Abstract

Erbium doped oxyfluoride glass was synthesized from the molar composition 10.1% Na2CO3 −20.2% PbO −33.7% GeO2 −33.6% TeO2 −2.4% ErF3 by melt quenching technique. The Judd-Ofelt intensity parameters were estimated as Ω2 = 10.8 × 10−20, Ω4 = 1.17 × 10−20, and Ω6 = 4.32 × 10−20 cm2. Radiative transition probabilities and lifetimes were also calculated. Differential scanning calorimetry (DSC) was used for thermal analysis of the sample. Nanocrystals were induced in the glass by heat-treatment. Strong room temperature upconversion emissions were observed at 415, 540, 554 and 667 nm from Er3+ doped sample under 972 nm Ti-sapphire laser excitation. X-ray diffraction (XRD) measurements revealed the presence of NaErF4 crystallites 35 nm in the glassy matrix. The concentration of nanocrystals is found to be low in the middle of the sample and higher close to the surface. Time correlated single photon counting (TCSPC) was used to measure Er3+ lifetimes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suzuki, S. Masaki, K. Mizuno, and Y. Ohishi, “Synthesis and luminescent properties of transparent oxyfluoride glass-ceramics containing Er3+:YLiF4 nanocrystals,” Appl. Phys. Express 3(7), 072601 (2010).
    [Crossref]
  2. L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
    [Crossref]
  3. M. Beggiora, I. M. Reaney, A. B. Seddon, D. Furniss, and S. A. Tikhomirova, “Phase evolution in oxy-fluoride glass ceramics,” J. Non-Cryst. Solids 326-327, 476–483 (2003).
    [Crossref]
  4. F. Auzel, D. Pecile, and D. Morin, “Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up-conversion,” J. Electrochem. Soc. 122(1), 101–107 (1975).
    [Crossref]
  5. M. J. Digonnet, Rare-Earth Doped Fiber Lasers and Amplifiers (Dekker, 1993).
  6. S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphates glasses,” Phys. Rev. B 45(9), 4620–4625 (1992).
    [Crossref]
  7. M. J. Dejneka, “The luminescence and structure of novel transparent oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 239(1-3), 149–155 (1998).
    [Crossref]
  8. G. Jones and S. N. Houde-Walter, “Upconversion mechanisms in an erbium-doped transparent glass ceramic,” J. Opt. Soc. Am. B 22(4), 825–830 (2005).
    [Crossref]
  9. S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. 19(3), 343–349 (2002).
    [Crossref]
  10. S. Nielsen, W. D. Lawson, and A. F. Fray, “Some infrared transmitting glasses containing germanium dioxide,” Infrared Phys. 1(1), 21–26 (1961).
    [Crossref]
  11. C. B. de Araújo, L. R. P. Kassab, R. A. Kobayashi, L. P. Naranjo, and P. A. Santa Cruz, “Luminescence enhancement of Pb2+ ions in TeO2-PbO-GeO2 glasses containing silver nanostructures,” J. Appl. Phys. 99(12), 123522 (2006).
    [Crossref]
  12. G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).
    [Crossref]
  13. B. R. Reddy and P. Venkateswarlu, “Infrared to visible energy upconversion in Er3+-doped oxide glass,” Appl. Phys. Lett. 64(11), 1327–1329 (1994).
    [Crossref]
  14. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
    [Crossref] [PubMed]
  15. K. Hirao, S. Todoroki, and N. Soga, “CW room temperature upconversion lasing in Er3+-doped fluoride glass fiber,” J. Non-Cryst. Solids 143, 40–45 (1992).
    [Crossref]
  16. Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids 352(8), 801–806 (2006).
    [Crossref]
  17. S. Yang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability and optical transition of Er3+ in sodium-lead-germanate glasses,” J. Mater. Sci. 39(11), 3641–3646 (2004).
    [Crossref]
  18. S. Bommareddi, M. Dokhanian, and B. R. Reddy, “Energy upconversion in erbium doped sodium lead germano tellurite glass,” Phys. Status Solidi C 6(S1), S67–S70 (2009).
    [Crossref]
  19. X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
    [Crossref]
  20. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Argonne National Laboratory Rep. ANL-78–95 (Argonne National Laboratory, 1979).
  21. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157(2), 262–272 (1967).
    [Crossref]

2010 (1)

T. Suzuki, S. Masaki, K. Mizuno, and Y. Ohishi, “Synthesis and luminescent properties of transparent oxyfluoride glass-ceramics containing Er3+:YLiF4 nanocrystals,” Appl. Phys. Express 3(7), 072601 (2010).
[Crossref]

2009 (1)

S. Bommareddi, M. Dokhanian, and B. R. Reddy, “Energy upconversion in erbium doped sodium lead germano tellurite glass,” Phys. Status Solidi C 6(S1), S67–S70 (2009).
[Crossref]

2008 (1)

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

2006 (3)

X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
[Crossref]

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids 352(8), 801–806 (2006).
[Crossref]

C. B. de Araújo, L. R. P. Kassab, R. A. Kobayashi, L. P. Naranjo, and P. A. Santa Cruz, “Luminescence enhancement of Pb2+ ions in TeO2-PbO-GeO2 glasses containing silver nanostructures,” J. Appl. Phys. 99(12), 123522 (2006).
[Crossref]

2005 (1)

2004 (1)

S. Yang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability and optical transition of Er3+ in sodium-lead-germanate glasses,” J. Mater. Sci. 39(11), 3641–3646 (2004).
[Crossref]

2003 (1)

M. Beggiora, I. M. Reaney, A. B. Seddon, D. Furniss, and S. A. Tikhomirova, “Phase evolution in oxy-fluoride glass ceramics,” J. Non-Cryst. Solids 326-327, 476–483 (2003).
[Crossref]

2002 (1)

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. 19(3), 343–349 (2002).
[Crossref]

1998 (1)

M. J. Dejneka, “The luminescence and structure of novel transparent oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 239(1-3), 149–155 (1998).
[Crossref]

1997 (1)

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).
[Crossref]

1994 (1)

B. R. Reddy and P. Venkateswarlu, “Infrared to visible energy upconversion in Er3+-doped oxide glass,” Appl. Phys. Lett. 64(11), 1327–1329 (1994).
[Crossref]

1992 (3)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

K. Hirao, S. Todoroki, and N. Soga, “CW room temperature upconversion lasing in Er3+-doped fluoride glass fiber,” J. Non-Cryst. Solids 143, 40–45 (1992).
[Crossref]

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphates glasses,” Phys. Rev. B 45(9), 4620–4625 (1992).
[Crossref]

1975 (1)

F. Auzel, D. Pecile, and D. Morin, “Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up-conversion,” J. Electrochem. Soc. 122(1), 101–107 (1975).
[Crossref]

1967 (1)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157(2), 262–272 (1967).
[Crossref]

1961 (1)

S. Nielsen, W. D. Lawson, and A. F. Fray, “Some infrared transmitting glasses containing germanium dioxide,” Infrared Phys. 1(1), 21–26 (1961).
[Crossref]

Aegerter, M. A.

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).
[Crossref]

Auzel, F.

F. Auzel, D. Pecile, and D. Morin, “Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up-conversion,” J. Electrochem. Soc. 122(1), 101–107 (1975).
[Crossref]

Beggiora, M.

M. Beggiora, I. M. Reaney, A. B. Seddon, D. Furniss, and S. A. Tikhomirova, “Phase evolution in oxy-fluoride glass ceramics,” J. Non-Cryst. Solids 326-327, 476–483 (2003).
[Crossref]

Bommareddi, S.

S. Bommareddi, M. Dokhanian, and B. R. Reddy, “Energy upconversion in erbium doped sodium lead germano tellurite glass,” Phys. Status Solidi C 6(S1), S67–S70 (2009).
[Crossref]

Bueno, L. A.

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

da Costa, E. B.

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

Dai, S.

S. Yang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability and optical transition of Er3+ in sodium-lead-germanate glasses,” J. Mater. Sci. 39(11), 3641–3646 (2004).
[Crossref]

de Araújo, C. B.

C. B. de Araújo, L. R. P. Kassab, R. A. Kobayashi, L. P. Naranjo, and P. A. Santa Cruz, “Luminescence enhancement of Pb2+ ions in TeO2-PbO-GeO2 glasses containing silver nanostructures,” J. Appl. Phys. 99(12), 123522 (2006).
[Crossref]

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).
[Crossref]

Dejneka, M. J.

M. J. Dejneka, “The luminescence and structure of novel transparent oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 239(1-3), 149–155 (1998).
[Crossref]

Dokhanian, M.

S. Bommareddi, M. Dokhanian, and B. R. Reddy, “Energy upconversion in erbium doped sodium lead germano tellurite glass,” Phys. Status Solidi C 6(S1), S67–S70 (2009).
[Crossref]

Fan, X. P.

X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
[Crossref]

Fray, A. F.

S. Nielsen, W. D. Lawson, and A. F. Fray, “Some infrared transmitting glasses containing germanium dioxide,” Infrared Phys. 1(1), 21–26 (1961).
[Crossref]

Furniss, D.

M. Beggiora, I. M. Reaney, A. B. Seddon, D. Furniss, and S. A. Tikhomirova, “Phase evolution in oxy-fluoride glass ceramics,” J. Non-Cryst. Solids 326-327, 476–483 (2003).
[Crossref]

Gouveia-Neto, A. S.

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

Hanada, T.

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. 19(3), 343–349 (2002).
[Crossref]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Hayashi, H.

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. 19(3), 343–349 (2002).
[Crossref]

Hays, M.

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids 352(8), 801–806 (2006).
[Crossref]

Hirao, K.

K. Hirao, S. Todoroki, and N. Soga, “CW room temperature upconversion lasing in Er3+-doped fluoride glass fiber,” J. Non-Cryst. Solids 143, 40–45 (1992).
[Crossref]

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphates glasses,” Phys. Rev. B 45(9), 4620–4625 (1992).
[Crossref]

Houde-Walter, S. N.

Hu, L.

S. Yang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability and optical transition of Er3+ in sodium-lead-germanate glasses,” J. Mater. Sci. 39(11), 3641–3646 (2004).
[Crossref]

Jiang, Z.

S. Yang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability and optical transition of Er3+ in sodium-lead-germanate glasses,” J. Mater. Sci. 39(11), 3641–3646 (2004).
[Crossref]

Jones, G.

Kassab, L. R. P.

C. B. de Araújo, L. R. P. Kassab, R. A. Kobayashi, L. P. Naranjo, and P. A. Santa Cruz, “Luminescence enhancement of Pb2+ ions in TeO2-PbO-GeO2 glasses containing silver nanostructures,” J. Appl. Phys. 99(12), 123522 (2006).
[Crossref]

Kobayashi, R. A.

C. B. de Araújo, L. R. P. Kassab, R. A. Kobayashi, L. P. Naranjo, and P. A. Santa Cruz, “Luminescence enhancement of Pb2+ ions in TeO2-PbO-GeO2 glasses containing silver nanostructures,” J. Appl. Phys. 99(12), 123522 (2006).
[Crossref]

Lawson, W. D.

S. Nielsen, W. D. Lawson, and A. F. Fray, “Some infrared transmitting glasses containing germanium dioxide,” Infrared Phys. 1(1), 21–26 (1961).
[Crossref]

Maciel, G. S.

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).
[Crossref]

Masaki, S.

T. Suzuki, S. Masaki, K. Mizuno, and Y. Ohishi, “Synthesis and luminescent properties of transparent oxyfluoride glass-ceramics containing Er3+:YLiF4 nanocrystals,” Appl. Phys. Express 3(7), 072601 (2010).
[Crossref]

Messaddeq, Y.

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).
[Crossref]

Mizuno, K.

T. Suzuki, S. Masaki, K. Mizuno, and Y. Ohishi, “Synthesis and luminescent properties of transparent oxyfluoride glass-ceramics containing Er3+:YLiF4 nanocrystals,” Appl. Phys. Express 3(7), 072601 (2010).
[Crossref]

Morgan, S. H.

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids 352(8), 801–806 (2006).
[Crossref]

Morin, D.

F. Auzel, D. Pecile, and D. Morin, “Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up-conversion,” J. Electrochem. Soc. 122(1), 101–107 (1975).
[Crossref]

Mu, R.

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids 352(8), 801–806 (2006).
[Crossref]

Naranjo, L. P.

C. B. de Araújo, L. R. P. Kassab, R. A. Kobayashi, L. P. Naranjo, and P. A. Santa Cruz, “Luminescence enhancement of Pb2+ ions in TeO2-PbO-GeO2 glasses containing silver nanostructures,” J. Appl. Phys. 99(12), 123522 (2006).
[Crossref]

Nielsen, S.

S. Nielsen, W. D. Lawson, and A. F. Fray, “Some infrared transmitting glasses containing germanium dioxide,” Infrared Phys. 1(1), 21–26 (1961).
[Crossref]

Ohishi, Y.

T. Suzuki, S. Masaki, K. Mizuno, and Y. Ohishi, “Synthesis and luminescent properties of transparent oxyfluoride glass-ceramics containing Er3+:YLiF4 nanocrystals,” Appl. Phys. Express 3(7), 072601 (2010).
[Crossref]

Ohyagi, T.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Onodera, N.

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. 19(3), 343–349 (2002).
[Crossref]

Pan, Z.

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids 352(8), 801–806 (2006).
[Crossref]

Pecile, D.

F. Auzel, D. Pecile, and D. Morin, “Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up-conversion,” J. Electrochem. Soc. 122(1), 101–107 (1975).
[Crossref]

Qiao, X. S.

X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
[Crossref]

Reaney, I. M.

M. Beggiora, I. M. Reaney, A. B. Seddon, D. Furniss, and S. A. Tikhomirova, “Phase evolution in oxy-fluoride glass ceramics,” J. Non-Cryst. Solids 326-327, 476–483 (2003).
[Crossref]

Reddy, B. R.

S. Bommareddi, M. Dokhanian, and B. R. Reddy, “Energy upconversion in erbium doped sodium lead germano tellurite glass,” Phys. Status Solidi C 6(S1), S67–S70 (2009).
[Crossref]

B. R. Reddy and P. Venkateswarlu, “Infrared to visible energy upconversion in Er3+-doped oxide glass,” Appl. Phys. Lett. 64(11), 1327–1329 (1994).
[Crossref]

Ribeiro, S. J. L.

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

Santa Cruz, P. A.

C. B. de Araújo, L. R. P. Kassab, R. A. Kobayashi, L. P. Naranjo, and P. A. Santa Cruz, “Luminescence enhancement of Pb2+ ions in TeO2-PbO-GeO2 glasses containing silver nanostructures,” J. Appl. Phys. 99(12), 123522 (2006).
[Crossref]

Seddon, A. B.

M. Beggiora, I. M. Reaney, A. B. Seddon, D. Furniss, and S. A. Tikhomirova, “Phase evolution in oxy-fluoride glass ceramics,” J. Non-Cryst. Solids 326-327, 476–483 (2003).
[Crossref]

Soga, N.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphates glasses,” Phys. Rev. B 45(9), 4620–4625 (1992).
[Crossref]

K. Hirao, S. Todoroki, and N. Soga, “CW room temperature upconversion lasing in Er3+-doped fluoride glass fiber,” J. Non-Cryst. Solids 143, 40–45 (1992).
[Crossref]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Suzuki, T.

T. Suzuki, S. Masaki, K. Mizuno, and Y. Ohishi, “Synthesis and luminescent properties of transparent oxyfluoride glass-ceramics containing Er3+:YLiF4 nanocrystals,” Appl. Phys. Express 3(7), 072601 (2010).
[Crossref]

Tanabe, S.

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. 19(3), 343–349 (2002).
[Crossref]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphates glasses,” Phys. Rev. B 45(9), 4620–4625 (1992).
[Crossref]

Tikhomirova, S. A.

M. Beggiora, I. M. Reaney, A. B. Seddon, D. Furniss, and S. A. Tikhomirova, “Phase evolution in oxy-fluoride glass ceramics,” J. Non-Cryst. Solids 326-327, 476–483 (2003).
[Crossref]

Todoroki, S.

K. Hirao, S. Todoroki, and N. Soga, “CW room temperature upconversion lasing in Er3+-doped fluoride glass fiber,” J. Non-Cryst. Solids 143, 40–45 (1992).
[Crossref]

Ueda, A.

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids 352(8), 801–806 (2006).
[Crossref]

Venkateswarlu, P.

B. R. Reddy and P. Venkateswarlu, “Infrared to visible energy upconversion in Er3+-doped oxide glass,” Appl. Phys. Lett. 64(11), 1327–1329 (1994).
[Crossref]

Wang, J.

X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
[Crossref]

Wang, M. Q.

X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
[Crossref]

Weber, M. J.

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157(2), 262–272 (1967).
[Crossref]

Xu, S.

S. Yang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability and optical transition of Er3+ in sodium-lead-germanate glasses,” J. Mater. Sci. 39(11), 3641–3646 (2004).
[Crossref]

Yang, J.

S. Yang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability and optical transition of Er3+ in sodium-lead-germanate glasses,” J. Mater. Sci. 39(11), 3641–3646 (2004).
[Crossref]

Yang, S.

S. Yang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability and optical transition of Er3+ in sodium-lead-germanate glasses,” J. Mater. Sci. 39(11), 3641–3646 (2004).
[Crossref]

Yoshii, S.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphates glasses,” Phys. Rev. B 45(9), 4620–4625 (1992).
[Crossref]

Appl. Phys. Express (1)

T. Suzuki, S. Masaki, K. Mizuno, and Y. Ohishi, “Synthesis and luminescent properties of transparent oxyfluoride glass-ceramics containing Er3+:YLiF4 nanocrystals,” Appl. Phys. Express 3(7), 072601 (2010).
[Crossref]

Appl. Phys. Lett. (1)

B. R. Reddy and P. Venkateswarlu, “Infrared to visible energy upconversion in Er3+-doped oxide glass,” Appl. Phys. Lett. 64(11), 1327–1329 (1994).
[Crossref]

Infrared Phys. (1)

S. Nielsen, W. D. Lawson, and A. F. Fray, “Some infrared transmitting glasses containing germanium dioxide,” Infrared Phys. 1(1), 21–26 (1961).
[Crossref]

J. Appl. Phys. (2)

C. B. de Araújo, L. R. P. Kassab, R. A. Kobayashi, L. P. Naranjo, and P. A. Santa Cruz, “Luminescence enhancement of Pb2+ ions in TeO2-PbO-GeO2 glasses containing silver nanostructures,” J. Appl. Phys. 99(12), 123522 (2006).
[Crossref]

X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
[Crossref]

J. Electrochem. Soc. (1)

F. Auzel, D. Pecile, and D. Morin, “Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up-conversion,” J. Electrochem. Soc. 122(1), 101–107 (1975).
[Crossref]

J. Mater. Sci. (1)

S. Yang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability and optical transition of Er3+ in sodium-lead-germanate glasses,” J. Mater. Sci. 39(11), 3641–3646 (2004).
[Crossref]

J. Non-Cryst. Solids (4)

K. Hirao, S. Todoroki, and N. Soga, “CW room temperature upconversion lasing in Er3+-doped fluoride glass fiber,” J. Non-Cryst. Solids 143, 40–45 (1992).
[Crossref]

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids 352(8), 801–806 (2006).
[Crossref]

M. Beggiora, I. M. Reaney, A. B. Seddon, D. Furniss, and S. A. Tikhomirova, “Phase evolution in oxy-fluoride glass ceramics,” J. Non-Cryst. Solids 326-327, 476–483 (2003).
[Crossref]

M. J. Dejneka, “The luminescence and structure of novel transparent oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 239(1-3), 149–155 (1998).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

Opt. Mater. (1)

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater. 19(3), 343–349 (2002).
[Crossref]

Phys. Rev. (1)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157(2), 262–272 (1967).
[Crossref]

Phys. Rev. B (2)

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphates glasses,” Phys. Rev. B 45(9), 4620–4625 (1992).
[Crossref]

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Phys. Status Solidi C (1)

S. Bommareddi, M. Dokhanian, and B. R. Reddy, “Energy upconversion in erbium doped sodium lead germano tellurite glass,” Phys. Status Solidi C 6(S1), S67–S70 (2009).
[Crossref]

Other (2)

M. J. Digonnet, Rare-Earth Doped Fiber Lasers and Amplifiers (Dekker, 1993).

W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Argonne National Laboratory Rep. ANL-78–95 (Argonne National Laboratory, 1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

DSC curve for the Er3+ doped sodium-lead-germano-tellurite glass.

Fig. 2
Fig. 2

XRD patterns of (a) as-made glass and (b) heat-treated glass.

Fig. 3
Fig. 3

Absorption spectrum of Er3+ doped sodium-lead-germano-tellurite glass recorded (a) before and (b) after heat treatment. 4I15/2 is the ground state and the excited states are marked on the figure.

Fig. 4
Fig. 4

Partial energy level diagram of Er3+ in sodium-lead-germano-tellurite glass. Upward, downward and wavy arrows represent absorption, emission and non-radiative relaxation.

Fig. 5
Fig. 5

Temporal evolution of 547nm emission observed under 388 nm excitation (TCSPC).

Fig. 6
Fig. 6

Temporal evolution of 408nm emission observed under 375nm excitation (TCSPC).

Fig. 7
Fig. 7

Energy upconversion spectrum observed under 972 nm laser excitation in the wavelength region 300-900 nm for as-made glass and (b) heat- treated glass.

Fig. 8
Fig. 8

Upconversion spectrum of Er3+-doped glass observed with 0.25mm spectrometer slits. Sharp peaks are due to crystallites.

Fig. 9
Fig. 9

Decay curve of 4S3/24I15/2 emission observed under 972 nm laser excitation.

Fig. 10
Fig. 10

Energy upconversion spectrum observed under 972 nm laser excitation in the wavelength region 350-500 nm for (a) as-made glass and (b) heat- treated glass.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D hkl = Kλ βcosθ ,
I 4 11/2 + I 4 11/2 F 4 7/2 + I 4 15/2 .

Metrics