),” Mater. Sci. Eng. B177(14), 1178–1187 (2012).
[CrossRef]

A. T. Wieg, Y. Kodera, Z. Wang, T. Imai, C. Dames, and J. E. Garay, “Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity,” Appl. Phys. Lett.101(11), 111903 (2012).
[CrossRef]

Y. Kodera, C. L. Hardin, and J. E. Garay, “Transmitting, emitting and controlling light: processing of transparent ceramics using current activated pressure assisted densification,” Scr. Mater. (to be published).

Koester, U.

V. B. Vykhodets, T. E. Kurennykh, G. Kesarev, M. V. Kuznetsov, V. V. Kondrat’ev, C. Hülsen, and U. Koester, “Diffusion of insoluble carbon in zirconium oxides,” JETP Lett.93(1), 5–9 (2011).
[CrossRef]

Kondrat’ev, V. V.

V. B. Vykhodets, T. E. Kurennykh, G. Kesarev, M. V. Kuznetsov, V. V. Kondrat’ev, C. Hülsen, and U. Koester, “Diffusion of insoluble carbon in zirconium oxides,” JETP Lett.93(1), 5–9 (2011).
[CrossRef]

Krell, A.

J. Klimke, M. Trunec, and A. Krell, “Transparent tetragonal yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence,” J. Am. Ceram. Soc.94(6), 1850–1858 (2011).
[CrossRef]

Kurennykh, T. E.

V. B. Vykhodets, T. E. Kurennykh, G. Kesarev, M. V. Kuznetsov, V. V. Kondrat’ev, C. Hülsen, and U. Koester, “Diffusion of insoluble carbon in zirconium oxides,” JETP Lett.93(1), 5–9 (2011).
[CrossRef]

Kuznetsov, M. V.

V. B. Vykhodets, T. E. Kurennykh, G. Kesarev, M. V. Kuznetsov, V. V. Kondrat’ev, C. Hülsen, and U. Koester, “Diffusion of insoluble carbon in zirconium oxides,” JETP Lett.93(1), 5–9 (2011).
[CrossRef]

Lawn, B. R.

G. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements,” J. Am. Ceram. Soc.64(9), 533–538 (1981).
[CrossRef]

Lesage, B.

M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003).
[CrossRef]

Lewis, D.

R. P. Ingel and D. Lewis, “Lattice parameters and density for Y2O3-stabilized ZrO2,” J. Am. Ceram. Soc.69(4), 325–332 (1986).
[CrossRef]

Manning, P.

P. Manning, J. Sirman, R. De Souza, and J. Kilner, “The kinetics of oxygen transport in 9.5 mol% single crystal yttria stabilised zirconia,” Solid State Ion.100(1-2), 1–10 (1997).
[CrossRef]

Marshall, D. B.

G. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements,” J. Am. Ceram. Soc.64(9), 533–538 (1981).
[CrossRef]

Martin, M.

M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003).
[CrossRef]

Morales, J. R.

S. Ghosh, D. Teweldebrhan, J. R. Morales, J. E. Garay, and A. A. Balandin, “Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia,” J. Appl. Phys.106(11), 113507 (2009).
[CrossRef]

Morena, R.

K. Niihara, R. Morena, and D. Hasselman, “Evaluation of Kic of brittle solids by the indentation method with low crack-to-indent ratios,” J. Mater. Sci.1, 13–16 (1982).

Niihara, K.

K. Niihara, R. Morena, and D. Hasselman, “Evaluation of Kic of brittle solids by the indentation method with low crack-to-indent ratios,” J. Mater. Sci.1, 13–16 (1982).

Penilla, E. H.

E. H. Penilla, Y. Kodera, and J. E. Garay, “Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD),” Mater. Sci. Eng. B177(14), 1178–1187 (2012).
[CrossRef]

Perez-Gutierrez, F. G.

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
[CrossRef]

Scherrer, H.

M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003).
[CrossRef]

Scherrer, S.

M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003).
[CrossRef]

Schroeder, M.

M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003).
[CrossRef]

Shen, Y.

Y. Shen, M. D. Chambers, and D. R. Clarke, “Effects of dopants and excitation wavelength on the temperature sensing of Ln3+-doped 7YSZ,” Surf. Coat. Tech.203(5-7), 456–460 (2008).
[CrossRef]

Sirman, J.

P. Manning, J. Sirman, R. De Souza, and J. Kilner, “The kinetics of oxygen transport in 9.5 mol% single crystal yttria stabilised zirconia,” Solid State Ion.100(1-2), 1–10 (1997).
[CrossRef]

Taylor, M. A.

M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003).
[CrossRef]

Teweldebrhan, D.

S. Ghosh, D. Teweldebrhan, J. R. Morales, J. E. Garay, and A. A. Balandin, “Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia,” J. Appl. Phys.106(11), 113507 (2009).
[CrossRef]

Trunec, M.

J. Klimke, M. Trunec, and A. Krell, “Transparent tetragonal yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence,” J. Am. Ceram. Soc.94(6), 1850–1858 (2011).
[CrossRef]

Vykhodets, V. B.

V. B. Vykhodets, T. E. Kurennykh, G. Kesarev, M. V. Kuznetsov, V. V. Kondrat’ev, C. Hülsen, and U. Koester, “Diffusion of insoluble carbon in zirconium oxides,” JETP Lett.93(1), 5–9 (2011).
[CrossRef]

Wang, Z.

A. T. Wieg, Y. Kodera, Z. Wang, T. Imai, C. Dames, and J. E. Garay, “Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity,” Appl. Phys. Lett.101(11), 111903 (2012).
[CrossRef]

Weber, S.

M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003).
[CrossRef]

Wieg, A. T.

A. T. Wieg, Y. Kodera, Z. Wang, T. Imai, C. Dames, and J. E. Garay, “Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity,” Appl. Phys. Lett.101(11), 111903 (2012).
[CrossRef]

Xu, J.

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater.58(6), 516–519 (2008).
[CrossRef]

Annu. Rev. Mater. Res.

M. D. Chambers and D. R. Clarke, “Doped oxides for high-temperature luminescence and lifetime thermometry,” Annu. Rev. Mater. Res.39(1), 325–359 (2009).
[CrossRef]

J. E. Garay, “Current activated pressure assisted densification of materials,” Annu. Rev. Mater. Res.40(1), 445–468 (2010).
[CrossRef]

Appl. Phys. Lett.

A. T. Wieg, Y. Kodera, Z. Wang, T. Imai, C. Dames, and J. E. Garay, “Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity,” Appl. Phys. Lett.101(11), 111903 (2012).
[CrossRef]

J. Am. Ceram. Soc.

G. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements,” J. Am. Ceram. Soc.64(9), 533–538 (1981).
[CrossRef]

R. P. Ingel and D. Lewis, “Lattice parameters and density for Y2O3-stabilized ZrO2,” J. Am. Ceram. Soc.69(4), 325–332 (1986).
[CrossRef]

J. Klimke, M. Trunec, and A. Krell, “Transparent tetragonal yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence,” J. Am. Ceram. Soc.94(6), 1850–1858 (2011).
[CrossRef]

J. Appl. Phys.

M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003).
[CrossRef]

S. Ghosh, D. Teweldebrhan, J. R. Morales, J. E. Garay, and A. A. Balandin, “Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia,” J. Appl. Phys.106(11), 113507 (2009).
[CrossRef]

J. Mater. Sci.

K. Niihara, R. Morena, and D. Hasselman, “Evaluation of Kic of brittle solids by the indentation method with low crack-to-indent ratios,” J. Mater. Sci.1, 13–16 (1982).

J. Mater. Sci. Lett.

S. Gutzov and W. Assmus, “The luminescence of holmium doped cubic yttria-stabilized zirconia,” J. Mater. Sci. Lett.19(4), 275–277 (2000).
[CrossRef]

JETP Lett.

V. B. Vykhodets, T. E. Kurennykh, G. Kesarev, M. V. Kuznetsov, V. V. Kondrat’ev, C. Hülsen, and U. Koester, “Diffusion of insoluble carbon in zirconium oxides,” JETP Lett.93(1), 5–9 (2011).
[CrossRef]

Mater. Sci. Eng. B

E. H. Penilla, Y. Kodera, and J. E. Garay, “Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD),” Mater. Sci. Eng. B177(14), 1178–1187 (2012).
[CrossRef]

Opt. Mater.

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009).
[CrossRef]

Scr. Mater.

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater.58(6), 516–519 (2008).
[CrossRef]

Y. Kodera, C. L. Hardin, and J. E. Garay, “Transmitting, emitting and controlling light: processing of transparent ceramics using current activated pressure assisted densification,” Scr. Mater. (to be published).

Solid State Ion.

P. Manning, J. Sirman, R. De Souza, and J. Kilner, “The kinetics of oxygen transport in 9.5 mol% single crystal yttria stabilised zirconia,” Solid State Ion.100(1-2), 1–10 (1997).
[CrossRef]

Surf. Coat. Tech.

M. M. Gentleman and D. R. Clarke, “Luminescence sensing of temperature in pyrochlore zirconate materials for thermal barrier coatings,” Surf. Coat. Tech.200(5-6), 1264–1269 (2005).
[CrossRef]

Y. Shen, M. D. Chambers, and D. R. Clarke, “Effects of dopants and excitation wavelength on the temperature sensing of Ln3+-doped 7YSZ,” Surf. Coat. Tech.203(5-7), 456–460 (2008).
[CrossRef]

M. D. Chambers and D. R. Clarke, “Terbium as an alternative for luminescence sensing of temperature of thermal barrier coating materials,” Surf. Coat. Tech.202(4-7), 688–692 (2007).
[CrossRef]

Other

G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The effect of (a) processing temperature and (b) Tb dopant concentration on the bulk density of Tb:ZrO2. A fixed Tb concentration (3%Tb:ZrO2) was used for all samples in (a) and constant processing temperature of 1150° C was used in (b) (lines between points are guide to eye only).

Fig. 2
Fig. 2

Photographs of a 6%Tb:ZrO2 samples on the top of backlit text, demonstrating transparency. (a) as-processed sample. (b) sample annealed at 700° C for 24 hrs.

Fig. 3
Fig. 3

X-ray diffraction profiles of Tb:ZrO2 samples with varying Tb content (a) and Raman spectra of Tb:ZrO2 samples with varying Tb content (b).

Fig. 4
Fig. 4

Secondary Electron (SE) and Backscatter Electron (BSE) micrographs for Tb:ZrO2 samples with varying Tb content.

Fig. 5
Fig. 5

SEM micrographs of fracture surfaces of Tb:ZrO2 with varying dopant levels.

Fig. 6
Fig. 6

Hardness and Toughness of ZrO2 vs. Dopant Level (Y or Tb). Lines between points are guide to eye only.

Fig. 7
Fig. 7

Effect of annealing on the (a) optical transmission and (b) absorption coefficients of 6% Tb:ZrO2. (lines between points in (b) are guide to eye only).

Fig. 8
Fig. 8

Measured absorption coefficients for Tb:ZrO2 compared to Oxygen diffusion model. The inset tabulates the relaxation time, t and R2 (for fit to exponential) for various wavelengths.

Fig. 9
Fig. 9

Optical Transmission vs. Wavelength for Varying dopant content in Tb:ZrO2.

Fig. 10
Fig. 10

Photoluminescence Spectra vs. wavelength for varying atomic percent Tb in Tb:ZrO2 (290nm Excitation).

Fig. 11
Fig. 11

Photoluminescence Decay vs. Dopant Level (15 point moving average applied to (a) for clarity), lines between points in (b) are guide to eye only).

Fig. 12
Fig. 12

Effect of measurement temperature on photoluminescence intensity for 3% Tb:ZrO2.

Metrics