Abstract

An Eu3+-doped transparent oxyfluoride glass ceramic containing Ca5(PO4)3F nanocrystals was prepared by melt quenching and subsequent thermal treatment. The transmittance of the glass ceramic with a thickness of 1.92 mm is up to 80.5% in the visible range at room temperature. Site-selective excitation and emission spectra indicate that Eu3+ ions in the Ca5(PO4)3F nanocrystals occupy two types of sites, A and B, with a same point symmetry Cs. As for Eu3+ ions at site A, the crystal field is more deformed and stronger. The crystal field may appear in the form of a ligand ion F- being replaced by O2- in accordance with the charge compensation scheme: Ca2+ + F-→Eu3+ + O2-. As for Eu3+ ions at site B, the possible charge compensation scheme is 3Ca2+→2Eu3+ + Vacancy. Furthermore, an energy transfer process from Eu3+ ions at site A to that at site B in the glass ceramic at low temperature was also discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+-doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett.64(1), 10–12 (1994).
    [CrossRef]
  2. S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
    [CrossRef]
  3. R. Hopkins, D. Damon, P. Piotrowski, M. Walker, and J. Uphoff, “Thermal properties of synthetic fluorapatite crystals,” J. Appl. Phys.42(1), 272–275 (1971).
    [CrossRef]
  4. M. Abril, J. Méndez-Ramos, U. Rodriguez-Mendoza, A. Delgado-Torres, and P. Nunez, “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys.95(10), 5271–5279 (2004).
    [CrossRef]
  5. D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102, 504–506 (2007).
  6. R. Quimby, P. Tick, N. Borrelli, and L. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys.83(3), 1649–1651 (1998).
    [CrossRef]
  7. J. Méndez-Ramos, M. Abril, I. Martin, U. Rodriguez-Mendoza, V. Lavin, V. Rodriguez, P. Nunez, and A. Lozano-Gorrín, “Ultraviolet and visible upconversion luminescence in Nd-doped oxyfluoride glasses and glass ceramics obtained by different preparation methods,” J. Appl. Phys.99(11), 113510 (2006).
    [CrossRef]
  8. S. N. Zhang, J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Preparation and spectral properties of Nd3+-doped transparent glass ceramic containing Ca5(PO4)3F nanocrystals,” J. Non-Cryst. Solids358(20), 2835–2840 (2012).
    [CrossRef]
  9. U. Kang, T. Chuvaeva, A. Onushchenko, A. Shashkin, A. Zhilin, H. J. Kim, and Y. G. Chang, “Radiative properties of Nd-doped transparent glass-ceramics in the lithium aluminosilicate system,” J. Non-Cryst. Solids278(1-3), 75–84 (2000).
    [CrossRef]
  10. J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Allik, J. A. Hutchinson, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys.79(3), 1746–1758 (1996).
    [CrossRef]
  11. J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A202(13), 2565–2573 (2005).
    [CrossRef]
  12. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
    [CrossRef] [PubMed]
  13. S. Biju, D. B. A. Raj, M. L. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem.45(26), 10651–10660 (2006).
    [CrossRef] [PubMed]
  14. A. Huignard, V. Buissette, A. C. Franville, T. Gacoin, and J. P. Boilot, “Emission processes in YVO4:Eu nanoparticles,” J. Phys. Chem. B107(28), 6754–6759 (2003).
    [CrossRef]
  15. Y. K. Voronko, G. V. Maksimova, and A. A. Sobol, “Anisotropic luminescence centers of TR+3 ions on fluoroapatite crystals,” Opt. Spectrosc.70, 203–206 (1991).
  16. M. Karbowiaka and S. Huberta, “Site-selective emission spectra of Eu:Ca5(PO4)3F crystals,” J. Alloy. Comp.30, 287–293 (2000).
  17. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
    [CrossRef]
  18. G. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–521 (1962).
    [CrossRef]
  19. R. Jagannathan and M. Kottaisamy, “Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br- or OH-),” J. Phys. Condens. Matter7(44), 8453–8466 (1995).
    [CrossRef]
  20. W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals,” Phys. Rev.145(1), 325–337 (1966).
    [CrossRef]
  21. X. Y. Chen and G. K. Liu, “The standard and anomalous crystal-field spectra of Eu3+,” J. Solid State Chem.178(2), 419–428 (2005).
    [CrossRef]
  22. B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
    [CrossRef]

2012 (1)

S. N. Zhang, J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Preparation and spectral properties of Nd3+-doped transparent glass ceramic containing Ca5(PO4)3F nanocrystals,” J. Non-Cryst. Solids358(20), 2835–2840 (2012).
[CrossRef]

2007 (1)

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102, 504–506 (2007).

2006 (2)

J. Méndez-Ramos, M. Abril, I. Martin, U. Rodriguez-Mendoza, V. Lavin, V. Rodriguez, P. Nunez, and A. Lozano-Gorrín, “Ultraviolet and visible upconversion luminescence in Nd-doped oxyfluoride glasses and glass ceramics obtained by different preparation methods,” J. Appl. Phys.99(11), 113510 (2006).
[CrossRef]

S. Biju, D. B. A. Raj, M. L. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem.45(26), 10651–10660 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A202(13), 2565–2573 (2005).
[CrossRef]

X. Y. Chen and G. K. Liu, “The standard and anomalous crystal-field spectra of Eu3+,” J. Solid State Chem.178(2), 419–428 (2005).
[CrossRef]

2004 (2)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

M. Abril, J. Méndez-Ramos, U. Rodriguez-Mendoza, A. Delgado-Torres, and P. Nunez, “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys.95(10), 5271–5279 (2004).
[CrossRef]

2003 (1)

A. Huignard, V. Buissette, A. C. Franville, T. Gacoin, and J. P. Boilot, “Emission processes in YVO4:Eu nanoparticles,” J. Phys. Chem. B107(28), 6754–6759 (2003).
[CrossRef]

2000 (2)

M. Karbowiaka and S. Huberta, “Site-selective emission spectra of Eu:Ca5(PO4)3F crystals,” J. Alloy. Comp.30, 287–293 (2000).

U. Kang, T. Chuvaeva, A. Onushchenko, A. Shashkin, A. Zhilin, H. J. Kim, and Y. G. Chang, “Radiative properties of Nd-doped transparent glass-ceramics in the lithium aluminosilicate system,” J. Non-Cryst. Solids278(1-3), 75–84 (2000).
[CrossRef]

1998 (1)

R. Quimby, P. Tick, N. Borrelli, and L. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys.83(3), 1649–1651 (1998).
[CrossRef]

1996 (1)

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Allik, J. A. Hutchinson, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys.79(3), 1746–1758 (1996).
[CrossRef]

1995 (1)

R. Jagannathan and M. Kottaisamy, “Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br- or OH-),” J. Phys. Condens. Matter7(44), 8453–8466 (1995).
[CrossRef]

1994 (2)

X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+-doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett.64(1), 10–12 (1994).
[CrossRef]

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

1991 (1)

Y. K. Voronko, G. V. Maksimova, and A. A. Sobol, “Anisotropic luminescence centers of TR+3 ions on fluoroapatite crystals,” Opt. Spectrosc.70, 203–206 (1991).

1987 (1)

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

1971 (1)

R. Hopkins, D. Damon, P. Piotrowski, M. Walker, and J. Uphoff, “Thermal properties of synthetic fluorapatite crystals,” J. Appl. Phys.42(1), 272–275 (1971).
[CrossRef]

1966 (1)

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals,” Phys. Rev.145(1), 325–337 (1966).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

G. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–521 (1962).
[CrossRef]

Abril, M.

J. Méndez-Ramos, M. Abril, I. Martin, U. Rodriguez-Mendoza, V. Lavin, V. Rodriguez, P. Nunez, and A. Lozano-Gorrín, “Ultraviolet and visible upconversion luminescence in Nd-doped oxyfluoride glasses and glass ceramics obtained by different preparation methods,” J. Appl. Phys.99(11), 113510 (2006).
[CrossRef]

M. Abril, J. Méndez-Ramos, U. Rodriguez-Mendoza, A. Delgado-Torres, and P. Nunez, “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys.95(10), 5271–5279 (2004).
[CrossRef]

Allik, T. H.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Allik, J. A. Hutchinson, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys.79(3), 1746–1758 (1996).
[CrossRef]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

Bass, M.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A202(13), 2565–2573 (2005).
[CrossRef]

X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+-doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett.64(1), 10–12 (1994).
[CrossRef]

Biju, S.

S. Biju, D. B. A. Raj, M. L. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem.45(26), 10651–10660 (2006).
[CrossRef] [PubMed]

Boilot, J. P.

A. Huignard, V. Buissette, A. C. Franville, T. Gacoin, and J. P. Boilot, “Emission processes in YVO4:Eu nanoparticles,” J. Phys. Chem. B107(28), 6754–6759 (2003).
[CrossRef]

Borrelli, N.

R. Quimby, P. Tick, N. Borrelli, and L. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys.83(3), 1649–1651 (1998).
[CrossRef]

Buissette, V.

A. Huignard, V. Buissette, A. C. Franville, T. Gacoin, and J. P. Boilot, “Emission processes in YVO4:Eu nanoparticles,” J. Phys. Chem. B107(28), 6754–6759 (2003).
[CrossRef]

Chai, B. H. T.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Allik, J. A. Hutchinson, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys.79(3), 1746–1758 (1996).
[CrossRef]

X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+-doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett.64(1), 10–12 (1994).
[CrossRef]

Chang, Y. G.

U. Kang, T. Chuvaeva, A. Onushchenko, A. Shashkin, A. Zhilin, H. J. Kim, and Y. G. Chang, “Radiative properties of Nd-doped transparent glass-ceramics in the lithium aluminosilicate system,” J. Non-Cryst. Solids278(1-3), 75–84 (2000).
[CrossRef]

Chen, D.

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102, 504–506 (2007).

Chen, X. Y.

X. Y. Chen and G. K. Liu, “The standard and anomalous crystal-field spectra of Eu3+,” J. Solid State Chem.178(2), 419–428 (2005).
[CrossRef]

Chen, Y. J.

S. N. Zhang, J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Preparation and spectral properties of Nd3+-doped transparent glass ceramic containing Ca5(PO4)3F nanocrystals,” J. Non-Cryst. Solids358(20), 2835–2840 (2012).
[CrossRef]

Chuvaeva, T.

U. Kang, T. Chuvaeva, A. Onushchenko, A. Shashkin, A. Zhilin, H. J. Kim, and Y. G. Chang, “Radiative properties of Nd-doped transparent glass-ceramics in the lithium aluminosilicate system,” J. Non-Cryst. Solids278(1-3), 75–84 (2000).
[CrossRef]

Cornelius, L.

R. Quimby, P. Tick, N. Borrelli, and L. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys.83(3), 1649–1651 (1998).
[CrossRef]

Damon, D.

R. Hopkins, D. Damon, P. Piotrowski, M. Walker, and J. Uphoff, “Thermal properties of synthetic fluorapatite crystals,” J. Appl. Phys.42(1), 272–275 (1971).
[CrossRef]

Delgado-Torres, A.

M. Abril, J. Méndez-Ramos, U. Rodriguez-Mendoza, A. Delgado-Torres, and P. Nunez, “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys.95(10), 5271–5279 (2004).
[CrossRef]

DeLoach, L. D.

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

Dexpert-Ghys, J.

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

Dong, J.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A202(13), 2565–2573 (2005).
[CrossRef]

Fahmi, D.

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

Franville, A. C.

A. Huignard, V. Buissette, A. C. Franville, T. Gacoin, and J. P. Boilot, “Emission processes in YVO4:Eu nanoparticles,” J. Phys. Chem. B107(28), 6754–6759 (2003).
[CrossRef]

Gacoin, T.

A. Huignard, V. Buissette, A. C. Franville, T. Gacoin, and J. P. Boilot, “Emission processes in YVO4:Eu nanoparticles,” J. Phys. Chem. B107(28), 6754–6759 (2003).
[CrossRef]

Gong, X. H.

S. N. Zhang, J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Preparation and spectral properties of Nd3+-doped transparent glass ceramic containing Ca5(PO4)3F nanocrystals,” J. Non-Cryst. Solids358(20), 2835–2840 (2012).
[CrossRef]

Gruber, J. B.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Allik, J. A. Hutchinson, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys.79(3), 1746–1758 (1996).
[CrossRef]

Hopkins, R.

R. Hopkins, D. Damon, P. Piotrowski, M. Walker, and J. Uphoff, “Thermal properties of synthetic fluorapatite crystals,” J. Appl. Phys.42(1), 272–275 (1971).
[CrossRef]

Huang, J. H.

S. N. Zhang, J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Preparation and spectral properties of Nd3+-doped transparent glass ceramic containing Ca5(PO4)3F nanocrystals,” J. Non-Cryst. Solids358(20), 2835–2840 (2012).
[CrossRef]

Huang, Y. D.

S. N. Zhang, J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Preparation and spectral properties of Nd3+-doped transparent glass ceramic containing Ca5(PO4)3F nanocrystals,” J. Non-Cryst. Solids358(20), 2835–2840 (2012).
[CrossRef]

Huberta, S.

M. Karbowiaka and S. Huberta, “Site-selective emission spectra of Eu:Ca5(PO4)3F crystals,” J. Alloy. Comp.30, 287–293 (2000).

Huignard, A.

A. Huignard, V. Buissette, A. C. Franville, T. Gacoin, and J. P. Boilot, “Emission processes in YVO4:Eu nanoparticles,” J. Phys. Chem. B107(28), 6754–6759 (2003).
[CrossRef]

Hutchinson, J. A.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Allik, J. A. Hutchinson, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys.79(3), 1746–1758 (1996).
[CrossRef]

Jagannathan, R.

R. Jagannathan and M. Kottaisamy, “Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br- or OH-),” J. Phys. Condens. Matter7(44), 8453–8466 (1995).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Kang, U.

U. Kang, T. Chuvaeva, A. Onushchenko, A. Shashkin, A. Zhilin, H. J. Kim, and Y. G. Chang, “Radiative properties of Nd-doped transparent glass-ceramics in the lithium aluminosilicate system,” J. Non-Cryst. Solids278(1-3), 75–84 (2000).
[CrossRef]

Karbowiaka, M.

M. Karbowiaka and S. Huberta, “Site-selective emission spectra of Eu:Ca5(PO4)3F crystals,” J. Alloy. Comp.30, 287–293 (2000).

Kariuki, B. M.

S. Biju, D. B. A. Raj, M. L. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem.45(26), 10651–10660 (2006).
[CrossRef] [PubMed]

Kim, H. J.

U. Kang, T. Chuvaeva, A. Onushchenko, A. Shashkin, A. Zhilin, H. J. Kim, and Y. G. Chang, “Radiative properties of Nd-doped transparent glass-ceramics in the lithium aluminosilicate system,” J. Non-Cryst. Solids278(1-3), 75–84 (2000).
[CrossRef]

Kottaisamy, M.

R. Jagannathan and M. Kottaisamy, “Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br- or OH-),” J. Phys. Condens. Matter7(44), 8453–8466 (1995).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals,” Phys. Rev.145(1), 325–337 (1966).
[CrossRef]

Kway, W. L.

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

Lacout, J. L.

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

Lavin, V.

J. Méndez-Ramos, M. Abril, I. Martin, U. Rodriguez-Mendoza, V. Lavin, V. Rodriguez, P. Nunez, and A. Lozano-Gorrín, “Ultraviolet and visible upconversion luminescence in Nd-doped oxyfluoride glasses and glass ceramics obtained by different preparation methods,” J. Appl. Phys.99(11), 113510 (2006).
[CrossRef]

Li, R.

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102, 504–506 (2007).

Lin, Y. F.

S. N. Zhang, J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Preparation and spectral properties of Nd3+-doped transparent glass ceramic containing Ca5(PO4)3F nanocrystals,” J. Non-Cryst. Solids358(20), 2835–2840 (2012).
[CrossRef]

Liu, F.

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102, 504–506 (2007).

Liu, G. K.

X. Y. Chen and G. K. Liu, “The standard and anomalous crystal-field spectra of Eu3+,” J. Solid State Chem.178(2), 419–428 (2005).
[CrossRef]

Loutts, G. B.

X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+-doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett.64(1), 10–12 (1994).
[CrossRef]

Lozano-Gorrín, A.

J. Méndez-Ramos, M. Abril, I. Martin, U. Rodriguez-Mendoza, V. Lavin, V. Rodriguez, P. Nunez, and A. Lozano-Gorrín, “Ultraviolet and visible upconversion luminescence in Nd-doped oxyfluoride glasses and glass ceramics obtained by different preparation methods,” J. Appl. Phys.99(11), 113510 (2006).
[CrossRef]

Luo, Z. D.

S. N. Zhang, J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Preparation and spectral properties of Nd3+-doped transparent glass ceramic containing Ca5(PO4)3F nanocrystals,” J. Non-Cryst. Solids358(20), 2835–2840 (2012).
[CrossRef]

Ma, E.

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102, 504–506 (2007).

Maksimova, G. V.

Y. K. Voronko, G. V. Maksimova, and A. A. Sobol, “Anisotropic luminescence centers of TR+3 ions on fluoroapatite crystals,” Opt. Spectrosc.70, 203–206 (1991).

Martin, I.

J. Méndez-Ramos, M. Abril, I. Martin, U. Rodriguez-Mendoza, V. Lavin, V. Rodriguez, P. Nunez, and A. Lozano-Gorrín, “Ultraviolet and visible upconversion luminescence in Nd-doped oxyfluoride glasses and glass ceramics obtained by different preparation methods,” J. Appl. Phys.99(11), 113510 (2006).
[CrossRef]

Méndez-Ramos, J.

J. Méndez-Ramos, M. Abril, I. Martin, U. Rodriguez-Mendoza, V. Lavin, V. Rodriguez, P. Nunez, and A. Lozano-Gorrín, “Ultraviolet and visible upconversion luminescence in Nd-doped oxyfluoride glasses and glass ceramics obtained by different preparation methods,” J. Appl. Phys.99(11), 113510 (2006).
[CrossRef]

M. Abril, J. Méndez-Ramos, U. Rodriguez-Mendoza, A. Delgado-Torres, and P. Nunez, “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys.95(10), 5271–5279 (2004).
[CrossRef]

Morrison, C. A.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Allik, J. A. Hutchinson, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys.79(3), 1746–1758 (1996).
[CrossRef]

Nadler, M. P.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Allik, J. A. Hutchinson, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys.79(3), 1746–1758 (1996).
[CrossRef]

Nunez, P.

J. Méndez-Ramos, M. Abril, I. Martin, U. Rodriguez-Mendoza, V. Lavin, V. Rodriguez, P. Nunez, and A. Lozano-Gorrín, “Ultraviolet and visible upconversion luminescence in Nd-doped oxyfluoride glasses and glass ceramics obtained by different preparation methods,” J. Appl. Phys.99(11), 113510 (2006).
[CrossRef]

M. Abril, J. Méndez-Ramos, U. Rodriguez-Mendoza, A. Delgado-Torres, and P. Nunez, “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys.95(10), 5271–5279 (2004).
[CrossRef]

Ofelt, G.

G. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–521 (1962).
[CrossRef]

Onushchenko, A.

U. Kang, T. Chuvaeva, A. Onushchenko, A. Shashkin, A. Zhilin, H. J. Kim, and Y. G. Chang, “Radiative properties of Nd-doped transparent glass-ceramics in the lithium aluminosilicate system,” J. Non-Cryst. Solids278(1-3), 75–84 (2000).
[CrossRef]

Payne, S. A.

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

Piotrowski, P.

R. Hopkins, D. Damon, P. Piotrowski, M. Walker, and J. Uphoff, “Thermal properties of synthetic fluorapatite crystals,” J. Appl. Phys.42(1), 272–275 (1971).
[CrossRef]

Piriou, B.

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

Quimby, R.

R. Quimby, P. Tick, N. Borrelli, and L. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys.83(3), 1649–1651 (1998).
[CrossRef]

Raj, D. B. A.

S. Biju, D. B. A. Raj, M. L. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem.45(26), 10651–10660 (2006).
[CrossRef] [PubMed]

Rapaport, A.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A202(13), 2565–2573 (2005).
[CrossRef]

Reddy, M. L.

S. Biju, D. B. A. Raj, M. L. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem.45(26), 10651–10660 (2006).
[CrossRef] [PubMed]

Rodriguez, V.

J. Méndez-Ramos, M. Abril, I. Martin, U. Rodriguez-Mendoza, V. Lavin, V. Rodriguez, P. Nunez, and A. Lozano-Gorrín, “Ultraviolet and visible upconversion luminescence in Nd-doped oxyfluoride glasses and glass ceramics obtained by different preparation methods,” J. Appl. Phys.99(11), 113510 (2006).
[CrossRef]

Rodriguez-Mendoza, U.

J. Méndez-Ramos, M. Abril, I. Martin, U. Rodriguez-Mendoza, V. Lavin, V. Rodriguez, P. Nunez, and A. Lozano-Gorrín, “Ultraviolet and visible upconversion luminescence in Nd-doped oxyfluoride glasses and glass ceramics obtained by different preparation methods,” J. Appl. Phys.99(11), 113510 (2006).
[CrossRef]

M. Abril, J. Méndez-Ramos, U. Rodriguez-Mendoza, A. Delgado-Torres, and P. Nunez, “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys.95(10), 5271–5279 (2004).
[CrossRef]

Seltzer, M. D.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Allik, J. A. Hutchinson, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys.79(3), 1746–1758 (1996).
[CrossRef]

Shashkin, A.

U. Kang, T. Chuvaeva, A. Onushchenko, A. Shashkin, A. Zhilin, H. J. Kim, and Y. G. Chang, “Radiative properties of Nd-doped transparent glass-ceramics in the lithium aluminosilicate system,” J. Non-Cryst. Solids278(1-3), 75–84 (2000).
[CrossRef]

Smith, L. K.

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

Sobol, A. A.

Y. K. Voronko, G. V. Maksimova, and A. A. Sobol, “Anisotropic luminescence centers of TR+3 ions on fluoroapatite crystals,” Opt. Spectrosc.70, 203–206 (1991).

Szipocs, F.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A202(13), 2565–2573 (2005).
[CrossRef]

Taitai, A.

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

Tassano, J. B.

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

Tick, P.

R. Quimby, P. Tick, N. Borrelli, and L. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys.83(3), 1649–1651 (1998).
[CrossRef]

Ueda, K.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A202(13), 2565–2573 (2005).
[CrossRef]

Uphoff, J.

R. Hopkins, D. Damon, P. Piotrowski, M. Walker, and J. Uphoff, “Thermal properties of synthetic fluorapatite crystals,” J. Appl. Phys.42(1), 272–275 (1971).
[CrossRef]

Voronko, Y. K.

Y. K. Voronko, G. V. Maksimova, and A. A. Sobol, “Anisotropic luminescence centers of TR+3 ions on fluoroapatite crystals,” Opt. Spectrosc.70, 203–206 (1991).

Walker, M.

R. Hopkins, D. Damon, P. Piotrowski, M. Walker, and J. Uphoff, “Thermal properties of synthetic fluorapatite crystals,” J. Appl. Phys.42(1), 272–275 (1971).
[CrossRef]

Wang, Y.

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102, 504–506 (2007).

Wright, A. O.

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Allik, J. A. Hutchinson, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys.79(3), 1746–1758 (1996).
[CrossRef]

Yu, Y.

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102, 504–506 (2007).

Zhang, S. N.

S. N. Zhang, J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Preparation and spectral properties of Nd3+-doped transparent glass ceramic containing Ca5(PO4)3F nanocrystals,” J. Non-Cryst. Solids358(20), 2835–2840 (2012).
[CrossRef]

Zhang, X. X.

X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+-doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett.64(1), 10–12 (1994).
[CrossRef]

Zhilin, A.

U. Kang, T. Chuvaeva, A. Onushchenko, A. Shashkin, A. Zhilin, H. J. Kim, and Y. G. Chang, “Radiative properties of Nd-doped transparent glass-ceramics in the lithium aluminosilicate system,” J. Non-Cryst. Solids278(1-3), 75–84 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

X. X. Zhang, G. B. Loutts, M. Bass, and B. H. T. Chai, “Growth of laser-quality single crystals of Nd3+-doped calcium fluorapatite and their efficient lasing performance,” Appl. Phys. Lett.64(1), 10–12 (1994).
[CrossRef]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994).
[CrossRef]

Inorg. Chem. (1)

S. Biju, D. B. A. Raj, M. L. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem.45(26), 10651–10660 (2006).
[CrossRef] [PubMed]

J. Alloy. Comp. (1)

M. Karbowiaka and S. Huberta, “Site-selective emission spectra of Eu:Ca5(PO4)3F crystals,” J. Alloy. Comp.30, 287–293 (2000).

J. Appl. Phys. (6)

J. B. Gruber, C. A. Morrison, M. D. Seltzer, A. O. Wright, M. P. Nadler, T. H. Allik, J. A. Hutchinson, and B. H. T. Chai, “Site-selective excitation and polarized absorption spectra of Nd3+ in Sr5(PO4)3F and Ca5(PO4)3F,” J. Appl. Phys.79(3), 1746–1758 (1996).
[CrossRef]

R. Hopkins, D. Damon, P. Piotrowski, M. Walker, and J. Uphoff, “Thermal properties of synthetic fluorapatite crystals,” J. Appl. Phys.42(1), 272–275 (1971).
[CrossRef]

M. Abril, J. Méndez-Ramos, U. Rodriguez-Mendoza, A. Delgado-Torres, and P. Nunez, “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys.95(10), 5271–5279 (2004).
[CrossRef]

D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys.102, 504–506 (2007).

R. Quimby, P. Tick, N. Borrelli, and L. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys.83(3), 1649–1651 (1998).
[CrossRef]

J. Méndez-Ramos, M. Abril, I. Martin, U. Rodriguez-Mendoza, V. Lavin, V. Rodriguez, P. Nunez, and A. Lozano-Gorrín, “Ultraviolet and visible upconversion luminescence in Nd-doped oxyfluoride glasses and glass ceramics obtained by different preparation methods,” J. Appl. Phys.99(11), 113510 (2006).
[CrossRef]

J. Chem. Phys. (1)

G. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–521 (1962).
[CrossRef]

J. Lumin. (1)

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

J. Non-Cryst. Solids (2)

S. N. Zhang, J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Preparation and spectral properties of Nd3+-doped transparent glass ceramic containing Ca5(PO4)3F nanocrystals,” J. Non-Cryst. Solids358(20), 2835–2840 (2012).
[CrossRef]

U. Kang, T. Chuvaeva, A. Onushchenko, A. Shashkin, A. Zhilin, H. J. Kim, and Y. G. Chang, “Radiative properties of Nd-doped transparent glass-ceramics in the lithium aluminosilicate system,” J. Non-Cryst. Solids278(1-3), 75–84 (2000).
[CrossRef]

J. Phys. Chem. B (1)

A. Huignard, V. Buissette, A. C. Franville, T. Gacoin, and J. P. Boilot, “Emission processes in YVO4:Eu nanoparticles,” J. Phys. Chem. B107(28), 6754–6759 (2003).
[CrossRef]

J. Phys. Condens. Matter (1)

R. Jagannathan and M. Kottaisamy, “Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br- or OH-),” J. Phys. Condens. Matter7(44), 8453–8466 (1995).
[CrossRef]

J. Solid State Chem. (1)

X. Y. Chen and G. K. Liu, “The standard and anomalous crystal-field spectra of Eu3+,” J. Solid State Chem.178(2), 419–428 (2005).
[CrossRef]

Opt. Spectrosc. (1)

Y. K. Voronko, G. V. Maksimova, and A. A. Sobol, “Anisotropic luminescence centers of TR+3 ions on fluoroapatite crystals,” Opt. Spectrosc.70, 203–206 (1991).

Phys. Rev. (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals,” Phys. Rev.145(1), 325–337 (1966).
[CrossRef]

Phys. Status Solidi A (1)

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A202(13), 2565–2573 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XRD pattern of Eu3+:GC, the bars represent the diffraction pattern of the standard hexagonal phase FAP.

Fig. 2
Fig. 2

TEM micrograph of Eu3+:GC.

Fig. 3
Fig. 3

Room temperature optical transmission spectra for Eu3+:PG and Eu3+:GC; the insets are the photographs of Eu3+:PG and Eu3+:GC samples for spectral experiments.

Fig. 4
Fig. 4

Excitation spectra of Eu3+:GC for emission at 571.8 and 576.4 nm at 10 K.

Fig. 5
Fig. 5

Emission spectra of Eu3+:GC under excitation at 458.2 and 461.8 nm at 10 K.

Fig. 6
Fig. 6

Schematic diagram of the energy transfer process from Eu3+ at site A to Eu3+ at site B of Eu3+:GC at 10 K.

Tables (2)

Tables Icon

Table 1 Positions of Excitation and Emission Peaks for Eu3+ Ions in FAP Nanocrystals of GC at 10 K

Tables Icon

Table 2 Relative Energies of the Crystal Field Sublevels for the 5D0 and 7F0,1,2 Multiplets of Eu3+ Ions of the Eu3+:FAP Single Crystal, Eu3+:FAP Powder Prepared by Solid State Reaction, and Eu3+:GC (in unit of cm−1)

Metrics