Abstract

We developed new photopolymers for use in the formation of three-dimensional (3-D) carbon microstructures via two-photon microfabrication and microtransfer molding. The photopolymers contain the epoxy resorcinol diglycidyl ether. They have a high carbon content and a high bond energy, ensuring structural fidelity of the microstructures after pyrolysis. A cationic photoinitiator is incorporated into one of the new photopolymers and an additional radical photoinitiator into another. These two photopolymers are found to be ideal for two-photon microfabrication and microtransfer molding, respectively, with complex 3-D carbon microstructures such as a bunny and pyramidal models being formed. Potential applications of the new photopolymers include 3-D carbon electrodes for fuel cells or batteries and interfaces for biosensors.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. Rep.37(4-6), 129–281 (2002).
    [CrossRef]
  2. C. Wang, R. Zaouk, B. Y. Park, and M. J. Madou, “Carbon as a MEMS material: micro and nanofabrication of pyrolysed photoresist carbon,” Int. J. Manuf. Technol. Manage.13, 360–375 (2008).
  3. M. Y. Liao and Y. Koide, “Carbon-based materials: growth, properties, MEMS/NEMS technologies, and MEM/NEM switches,” Crit. Rev. Solid State Mater. Sci.36(2), 66–101 (2011).
    [CrossRef]
  4. J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and W. I. Milne, “Diamond and diamond-like carbon MEMS,” J. Micromech. Microeng.17(7), S147–S163 (2007).
    [CrossRef]
  5. O. J. A. Schueller, S. T. Brittain, C. Marzolin, and G. M. Whitesides, “Fabrication and characterization of glassy carbon MEMS,” Chem. Mater.9(6), 1399–1406 (1997).
    [CrossRef]
  6. O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Fabrication of glassy carbon microstructures by soft lithography,” Sens. Actuators A Phys.72(2), 125–139 (1999).
    [CrossRef]
  7. C. L. Wang, G. Y. Jia, L. H. Taherabadi, and M. J. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst.14(2), 348–358 (2005).
    [CrossRef]
  8. M. Madou and S. Sharma, “Micro and nano patterning of carbon electrodes for bioMEMS,” Bioinspired Biomimetic Nanobiomaterials1(4), 252–265 (2012).
    [CrossRef]
  9. S. Ranganathan, R. McCreery, S. M. Majji, and M. Madou, “Photoresist-derived carbon for microelectromechanical systems and electrochemical applications,” J. Electrochem. Soc.147(1), 277–282 (2000).
    [CrossRef]
  10. V. Penmatsa, H. Kawarada, and C. Wang, “Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis,” J. Micromech. Microeng.22(4), 045024 (2012).
    [CrossRef]
  11. J. A. Lee, S. W. Lee, K.-C. Lee, S. I. Park, and S. S. Lee, “Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis,” J. Micromech. Microeng.18(3), 035012 (2008).
    [CrossRef]
  12. A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem.153(1), 125–134 (2011).
    [CrossRef]
  13. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  14. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  15. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
    [CrossRef]
  16. K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
    [CrossRef]
  17. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.7(1), 22–44 (2013).
    [CrossRef]
  18. C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
    [CrossRef]
  19. C. N. LaFratta, L. J. Li, and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8589–8594 (2006).
    [CrossRef] [PubMed]
  20. S. Maruo, T. Hasegawa, and N. Yoshimura, “Replication of three-dimensional rotary micromechanism by membrane-assisted transfer molding,” Jpn. J. Appl. Phys.48(6), 06FH05 (2009).
    [CrossRef]
  21. S.-H. Park, T.-W. Lim, D.-Y. Yang, J.-H. Jeong, K.-D. Kim, K.-S. Lee, and H.-J. Kong, “Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp,” Appl. Phys. Lett.88(20), 203105 (2006).
    [CrossRef]
  22. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express17(21), 18525–18532 (2009).
    [CrossRef] [PubMed]
  23. T. Torii, M. Inada, and S. Maruo, “Three-dimensional molding based on microstereolithography using beta-tricalcium phosphate slurry for the production of bioceramic scaffolds,” Jpn. J. Appl. Phys.50(6), 06GL15 (2011).
    [CrossRef]
  24. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
    [CrossRef]
  25. R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, and R. Kötz, “Surface studies of carbon films from pyrolyzed photoresist,” Thin Solid Films396(1-2), 36–43 (2001).
    [CrossRef]
  26. S. Tabata, Y. Isshiki, and M. Watanabe, “Inverse opal carbons derived from a polymer precursor as electrode materials for electric double-layer capacitors,” J. Electrochem. Soc.155(3), K42–K49 (2008).
    [CrossRef]
  27. B. Park, L. Taherabadi, C. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc.152(12), J136–J143 (2005).
    [CrossRef]

2013 (1)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.7(1), 22–44 (2013).
[CrossRef]

2012 (2)

V. Penmatsa, H. Kawarada, and C. Wang, “Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis,” J. Micromech. Microeng.22(4), 045024 (2012).
[CrossRef]

M. Madou and S. Sharma, “Micro and nano patterning of carbon electrodes for bioMEMS,” Bioinspired Biomimetic Nanobiomaterials1(4), 252–265 (2012).
[CrossRef]

2011 (3)

M. Y. Liao and Y. Koide, “Carbon-based materials: growth, properties, MEMS/NEMS technologies, and MEM/NEM switches,” Crit. Rev. Solid State Mater. Sci.36(2), 66–101 (2011).
[CrossRef]

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem.153(1), 125–134 (2011).
[CrossRef]

T. Torii, M. Inada, and S. Maruo, “Three-dimensional molding based on microstereolithography using beta-tricalcium phosphate slurry for the production of bioceramic scaffolds,” Jpn. J. Appl. Phys.50(6), 06GL15 (2011).
[CrossRef]

2009 (2)

S. Maruo, T. Hasegawa, and N. Yoshimura, “Replication of three-dimensional rotary micromechanism by membrane-assisted transfer molding,” Jpn. J. Appl. Phys.48(6), 06FH05 (2009).
[CrossRef]

S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express17(21), 18525–18532 (2009).
[CrossRef] [PubMed]

2008 (5)

S. Tabata, Y. Isshiki, and M. Watanabe, “Inverse opal carbons derived from a polymer precursor as electrode materials for electric double-layer capacitors,” J. Electrochem. Soc.155(3), K42–K49 (2008).
[CrossRef]

J. A. Lee, S. W. Lee, K.-C. Lee, S. I. Park, and S. S. Lee, “Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis,” J. Micromech. Microeng.18(3), 035012 (2008).
[CrossRef]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
[CrossRef]

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
[CrossRef]

C. Wang, R. Zaouk, B. Y. Park, and M. J. Madou, “Carbon as a MEMS material: micro and nanofabrication of pyrolysed photoresist carbon,” Int. J. Manuf. Technol. Manage.13, 360–375 (2008).

2007 (1)

J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and W. I. Milne, “Diamond and diamond-like carbon MEMS,” J. Micromech. Microeng.17(7), S147–S163 (2007).
[CrossRef]

2006 (2)

C. N. LaFratta, L. J. Li, and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8589–8594 (2006).
[CrossRef] [PubMed]

S.-H. Park, T.-W. Lim, D.-Y. Yang, J.-H. Jeong, K.-D. Kim, K.-S. Lee, and H.-J. Kong, “Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp,” Appl. Phys. Lett.88(20), 203105 (2006).
[CrossRef]

2005 (2)

B. Park, L. Taherabadi, C. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc.152(12), J136–J143 (2005).
[CrossRef]

C. L. Wang, G. Y. Jia, L. H. Taherabadi, and M. J. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst.14(2), 348–358 (2005).
[CrossRef]

2004 (1)

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

2002 (1)

J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. Rep.37(4-6), 129–281 (2002).
[CrossRef]

2001 (2)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, and R. Kötz, “Surface studies of carbon films from pyrolyzed photoresist,” Thin Solid Films396(1-2), 36–43 (2001).
[CrossRef]

2000 (2)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
[CrossRef]

S. Ranganathan, R. McCreery, S. M. Majji, and M. Madou, “Photoresist-derived carbon for microelectromechanical systems and electrochemical applications,” J. Electrochem. Soc.147(1), 277–282 (2000).
[CrossRef]

1999 (1)

O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Fabrication of glassy carbon microstructures by soft lithography,” Sens. Actuators A Phys.72(2), 125–139 (1999).
[CrossRef]

1997 (2)

O. J. A. Schueller, S. T. Brittain, C. Marzolin, and G. M. Whitesides, “Fabrication and characterization of glassy carbon MEMS,” Chem. Mater.9(6), 1399–1406 (1997).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
[CrossRef] [PubMed]

Alliata, D.

R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, and R. Kötz, “Surface studies of carbon films from pyrolyzed photoresist,” Thin Solid Films396(1-2), 36–43 (2001).
[CrossRef]

Baldacchini, T.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Brittain, S. T.

O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Fabrication of glassy carbon microstructures by soft lithography,” Sens. Actuators A Phys.72(2), 125–139 (1999).
[CrossRef]

O. J. A. Schueller, S. T. Brittain, C. Marzolin, and G. M. Whitesides, “Fabrication and characterization of glassy carbon MEMS,” Chem. Mater.9(6), 1399–1406 (1997).
[CrossRef]

Dwivedi, P. K.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem.153(1), 125–134 (2011).
[CrossRef]

Farrer, R. A.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Ferrari, A. C.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
[CrossRef]

Fischer, J.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.7(1), 22–44 (2013).
[CrossRef]

Fourkas, J. T.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
[CrossRef]

C. N. LaFratta, L. J. Li, and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8589–8594 (2006).
[CrossRef] [PubMed]

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Fu, Y. Q.

J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and W. I. Milne, “Diamond and diamond-like carbon MEMS,” J. Micromech. Microeng.17(7), S147–S163 (2007).
[CrossRef]

Hasegawa, T.

S. Maruo, T. Hasegawa, and N. Yoshimura, “Replication of three-dimensional rotary micromechanism by membrane-assisted transfer molding,” Jpn. J. Appl. Phys.48(6), 06FH05 (2009).
[CrossRef]

Inada, M.

T. Torii, M. Inada, and S. Maruo, “Three-dimensional molding based on microstereolithography using beta-tricalcium phosphate slurry for the production of bioceramic scaffolds,” Jpn. J. Appl. Phys.50(6), 06GL15 (2011).
[CrossRef]

Isshiki, Y.

S. Tabata, Y. Isshiki, and M. Watanabe, “Inverse opal carbons derived from a polymer precursor as electrode materials for electric double-layer capacitors,” J. Electrochem. Soc.155(3), K42–K49 (2008).
[CrossRef]

Jeong, J.-H.

S.-H. Park, T.-W. Lim, D.-Y. Yang, J.-H. Jeong, K.-D. Kim, K.-S. Lee, and H.-J. Kong, “Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp,” Appl. Phys. Lett.88(20), 203105 (2006).
[CrossRef]

Jia, G. Y.

C. L. Wang, G. Y. Jia, L. H. Taherabadi, and M. J. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst.14(2), 348–358 (2005).
[CrossRef]

Katepalli, H.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem.153(1), 125–134 (2011).
[CrossRef]

Kawarada, H.

V. Penmatsa, H. Kawarada, and C. Wang, “Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis,” J. Micromech. Microeng.22(4), 045024 (2012).
[CrossRef]

Kawata, S.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
[CrossRef] [PubMed]

Kim, K.-D.

S.-H. Park, T.-W. Lim, D.-Y. Yang, J.-H. Jeong, K.-D. Kim, K.-S. Lee, and H.-J. Kong, “Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp,” Appl. Phys. Lett.88(20), 203105 (2006).
[CrossRef]

Kim, R. H.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
[CrossRef]

Kinoshita, K.

R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, and R. Kötz, “Surface studies of carbon films from pyrolyzed photoresist,” Thin Solid Films396(1-2), 36–43 (2001).
[CrossRef]

Koide, Y.

M. Y. Liao and Y. Koide, “Carbon-based materials: growth, properties, MEMS/NEMS technologies, and MEM/NEM switches,” Crit. Rev. Solid State Mater. Sci.36(2), 66–101 (2011).
[CrossRef]

Kong, H.-J.

S.-H. Park, T.-W. Lim, D.-Y. Yang, J.-H. Jeong, K.-D. Kim, K.-S. Lee, and H.-J. Kong, “Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp,” Appl. Phys. Lett.88(20), 203105 (2006).
[CrossRef]

Kostecki, R.

R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, and R. Kötz, “Surface studies of carbon films from pyrolyzed photoresist,” Thin Solid Films396(1-2), 36–43 (2001).
[CrossRef]

Kötz, R.

R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, and R. Kötz, “Surface studies of carbon films from pyrolyzed photoresist,” Thin Solid Films396(1-2), 36–43 (2001).
[CrossRef]

LaFratta, C. N.

C. N. LaFratta, L. J. Li, and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8589–8594 (2006).
[CrossRef] [PubMed]

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Le, H. R.

J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and W. I. Milne, “Diamond and diamond-like carbon MEMS,” J. Micromech. Microeng.17(7), S147–S163 (2007).
[CrossRef]

Lee, J. A.

J. A. Lee, S. W. Lee, K.-C. Lee, S. I. Park, and S. S. Lee, “Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis,” J. Micromech. Microeng.18(3), 035012 (2008).
[CrossRef]

Lee, K.-C.

J. A. Lee, S. W. Lee, K.-C. Lee, S. I. Park, and S. S. Lee, “Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis,” J. Micromech. Microeng.18(3), 035012 (2008).
[CrossRef]

Lee, K.-S.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
[CrossRef]

S.-H. Park, T.-W. Lim, D.-Y. Yang, J.-H. Jeong, K.-D. Kim, K.-S. Lee, and H.-J. Kong, “Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp,” Appl. Phys. Lett.88(20), 203105 (2006).
[CrossRef]

Lee, S. S.

J. A. Lee, S. W. Lee, K.-C. Lee, S. I. Park, and S. S. Lee, “Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis,” J. Micromech. Microeng.18(3), 035012 (2008).
[CrossRef]

Lee, S. W.

J. A. Lee, S. W. Lee, K.-C. Lee, S. I. Park, and S. S. Lee, “Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis,” J. Micromech. Microeng.18(3), 035012 (2008).
[CrossRef]

Li, L. J.

C. N. LaFratta, L. J. Li, and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8589–8594 (2006).
[CrossRef] [PubMed]

Liao, M. Y.

M. Y. Liao and Y. Koide, “Carbon-based materials: growth, properties, MEMS/NEMS technologies, and MEM/NEM switches,” Crit. Rev. Solid State Mater. Sci.36(2), 66–101 (2011).
[CrossRef]

Lim, T.-W.

S.-H. Park, T.-W. Lim, D.-Y. Yang, J.-H. Jeong, K.-D. Kim, K.-S. Lee, and H.-J. Kong, “Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp,” Appl. Phys. Lett.88(20), 203105 (2006).
[CrossRef]

Luo, J. K.

J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and W. I. Milne, “Diamond and diamond-like carbon MEMS,” J. Micromech. Microeng.17(7), S147–S163 (2007).
[CrossRef]

Madou, M.

M. Madou and S. Sharma, “Micro and nano patterning of carbon electrodes for bioMEMS,” Bioinspired Biomimetic Nanobiomaterials1(4), 252–265 (2012).
[CrossRef]

B. Park, L. Taherabadi, C. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc.152(12), J136–J143 (2005).
[CrossRef]

S. Ranganathan, R. McCreery, S. M. Majji, and M. Madou, “Photoresist-derived carbon for microelectromechanical systems and electrochemical applications,” J. Electrochem. Soc.147(1), 277–282 (2000).
[CrossRef]

Madou, M. J.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem.153(1), 125–134 (2011).
[CrossRef]

C. Wang, R. Zaouk, B. Y. Park, and M. J. Madou, “Carbon as a MEMS material: micro and nanofabrication of pyrolysed photoresist carbon,” Int. J. Manuf. Technol. Manage.13, 360–375 (2008).

C. L. Wang, G. Y. Jia, L. H. Taherabadi, and M. J. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst.14(2), 348–358 (2005).
[CrossRef]

Majji, S. M.

S. Ranganathan, R. McCreery, S. M. Majji, and M. Madou, “Photoresist-derived carbon for microelectromechanical systems and electrochemical applications,” J. Electrochem. Soc.147(1), 277–282 (2000).
[CrossRef]

Martinez-Duarte, R.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem.153(1), 125–134 (2011).
[CrossRef]

Maruo, S.

T. Torii, M. Inada, and S. Maruo, “Three-dimensional molding based on microstereolithography using beta-tricalcium phosphate slurry for the production of bioceramic scaffolds,” Jpn. J. Appl. Phys.50(6), 06GL15 (2011).
[CrossRef]

S. Maruo, T. Hasegawa, and N. Yoshimura, “Replication of three-dimensional rotary micromechanism by membrane-assisted transfer molding,” Jpn. J. Appl. Phys.48(6), 06FH05 (2009).
[CrossRef]

S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express17(21), 18525–18532 (2009).
[CrossRef] [PubMed]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
[CrossRef] [PubMed]

Marzolin, C.

O. J. A. Schueller, S. T. Brittain, C. Marzolin, and G. M. Whitesides, “Fabrication and characterization of glassy carbon MEMS,” Chem. Mater.9(6), 1399–1406 (1997).
[CrossRef]

McCreery, R.

S. Ranganathan, R. McCreery, S. M. Majji, and M. Madou, “Photoresist-derived carbon for microelectromechanical systems and electrochemical applications,” J. Electrochem. Soc.147(1), 277–282 (2000).
[CrossRef]

Milne, W. I.

J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and W. I. Milne, “Diamond and diamond-like carbon MEMS,” J. Micromech. Microeng.17(7), S147–S163 (2007).
[CrossRef]

Nakamura, O.

Naughton, M. J.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Park, B.

B. Park, L. Taherabadi, C. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc.152(12), J136–J143 (2005).
[CrossRef]

Park, B. Y.

C. Wang, R. Zaouk, B. Y. Park, and M. J. Madou, “Carbon as a MEMS material: micro and nanofabrication of pyrolysed photoresist carbon,” Int. J. Manuf. Technol. Manage.13, 360–375 (2008).

Park, S. H.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
[CrossRef]

Park, S. I.

J. A. Lee, S. W. Lee, K.-C. Lee, S. I. Park, and S. S. Lee, “Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis,” J. Micromech. Microeng.18(3), 035012 (2008).
[CrossRef]

Park, S.-H.

S.-H. Park, T.-W. Lim, D.-Y. Yang, J.-H. Jeong, K.-D. Kim, K.-S. Lee, and H.-J. Kong, “Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp,” Appl. Phys. Lett.88(20), 203105 (2006).
[CrossRef]

Penmatsa, V.

V. Penmatsa, H. Kawarada, and C. Wang, “Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis,” J. Micromech. Microeng.22(4), 045024 (2012).
[CrossRef]

Rammohan, A.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem.153(1), 125–134 (2011).
[CrossRef]

Ranganathan, S.

S. Ranganathan, R. McCreery, S. M. Majji, and M. Madou, “Photoresist-derived carbon for microelectromechanical systems and electrochemical applications,” J. Electrochem. Soc.147(1), 277–282 (2000).
[CrossRef]

Robertson, J.

J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. Rep.37(4-6), 129–281 (2002).
[CrossRef]

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
[CrossRef]

Saito, Y.

Saleh, B. E. A.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Schnyder, B.

R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, and R. Kötz, “Surface studies of carbon films from pyrolyzed photoresist,” Thin Solid Films396(1-2), 36–43 (2001).
[CrossRef]

Schueller, O. J. A.

O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Fabrication of glassy carbon microstructures by soft lithography,” Sens. Actuators A Phys.72(2), 125–139 (1999).
[CrossRef]

O. J. A. Schueller, S. T. Brittain, C. Marzolin, and G. M. Whitesides, “Fabrication and characterization of glassy carbon MEMS,” Chem. Mater.9(6), 1399–1406 (1997).
[CrossRef]

Sharma, A.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem.153(1), 125–134 (2011).
[CrossRef]

Sharma, S.

M. Madou and S. Sharma, “Micro and nano patterning of carbon electrodes for bioMEMS,” Bioinspired Biomimetic Nanobiomaterials1(4), 252–265 (2012).
[CrossRef]

Song, X.

R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, and R. Kötz, “Surface studies of carbon films from pyrolyzed photoresist,” Thin Solid Films396(1-2), 36–43 (2001).
[CrossRef]

Spearing, S. M.

J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and W. I. Milne, “Diamond and diamond-like carbon MEMS,” J. Micromech. Microeng.17(7), S147–S163 (2007).
[CrossRef]

Sun, H.-B.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tabata, S.

S. Tabata, Y. Isshiki, and M. Watanabe, “Inverse opal carbons derived from a polymer precursor as electrode materials for electric double-layer capacitors,” J. Electrochem. Soc.155(3), K42–K49 (2008).
[CrossRef]

Taherabadi, L.

B. Park, L. Taherabadi, C. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc.152(12), J136–J143 (2005).
[CrossRef]

Taherabadi, L. H.

C. L. Wang, G. Y. Jia, L. H. Taherabadi, and M. J. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst.14(2), 348–358 (2005).
[CrossRef]

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takaura, A.

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Teich, M. C.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Torii, T.

T. Torii, M. Inada, and S. Maruo, “Three-dimensional molding based on microstereolithography using beta-tricalcium phosphate slurry for the production of bioceramic scaffolds,” Jpn. J. Appl. Phys.50(6), 06GL15 (2011).
[CrossRef]

Wang, C.

V. Penmatsa, H. Kawarada, and C. Wang, “Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis,” J. Micromech. Microeng.22(4), 045024 (2012).
[CrossRef]

C. Wang, R. Zaouk, B. Y. Park, and M. J. Madou, “Carbon as a MEMS material: micro and nanofabrication of pyrolysed photoresist carbon,” Int. J. Manuf. Technol. Manage.13, 360–375 (2008).

B. Park, L. Taherabadi, C. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc.152(12), J136–J143 (2005).
[CrossRef]

Wang, C. L.

C. L. Wang, G. Y. Jia, L. H. Taherabadi, and M. J. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst.14(2), 348–358 (2005).
[CrossRef]

Watanabe, M.

S. Tabata, Y. Isshiki, and M. Watanabe, “Inverse opal carbons derived from a polymer precursor as electrode materials for electric double-layer capacitors,” J. Electrochem. Soc.155(3), K42–K49 (2008).
[CrossRef]

Wegener, M.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.7(1), 22–44 (2013).
[CrossRef]

Whitesides, G. M.

O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Fabrication of glassy carbon microstructures by soft lithography,” Sens. Actuators A Phys.72(2), 125–139 (1999).
[CrossRef]

O. J. A. Schueller, S. T. Brittain, C. Marzolin, and G. M. Whitesides, “Fabrication and characterization of glassy carbon MEMS,” Chem. Mater.9(6), 1399–1406 (1997).
[CrossRef]

Williams, J. A.

J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and W. I. Milne, “Diamond and diamond-like carbon MEMS,” J. Micromech. Microeng.17(7), S147–S163 (2007).
[CrossRef]

Yang, D.-Y.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
[CrossRef]

S.-H. Park, T.-W. Lim, D.-Y. Yang, J.-H. Jeong, K.-D. Kim, K.-S. Lee, and H.-J. Kong, “Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp,” Appl. Phys. Lett.88(20), 203105 (2006).
[CrossRef]

Yoshimura, N.

S. Maruo, T. Hasegawa, and N. Yoshimura, “Replication of three-dimensional rotary micromechanism by membrane-assisted transfer molding,” Jpn. J. Appl. Phys.48(6), 06FH05 (2009).
[CrossRef]

Zaouk, R.

C. Wang, R. Zaouk, B. Y. Park, and M. J. Madou, “Carbon as a MEMS material: micro and nanofabrication of pyrolysed photoresist carbon,” Int. J. Manuf. Technol. Manage.13, 360–375 (2008).

Zoval, J.

B. Park, L. Taherabadi, C. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc.152(12), J136–J143 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

S.-H. Park, T.-W. Lim, D.-Y. Yang, J.-H. Jeong, K.-D. Kim, K.-S. Lee, and H.-J. Kong, “Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp,” Appl. Phys. Lett.88(20), 203105 (2006).
[CrossRef]

Bioinspired Biomimetic Nanobiomaterials (1)

M. Madou and S. Sharma, “Micro and nano patterning of carbon electrodes for bioMEMS,” Bioinspired Biomimetic Nanobiomaterials1(4), 252–265 (2012).
[CrossRef]

Chem. Mater. (1)

O. J. A. Schueller, S. T. Brittain, C. Marzolin, and G. M. Whitesides, “Fabrication and characterization of glassy carbon MEMS,” Chem. Mater.9(6), 1399–1406 (1997).
[CrossRef]

Crit. Rev. Solid State Mater. Sci. (1)

M. Y. Liao and Y. Koide, “Carbon-based materials: growth, properties, MEMS/NEMS technologies, and MEM/NEM switches,” Crit. Rev. Solid State Mater. Sci.36(2), 66–101 (2011).
[CrossRef]

Int. J. Manuf. Technol. Manage. (1)

C. Wang, R. Zaouk, B. Y. Park, and M. J. Madou, “Carbon as a MEMS material: micro and nanofabrication of pyrolysed photoresist carbon,” Int. J. Manuf. Technol. Manage.13, 360–375 (2008).

J. Electrochem. Soc. (3)

S. Ranganathan, R. McCreery, S. M. Majji, and M. Madou, “Photoresist-derived carbon for microelectromechanical systems and electrochemical applications,” J. Electrochem. Soc.147(1), 277–282 (2000).
[CrossRef]

S. Tabata, Y. Isshiki, and M. Watanabe, “Inverse opal carbons derived from a polymer precursor as electrode materials for electric double-layer capacitors,” J. Electrochem. Soc.155(3), K42–K49 (2008).
[CrossRef]

B. Park, L. Taherabadi, C. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc.152(12), J136–J143 (2005).
[CrossRef]

J. Microelectromech. Syst. (1)

C. L. Wang, G. Y. Jia, L. H. Taherabadi, and M. J. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst.14(2), 348–358 (2005).
[CrossRef]

J. Micromech. Microeng. (3)

V. Penmatsa, H. Kawarada, and C. Wang, “Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis,” J. Micromech. Microeng.22(4), 045024 (2012).
[CrossRef]

J. A. Lee, S. W. Lee, K.-C. Lee, S. I. Park, and S. S. Lee, “Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis,” J. Micromech. Microeng.18(3), 035012 (2008).
[CrossRef]

J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and W. I. Milne, “Diamond and diamond-like carbon MEMS,” J. Micromech. Microeng.17(7), S147–S163 (2007).
[CrossRef]

J. Phys. Chem. B (1)

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (2)

S. Maruo, T. Hasegawa, and N. Yoshimura, “Replication of three-dimensional rotary micromechanism by membrane-assisted transfer molding,” Jpn. J. Appl. Phys.48(6), 06FH05 (2009).
[CrossRef]

T. Torii, M. Inada, and S. Maruo, “Three-dimensional molding based on microstereolithography using beta-tricalcium phosphate slurry for the production of bioceramic scaffolds,” Jpn. J. Appl. Phys.50(6), 06GL15 (2011).
[CrossRef]

Laser Photonics Rev. (2)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.7(1), 22–44 (2013).
[CrossRef]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
[CrossRef]

Mater. Sci. Eng. Rep. (1)

J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. Rep.37(4-6), 129–281 (2002).
[CrossRef]

Nature (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. N. LaFratta, L. J. Li, and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8589–8594 (2006).
[CrossRef] [PubMed]

Prog. Polym. Sci. (1)

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008).
[CrossRef]

Sens. Actuators A Phys. (1)

O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Fabrication of glassy carbon microstructures by soft lithography,” Sens. Actuators A Phys.72(2), 125–139 (1999).
[CrossRef]

Sens. Actuators B Chem. (1)

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem.153(1), 125–134 (2011).
[CrossRef]

Thin Solid Films (1)

R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, and R. Kötz, “Surface studies of carbon films from pyrolyzed photoresist,” Thin Solid Films396(1-2), 36–43 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Photographs of SCR-701 photopolymer pellets (a) before and (b) after carbonization via pyrolysis.

Fig. 2
Fig. 2

Chemical structures of the epoxy compounds (a) resorcinol diglycidyl ether and (b) 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (c) hydrogenated bisphenol-A diglycidyl ether.

Fig. 3
Fig. 3

Photographs of carbonized pellets formed from (a) TSR-DA1, (b) TSR-DA2, (c) TSR-DA3 and (d) SU-8.

Fig. 4
Fig. 4

(a) Raman spectrum and (b) X-ray spectrum of carbon derived from TSR-DA1.

Fig. 5
Fig. 5

Thermogravimetric analysis of TSR-DA1 heated under a nitrogen atmosphere.

Fig. 6
Fig. 6

SEM images of the TSR-DA3 3-D microstructures formed via two-photon microfabrication. (a) Polymeric and (b) carbonized circular table model. (c) Polymeric and (d) carbonized bunny model.

Fig. 7
Fig. 7

Fabrication of 3-D carbon microstructures by a 3-D microtransfer molding process using 3-D polymeric master models produced by two-photon microfabrication.

Fig. 8
Fig. 8

SEM images of TSR-DA1 microstructures formed using 3-D microtransfer molding. (a) Polymeric and (b) carbonized pyramid models. (c) Polymeric and (b) carbonized bunny model.

Tables (3)

Tables Icon

Table 1 Composition of the New Photopolymers Developed for Carbon MEMS

Tables Icon

Table 2 Shrinkage Ratio and Mass Loss of the Carbon Structures Formed from TSR-DA1, TSR-DA2, TSR-DA3 and SU-8

Tables Icon

Table 3 Suitability of the Photopolymers for Two-Photon Microfabrication

Metrics