Abstract

A set of sodium silicate glass matrices were synthesized to study the influence of Na2O concentration on the optical properties of Eu3+. The samples were characterized by optical absorption (OA), time and energy resolved photoluminescence and Fourier Transform Infrared (FTIR). We observed that decreasing sodium oxide concentration affects the absorption of OH radicals in the host matrix. Adjusting the obtained FTIR spectra by Gaussian functions, we observed the existence of two possible non-radiative transfer channels with the transition from the 5D0 to the 7F2 state of the Eu3+ ions. The first was produced by resonance with the 5th harmonic vibration of OH bonded radicals and the second by resonance with the 14th harmonic vibration of the silicon network. A decrease in OH radicals observed by FTIR was followed by an increase in the lifetime of the 5D0 state of the Eu3+ ions. However, resonance with higher harmonic orders did not affect the optical properties of the Eu3+ ions. Increases in the lifetime of this transition (~3.3 ms) were obtained from the synthesized sample with the lowest sodium oxide concentration. This lifetime is comparable with the well-known YAG system. Molecular dynamic results show that decreasing sodium oxide content in the host matrix produces structural changes such as decreases in non-bridge oxygen species, which may explain the decreases in OH radical absorption seen in the experimental results.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Krishnapuram, S. K. Jakka, C. Thummala, and R. M. Lalapeta, “Photoluminescence characteristics of Eu2O3 doped calcium fluoroborate glasses,” J. Mol. Struct.1028, 170–175 (2012).
    [CrossRef]
  2. B. Han, H. Liang, H. Ni, Q. Su, G. Yang, J. Shi, and G. Zhang, “Intense red light emission of Eu3+-doped LiGd(PO3)4 for mercury-free lamps and plasma display panels application,” Opt. Express17(9), 7138–7144 (2009).
    [CrossRef] [PubMed]
  3. H. Guo, H. Zhang, R. Wei, M. Zheng, and L. Zhang, “Preparation, structural and luminescent properties of Ba2Gd2Si4O13:Eu3+ for white LEDs,” Opt. Express19(S2Suppl 2), A201–A206 (2011).
    [CrossRef] [PubMed]
  4. R. Peacock, “The intensities of lanthanide f ↔ f transitions,” in Rare Earths (Springer Berlin Heidelberg, 1975), pp. 83–122.
  5. E. W. J. L. Oomen and A. M. A. van Dongen, “Europium (III) in oxide glasses: dependence of the emission spectrum upon glass composition,” J. Non-Cryst. Solids111(2-3), 205–213 (1989).
    [CrossRef]
  6. M. Kumar, T. K. Seshagiri, and S. V. Godbole, “Fluorescence lifetime and Judd–Ofelt parameters of Eu3+ doped SrBPO5,” Physica B410, 141–146 (2013).
    [CrossRef]
  7. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater.5(3), 159–167 (1996).
    [CrossRef]
  8. N. Vijaya and C. K. Jayasankar, “Structural and spectroscopic properties of Eu3+-doped zinc fluorophosphate glasses,” J. Mol. Struct.1036, 42–50 (2013).
    [CrossRef]
  9. Z. Hao, J. Zhang, X. Zhang, and X. Wang, “CaSc2O4:Eu3+: a tunable full-color emitting phosphor for white light emitting diodes,” Opt. Mater.33(3), 355–358 (2011).
    [CrossRef]
  10. H. Desirena, E. De la Rosa, L. A. Díaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater.28(5), 560–568 (2006).
    [CrossRef]
  11. K. K. Pukhov, T. T. Basiev, Y. V. Orlovskii, and M. Glasbeek, “Multiphonon relaxation of the electronic excitation energy of rare-earth ions in laser crystals,” J. Lumin.76–77, 586–590 (1998).
    [CrossRef]
  12. Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun, and H. Song, “Highly modified spontaneous emissions in YVO4:Er3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett.100(8), 081104 (2012).
    [CrossRef]
  13. M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995).
    [CrossRef]
  14. M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Mater. Sci. Eng. B175(2), 108–119 (2010).
    [CrossRef]
  15. G. Cormier, J. A. Capobianco, and A. Monteil, “Molecular dynamics simulation of the trivalent europium ion doped in silica and sodium disilicate glasses,” J. Non-Cryst. Solids152(2-3), 225–236 (1993).
    [CrossRef]
  16. N. D. Afify and G. Mountjoy, “Molecular-dynamics modeling of Eu3+-ion clustering in SiO2 glass,” Phys. Rev. B79(2), 024202 (2009).
    [CrossRef]
  17. J. Du and A. N. Cormack, “The structure of erbium doped sodium silicate glasses,” J. Non-Cryst. Solids351(27-29), 2263–2276 (2005).
    [CrossRef]
  18. L. Kokou and J. Du, “Rare earth ion clustering behavior in europium doped silicate glasses: Simulation size and glass structure effect,” J. Non-Cryst. Solids358(24), 3408–3417 (2012).
    [CrossRef]
  19. I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, “DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism,” J. Mater. Chem.16(20), 1911–1918 (2006).
    [CrossRef]
  20. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys.81(8), 3684–3690 (1984).
    [CrossRef]
  21. J. Du and L. Kokou, “Europium environment and clustering in europium doped silica and sodium silicate glasses,” J. Non-Cryst. Solids357(11-13), 2235–2240 (2011).
    [CrossRef]
  22. L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “PACKMOL: a package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem.30(13), 2157–2164 (2009).
    [CrossRef] [PubMed]
  23. Y. Bai, Y. Wang, K. Yang, X. Zhang, G. Peng, Y. Song, Z. Pan, and C. H. Wang, “The effect of Li on the spectrum of Er3+ in Li- and Er-codoped ZnO nanocrystals,” J. Phys. Chem. C112(32), 12259–12263 (2008).
    [CrossRef]
  24. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3,” in Argonne National Laboratory Report(1977).
  25. K. K. Haldar and A. Patra, “Fluorescence enhancement and quenching of Eu3+ ions by Au–ZnO core-shell and Au nanoparticles,” Appl. Phys. Lett.95(6), 063103 (2009).
    [CrossRef]
  26. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
    [CrossRef]
  27. J. Nawrocki, “The silanol group and its role in liquid chromatography,” J. Chromatogr. A779(1-2), 29–71 (1997).
    [CrossRef]
  28. S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008).
    [CrossRef]
  29. S. W. Park, H. Kyoung Yang, J. Won Chung, Y. Chen, B. Kee Moon, B. Chun Choi, J. H. Jeong, and J. Hwan Kim, “Photoluminescent properties of LaVO4:Eu3+ by structural transformation,” Physica B405(18), 4040–4044 (2010).
    [CrossRef]
  30. H. C. Jung, J. Y. Park, G. Seeta Rama Raju, J. H. Jeong, B. K. Moon, J. H. Kim, and H. Y. Choi, “Crystalline structure dependence of luminescent properties of Eu3+-activated Y2O3–Al2O3 system phosphors,” Curr. Appl. Phys.9(3), S217–S221 (2009).
    [CrossRef]
  31. A. M. B. Silva, C. M. Queiroz, S. Agathopoulos, R. N. Correia, M. H. V. Fernandes, and J. M. Oliveira, “Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS NMR,” J. Mol. Struct.986(1-3), 16–21 (2011).
    [CrossRef]
  32. B. O. Mysen and J. D. Frantz, “Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units,” Contrib. Mineral. Petrol.117(1), 1–14 (1994).
    [CrossRef]
  33. A. G. Kalampounias, “IR and Raman spectroscopic studies of sol–gel derived alkaline-earth,” Bull. Mater. Sci.34(2), 299–303 (2011).
    [CrossRef]
  34. E. Potapova, M. Grahn, A. Holmgren, and J. Hedlund, “The effect of calcium ions and sodium silicate on the adsorption of a model anionic flotation collector on magnetite studied by ATR-FTIR spectroscopy,” J. Colloid Interface Sci.345(1), 96–102 (2010).
    [CrossRef] [PubMed]
  35. J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, “Investigation on nonradiative decay of 4I13/2→4I15/2 transition of Er3+-doped oxide glasses,” J. Lumin.106(1), 9–14 (2004).
    [CrossRef]
  36. J. Bajer and A. Miranowicz, “Quantum versus classical descriptions of sub-Poissonian light generation in three-wave mixing,” J. Opt. B Quantum Semiclassical Opt.3(4), 251–259 (2001).
    [CrossRef]
  37. G. Liu and B. Jacquier, “Spectroscopic properties of rare earths in optical materials,” in Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2005), p. 550.
  38. T. Qin, G. Mountjoy, N. Afify, M. Reid, Y. Yeung, A. Speghini, and M. Bettinelli, “Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass,” Phys. Rev. B84(10), 104206 (2011).
    [CrossRef]
  39. J. Jin, T. Yoko, F. Miyaji, S. Sakka, T. Fukunaga, and M. Misawa, “Neutron diffraction study on the structure of Na-Si-O-N oxynitride glasses,” J. Am. Ceram. Soc.76(3), 630–634 (1993).
    [CrossRef]
  40. J. A. Johnson, C. J. Benmore, D. Holland, J. Du, B. Beuneu, and A. Mekki, “Influence of rare-earth ions on SiO2-Na2O-RE2O3 glass structure,” J. Phys. Condens. Matter23(6), 065404 (2011).
    [CrossRef] [PubMed]
  41. J. Zarzycki, W. D. Scott, and C. Massart, Glasses and the Vitreous State (Cambridge University Press, 1991).
  42. R. Prasada Rao, T. D. Tho, and S. Adams, “Ion transport pathways in molecular dynamics simulated alkali silicate glassy electrolytes,” Solid State Ion.192(1), 25–29 (2011).
    [CrossRef]

2013 (2)

N. Vijaya and C. K. Jayasankar, “Structural and spectroscopic properties of Eu3+-doped zinc fluorophosphate glasses,” J. Mol. Struct.1036, 42–50 (2013).
[CrossRef]

M. Kumar, T. K. Seshagiri, and S. V. Godbole, “Fluorescence lifetime and Judd–Ofelt parameters of Eu3+ doped SrBPO5,” Physica B410, 141–146 (2013).
[CrossRef]

2012 (3)

Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun, and H. Song, “Highly modified spontaneous emissions in YVO4:Er3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett.100(8), 081104 (2012).
[CrossRef]

L. Kokou and J. Du, “Rare earth ion clustering behavior in europium doped silicate glasses: Simulation size and glass structure effect,” J. Non-Cryst. Solids358(24), 3408–3417 (2012).
[CrossRef]

P. Krishnapuram, S. K. Jakka, C. Thummala, and R. M. Lalapeta, “Photoluminescence characteristics of Eu2O3 doped calcium fluoroborate glasses,” J. Mol. Struct.1028, 170–175 (2012).
[CrossRef]

2011 (8)

H. Guo, H. Zhang, R. Wei, M. Zheng, and L. Zhang, “Preparation, structural and luminescent properties of Ba2Gd2Si4O13:Eu3+ for white LEDs,” Opt. Express19(S2Suppl 2), A201–A206 (2011).
[CrossRef] [PubMed]

J. Du and L. Kokou, “Europium environment and clustering in europium doped silica and sodium silicate glasses,” J. Non-Cryst. Solids357(11-13), 2235–2240 (2011).
[CrossRef]

Z. Hao, J. Zhang, X. Zhang, and X. Wang, “CaSc2O4:Eu3+: a tunable full-color emitting phosphor for white light emitting diodes,” Opt. Mater.33(3), 355–358 (2011).
[CrossRef]

A. M. B. Silva, C. M. Queiroz, S. Agathopoulos, R. N. Correia, M. H. V. Fernandes, and J. M. Oliveira, “Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS NMR,” J. Mol. Struct.986(1-3), 16–21 (2011).
[CrossRef]

A. G. Kalampounias, “IR and Raman spectroscopic studies of sol–gel derived alkaline-earth,” Bull. Mater. Sci.34(2), 299–303 (2011).
[CrossRef]

T. Qin, G. Mountjoy, N. Afify, M. Reid, Y. Yeung, A. Speghini, and M. Bettinelli, “Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass,” Phys. Rev. B84(10), 104206 (2011).
[CrossRef]

J. A. Johnson, C. J. Benmore, D. Holland, J. Du, B. Beuneu, and A. Mekki, “Influence of rare-earth ions on SiO2-Na2O-RE2O3 glass structure,” J. Phys. Condens. Matter23(6), 065404 (2011).
[CrossRef] [PubMed]

R. Prasada Rao, T. D. Tho, and S. Adams, “Ion transport pathways in molecular dynamics simulated alkali silicate glassy electrolytes,” Solid State Ion.192(1), 25–29 (2011).
[CrossRef]

2010 (3)

E. Potapova, M. Grahn, A. Holmgren, and J. Hedlund, “The effect of calcium ions and sodium silicate on the adsorption of a model anionic flotation collector on magnetite studied by ATR-FTIR spectroscopy,” J. Colloid Interface Sci.345(1), 96–102 (2010).
[CrossRef] [PubMed]

S. W. Park, H. Kyoung Yang, J. Won Chung, Y. Chen, B. Kee Moon, B. Chun Choi, J. H. Jeong, and J. Hwan Kim, “Photoluminescent properties of LaVO4:Eu3+ by structural transformation,” Physica B405(18), 4040–4044 (2010).
[CrossRef]

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Mater. Sci. Eng. B175(2), 108–119 (2010).
[CrossRef]

2009 (5)

N. D. Afify and G. Mountjoy, “Molecular-dynamics modeling of Eu3+-ion clustering in SiO2 glass,” Phys. Rev. B79(2), 024202 (2009).
[CrossRef]

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “PACKMOL: a package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem.30(13), 2157–2164 (2009).
[CrossRef] [PubMed]

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, J. H. Jeong, B. K. Moon, J. H. Kim, and H. Y. Choi, “Crystalline structure dependence of luminescent properties of Eu3+-activated Y2O3–Al2O3 system phosphors,” Curr. Appl. Phys.9(3), S217–S221 (2009).
[CrossRef]

K. K. Haldar and A. Patra, “Fluorescence enhancement and quenching of Eu3+ ions by Au–ZnO core-shell and Au nanoparticles,” Appl. Phys. Lett.95(6), 063103 (2009).
[CrossRef]

B. Han, H. Liang, H. Ni, Q. Su, G. Yang, J. Shi, and G. Zhang, “Intense red light emission of Eu3+-doped LiGd(PO3)4 for mercury-free lamps and plasma display panels application,” Opt. Express17(9), 7138–7144 (2009).
[CrossRef] [PubMed]

2008 (2)

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008).
[CrossRef]

Y. Bai, Y. Wang, K. Yang, X. Zhang, G. Peng, Y. Song, Z. Pan, and C. H. Wang, “The effect of Li on the spectrum of Er3+ in Li- and Er-codoped ZnO nanocrystals,” J. Phys. Chem. C112(32), 12259–12263 (2008).
[CrossRef]

2006 (2)

I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, “DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism,” J. Mater. Chem.16(20), 1911–1918 (2006).
[CrossRef]

H. Desirena, E. De la Rosa, L. A. Díaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater.28(5), 560–568 (2006).
[CrossRef]

2005 (1)

J. Du and A. N. Cormack, “The structure of erbium doped sodium silicate glasses,” J. Non-Cryst. Solids351(27-29), 2263–2276 (2005).
[CrossRef]

2004 (1)

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, “Investigation on nonradiative decay of 4I13/2→4I15/2 transition of Er3+-doped oxide glasses,” J. Lumin.106(1), 9–14 (2004).
[CrossRef]

2001 (1)

J. Bajer and A. Miranowicz, “Quantum versus classical descriptions of sub-Poissonian light generation in three-wave mixing,” J. Opt. B Quantum Semiclassical Opt.3(4), 251–259 (2001).
[CrossRef]

1998 (1)

K. K. Pukhov, T. T. Basiev, Y. V. Orlovskii, and M. Glasbeek, “Multiphonon relaxation of the electronic excitation energy of rare-earth ions in laser crystals,” J. Lumin.76–77, 586–590 (1998).
[CrossRef]

1997 (1)

J. Nawrocki, “The silanol group and its role in liquid chromatography,” J. Chromatogr. A779(1-2), 29–71 (1997).
[CrossRef]

1996 (2)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater.5(3), 159–167 (1996).
[CrossRef]

1995 (1)

M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995).
[CrossRef]

1994 (1)

B. O. Mysen and J. D. Frantz, “Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units,” Contrib. Mineral. Petrol.117(1), 1–14 (1994).
[CrossRef]

1993 (2)

J. Jin, T. Yoko, F. Miyaji, S. Sakka, T. Fukunaga, and M. Misawa, “Neutron diffraction study on the structure of Na-Si-O-N oxynitride glasses,” J. Am. Ceram. Soc.76(3), 630–634 (1993).
[CrossRef]

G. Cormier, J. A. Capobianco, and A. Monteil, “Molecular dynamics simulation of the trivalent europium ion doped in silica and sodium disilicate glasses,” J. Non-Cryst. Solids152(2-3), 225–236 (1993).
[CrossRef]

1989 (1)

E. W. J. L. Oomen and A. M. A. van Dongen, “Europium (III) in oxide glasses: dependence of the emission spectrum upon glass composition,” J. Non-Cryst. Solids111(2-3), 205–213 (1989).
[CrossRef]

1984 (1)

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys.81(8), 3684–3690 (1984).
[CrossRef]

Adams, S.

R. Prasada Rao, T. D. Tho, and S. Adams, “Ion transport pathways in molecular dynamics simulated alkali silicate glassy electrolytes,” Solid State Ion.192(1), 25–29 (2011).
[CrossRef]

Afify, N.

T. Qin, G. Mountjoy, N. Afify, M. Reid, Y. Yeung, A. Speghini, and M. Bettinelli, “Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass,” Phys. Rev. B84(10), 104206 (2011).
[CrossRef]

Afify, N. D.

N. D. Afify and G. Mountjoy, “Molecular-dynamics modeling of Eu3+-ion clustering in SiO2 glass,” Phys. Rev. B79(2), 024202 (2009).
[CrossRef]

Agathopoulos, S.

A. M. B. Silva, C. M. Queiroz, S. Agathopoulos, R. N. Correia, M. H. V. Fernandes, and J. M. Oliveira, “Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS NMR,” J. Mol. Struct.986(1-3), 16–21 (2011).
[CrossRef]

Andrade, R.

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “PACKMOL: a package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem.30(13), 2157–2164 (2009).
[CrossRef] [PubMed]

Bai, Y.

Y. Bai, Y. Wang, K. Yang, X. Zhang, G. Peng, Y. Song, Z. Pan, and C. H. Wang, “The effect of Li on the spectrum of Er3+ in Li- and Er-codoped ZnO nanocrystals,” J. Phys. Chem. C112(32), 12259–12263 (2008).
[CrossRef]

Bajer, J.

J. Bajer and A. Miranowicz, “Quantum versus classical descriptions of sub-Poissonian light generation in three-wave mixing,” J. Opt. B Quantum Semiclassical Opt.3(4), 251–259 (2001).
[CrossRef]

Basiev, T. T.

K. K. Pukhov, T. T. Basiev, Y. V. Orlovskii, and M. Glasbeek, “Multiphonon relaxation of the electronic excitation energy of rare-earth ions in laser crystals,” J. Lumin.76–77, 586–590 (1998).
[CrossRef]

Beclin, F.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008).
[CrossRef]

Benmore, C. J.

J. A. Johnson, C. J. Benmore, D. Holland, J. Du, B. Beuneu, and A. Mekki, “Influence of rare-earth ions on SiO2-Na2O-RE2O3 glass structure,” J. Phys. Condens. Matter23(6), 065404 (2011).
[CrossRef] [PubMed]

Berendsen, H. J. C.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys.81(8), 3684–3690 (1984).
[CrossRef]

Bettinelli, M.

T. Qin, G. Mountjoy, N. Afify, M. Reid, Y. Yeung, A. Speghini, and M. Bettinelli, “Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass,” Phys. Rev. B84(10), 104206 (2011).
[CrossRef]

Beuneu, B.

J. A. Johnson, C. J. Benmore, D. Holland, J. Du, B. Beuneu, and A. Mekki, “Influence of rare-earth ions on SiO2-Na2O-RE2O3 glass structure,” J. Phys. Condens. Matter23(6), 065404 (2011).
[CrossRef] [PubMed]

Bhadra, S. K.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Mater. Sci. Eng. B175(2), 108–119 (2010).
[CrossRef]

Bhaktha, S. N. B.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008).
[CrossRef]

Birgin, E. G.

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “PACKMOL: a package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem.30(13), 2157–2164 (2009).
[CrossRef] [PubMed]

Bouazaoui, M.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008).
[CrossRef]

Boyland, A. J.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Mater. Sci. Eng. B175(2), 108–119 (2010).
[CrossRef]

Bysakh, S.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Mater. Sci. Eng. B175(2), 108–119 (2010).
[CrossRef]

Capobianco, J. A.

G. Cormier, J. A. Capobianco, and A. Monteil, “Molecular dynamics simulation of the trivalent europium ion doped in silica and sodium disilicate glasses,” J. Non-Cryst. Solids152(2-3), 225–236 (1993).
[CrossRef]

Capoen, B.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008).
[CrossRef]

Chen, Y.

S. W. Park, H. Kyoung Yang, J. Won Chung, Y. Chen, B. Kee Moon, B. Chun Choi, J. H. Jeong, and J. Hwan Kim, “Photoluminescent properties of LaVO4:Eu3+ by structural transformation,” Physica B405(18), 4040–4044 (2010).
[CrossRef]

Chiasera, A.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008).
[CrossRef]

Choi, H. Y.

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, J. H. Jeong, B. K. Moon, J. H. Kim, and H. Y. Choi, “Crystalline structure dependence of luminescent properties of Eu3+-activated Y2O3–Al2O3 system phosphors,” Curr. Appl. Phys.9(3), S217–S221 (2009).
[CrossRef]

Chun Choi, B.

S. W. Park, H. Kyoung Yang, J. Won Chung, Y. Chen, B. Kee Moon, B. Chun Choi, J. H. Jeong, and J. Hwan Kim, “Photoluminescent properties of LaVO4:Eu3+ by structural transformation,” Physica B405(18), 4040–4044 (2010).
[CrossRef]

Cormack, A. N.

J. Du and A. N. Cormack, “The structure of erbium doped sodium silicate glasses,” J. Non-Cryst. Solids351(27-29), 2263–2276 (2005).
[CrossRef]

Cormier, G.

G. Cormier, J. A. Capobianco, and A. Monteil, “Molecular dynamics simulation of the trivalent europium ion doped in silica and sodium disilicate glasses,” J. Non-Cryst. Solids152(2-3), 225–236 (1993).
[CrossRef]

Correia, R. N.

A. M. B. Silva, C. M. Queiroz, S. Agathopoulos, R. N. Correia, M. H. V. Fernandes, and J. M. Oliveira, “Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS NMR,” J. Mol. Struct.986(1-3), 16–21 (2011).
[CrossRef]

Dai, N.

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, “Investigation on nonradiative decay of 4I13/2→4I15/2 transition of Er3+-doped oxide glasses,” J. Lumin.106(1), 9–14 (2004).
[CrossRef]

Dai, S.

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, “Investigation on nonradiative decay of 4I13/2→4I15/2 transition of Er3+-doped oxide glasses,” J. Lumin.106(1), 9–14 (2004).
[CrossRef]

Das, S.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Mater. Sci. Eng. B175(2), 108–119 (2010).
[CrossRef]

De la Rosa, E.

H. Desirena, E. De la Rosa, L. A. Díaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater.28(5), 560–568 (2006).
[CrossRef]

Dejneka, M.

M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995).
[CrossRef]

Desirena, H.

H. Desirena, E. De la Rosa, L. A. Díaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater.28(5), 560–568 (2006).
[CrossRef]

Díaz-Torres, L. A.

H. Desirena, E. De la Rosa, L. A. Díaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater.28(5), 560–568 (2006).
[CrossRef]

DiNola, A.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys.81(8), 3684–3690 (1984).
[CrossRef]

Dove, M. T.

I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, “DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism,” J. Mater. Chem.16(20), 1911–1918 (2006).
[CrossRef]

Du, J.

L. Kokou and J. Du, “Rare earth ion clustering behavior in europium doped silicate glasses: Simulation size and glass structure effect,” J. Non-Cryst. Solids358(24), 3408–3417 (2012).
[CrossRef]

J. Du and L. Kokou, “Europium environment and clustering in europium doped silica and sodium silicate glasses,” J. Non-Cryst. Solids357(11-13), 2235–2240 (2011).
[CrossRef]

J. A. Johnson, C. J. Benmore, D. Holland, J. Du, B. Beuneu, and A. Mekki, “Influence of rare-earth ions on SiO2-Na2O-RE2O3 glass structure,” J. Phys. Condens. Matter23(6), 065404 (2011).
[CrossRef] [PubMed]

J. Du and A. N. Cormack, “The structure of erbium doped sodium silicate glasses,” J. Non-Cryst. Solids351(27-29), 2263–2276 (2005).
[CrossRef]

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Fernandes, M. H. V.

A. M. B. Silva, C. M. Queiroz, S. Agathopoulos, R. N. Correia, M. H. V. Fernandes, and J. M. Oliveira, “Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS NMR,” J. Mol. Struct.986(1-3), 16–21 (2011).
[CrossRef]

Ferrari, M.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008).
[CrossRef]

Frantz, J. D.

B. O. Mysen and J. D. Frantz, “Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units,” Contrib. Mineral. Petrol.117(1), 1–14 (1994).
[CrossRef]

Fukunaga, T.

J. Jin, T. Yoko, F. Miyaji, S. Sakka, T. Fukunaga, and M. Misawa, “Neutron diffraction study on the structure of Na-Si-O-N oxynitride glasses,” J. Am. Ceram. Soc.76(3), 630–634 (1993).
[CrossRef]

Glasbeek, M.

K. K. Pukhov, T. T. Basiev, Y. V. Orlovskii, and M. Glasbeek, “Multiphonon relaxation of the electronic excitation energy of rare-earth ions in laser crystals,” J. Lumin.76–77, 586–590 (1998).
[CrossRef]

Godbole, S. V.

M. Kumar, T. K. Seshagiri, and S. V. Godbole, “Fluorescence lifetime and Judd–Ofelt parameters of Eu3+ doped SrBPO5,” Physica B410, 141–146 (2013).
[CrossRef]

Grahn, M.

E. Potapova, M. Grahn, A. Holmgren, and J. Hedlund, “The effect of calcium ions and sodium silicate on the adsorption of a model anionic flotation collector on magnetite studied by ATR-FTIR spectroscopy,” J. Colloid Interface Sci.345(1), 96–102 (2010).
[CrossRef] [PubMed]

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Guo, H.

Haak, J. R.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys.81(8), 3684–3690 (1984).
[CrossRef]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Haldar, K. K.

K. K. Haldar and A. Patra, “Fluorescence enhancement and quenching of Eu3+ ions by Au–ZnO core-shell and Au nanoparticles,” Appl. Phys. Lett.95(6), 063103 (2009).
[CrossRef]

Han, B.

Hao, Z.

Z. Hao, J. Zhang, X. Zhang, and X. Wang, “CaSc2O4:Eu3+: a tunable full-color emitting phosphor for white light emitting diodes,” Opt. Mater.33(3), 355–358 (2011).
[CrossRef]

Hedlund, J.

E. Potapova, M. Grahn, A. Holmgren, and J. Hedlund, “The effect of calcium ions and sodium silicate on the adsorption of a model anionic flotation collector on magnetite studied by ATR-FTIR spectroscopy,” J. Colloid Interface Sci.345(1), 96–102 (2010).
[CrossRef] [PubMed]

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Holland, D.

J. A. Johnson, C. J. Benmore, D. Holland, J. Du, B. Beuneu, and A. Mekki, “Influence of rare-earth ions on SiO2-Na2O-RE2O3 glass structure,” J. Phys. Condens. Matter23(6), 065404 (2011).
[CrossRef] [PubMed]

Holmgren, A.

E. Potapova, M. Grahn, A. Holmgren, and J. Hedlund, “The effect of calcium ions and sodium silicate on the adsorption of a model anionic flotation collector on magnetite studied by ATR-FTIR spectroscopy,” J. Colloid Interface Sci.345(1), 96–102 (2010).
[CrossRef] [PubMed]

Hu, L.

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, “Investigation on nonradiative decay of 4I13/2→4I15/2 transition of Er3+-doped oxide glasses,” J. Lumin.106(1), 9–14 (2004).
[CrossRef]

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Hwan Kim, J.

S. W. Park, H. Kyoung Yang, J. Won Chung, Y. Chen, B. Kee Moon, B. Chun Choi, J. H. Jeong, and J. Hwan Kim, “Photoluminescent properties of LaVO4:Eu3+ by structural transformation,” Physica B405(18), 4040–4044 (2010).
[CrossRef]

Jakka, S. K.

P. Krishnapuram, S. K. Jakka, C. Thummala, and R. M. Lalapeta, “Photoluminescence characteristics of Eu2O3 doped calcium fluoroborate glasses,” J. Mol. Struct.1028, 170–175 (2012).
[CrossRef]

Jayasankar, C. K.

N. Vijaya and C. K. Jayasankar, “Structural and spectroscopic properties of Eu3+-doped zinc fluorophosphate glasses,” J. Mol. Struct.1036, 42–50 (2013).
[CrossRef]

Jeong, J. H.

S. W. Park, H. Kyoung Yang, J. Won Chung, Y. Chen, B. Kee Moon, B. Chun Choi, J. H. Jeong, and J. Hwan Kim, “Photoluminescent properties of LaVO4:Eu3+ by structural transformation,” Physica B405(18), 4040–4044 (2010).
[CrossRef]

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, J. H. Jeong, B. K. Moon, J. H. Kim, and H. Y. Choi, “Crystalline structure dependence of luminescent properties of Eu3+-activated Y2O3–Al2O3 system phosphors,” Curr. Appl. Phys.9(3), S217–S221 (2009).
[CrossRef]

Jiang, Z.

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, “Investigation on nonradiative decay of 4I13/2→4I15/2 transition of Er3+-doped oxide glasses,” J. Lumin.106(1), 9–14 (2004).
[CrossRef]

Jin, J.

J. Jin, T. Yoko, F. Miyaji, S. Sakka, T. Fukunaga, and M. Misawa, “Neutron diffraction study on the structure of Na-Si-O-N oxynitride glasses,” J. Am. Ceram. Soc.76(3), 630–634 (1993).
[CrossRef]

Johnson, J. A.

J. A. Johnson, C. J. Benmore, D. Holland, J. Du, B. Beuneu, and A. Mekki, “Influence of rare-earth ions on SiO2-Na2O-RE2O3 glass structure,” J. Phys. Condens. Matter23(6), 065404 (2011).
[CrossRef] [PubMed]

Jung, H. C.

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, J. H. Jeong, B. K. Moon, J. H. Kim, and H. Y. Choi, “Crystalline structure dependence of luminescent properties of Eu3+-activated Y2O3–Al2O3 system phosphors,” Curr. Appl. Phys.9(3), S217–S221 (2009).
[CrossRef]

Kalampounias, A. G.

A. G. Kalampounias, “IR and Raman spectroscopic studies of sol–gel derived alkaline-earth,” Bull. Mater. Sci.34(2), 299–303 (2011).
[CrossRef]

Kalita, M. P.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Mater. Sci. Eng. B175(2), 108–119 (2010).
[CrossRef]

Kee Moon, B.

S. W. Park, H. Kyoung Yang, J. Won Chung, Y. Chen, B. Kee Moon, B. Chun Choi, J. H. Jeong, and J. Hwan Kim, “Photoluminescent properties of LaVO4:Eu3+ by structural transformation,” Physica B405(18), 4040–4044 (2010).
[CrossRef]

Kik, P. G.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater.5(3), 159–167 (1996).
[CrossRef]

Kim, J. H.

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, J. H. Jeong, B. K. Moon, J. H. Kim, and H. Y. Choi, “Crystalline structure dependence of luminescent properties of Eu3+-activated Y2O3–Al2O3 system phosphors,” Curr. Appl. Phys.9(3), S217–S221 (2009).
[CrossRef]

Kinowski, C.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008).
[CrossRef]

Kokou, L.

L. Kokou and J. Du, “Rare earth ion clustering behavior in europium doped silicate glasses: Simulation size and glass structure effect,” J. Non-Cryst. Solids358(24), 3408–3417 (2012).
[CrossRef]

J. Du and L. Kokou, “Europium environment and clustering in europium doped silica and sodium silicate glasses,” J. Non-Cryst. Solids357(11-13), 2235–2240 (2011).
[CrossRef]

Krishnapuram, P.

P. Krishnapuram, S. K. Jakka, C. Thummala, and R. M. Lalapeta, “Photoluminescence characteristics of Eu2O3 doped calcium fluoroborate glasses,” J. Mol. Struct.1028, 170–175 (2012).
[CrossRef]

Kumar, G. A.

H. Desirena, E. De la Rosa, L. A. Díaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater.28(5), 560–568 (2006).
[CrossRef]

Kumar, M.

M. Kumar, T. K. Seshagiri, and S. V. Godbole, “Fluorescence lifetime and Judd–Ofelt parameters of Eu3+ doped SrBPO5,” Physica B410, 141–146 (2013).
[CrossRef]

Kyoung Yang, H.

S. W. Park, H. Kyoung Yang, J. Won Chung, Y. Chen, B. Kee Moon, B. Chun Choi, J. H. Jeong, and J. Hwan Kim, “Photoluminescent properties of LaVO4:Eu3+ by structural transformation,” Physica B405(18), 4040–4044 (2010).
[CrossRef]

Lalapeta, R. M.

P. Krishnapuram, S. K. Jakka, C. Thummala, and R. M. Lalapeta, “Photoluminescence characteristics of Eu2O3 doped calcium fluoroborate glasses,” J. Mol. Struct.1028, 170–175 (2012).
[CrossRef]

Liang, H.

Martínez, J. M.

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “PACKMOL: a package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem.30(13), 2157–2164 (2009).
[CrossRef] [PubMed]

Martínez, L.

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “PACKMOL: a package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem.30(13), 2157–2164 (2009).
[CrossRef] [PubMed]

Mekki, A.

J. A. Johnson, C. J. Benmore, D. Holland, J. Du, B. Beuneu, and A. Mekki, “Influence of rare-earth ions on SiO2-Na2O-RE2O3 glass structure,” J. Phys. Condens. Matter23(6), 065404 (2011).
[CrossRef] [PubMed]

Miranowicz, A.

J. Bajer and A. Miranowicz, “Quantum versus classical descriptions of sub-Poissonian light generation in three-wave mixing,” J. Opt. B Quantum Semiclassical Opt.3(4), 251–259 (2001).
[CrossRef]

Misawa, M.

J. Jin, T. Yoko, F. Miyaji, S. Sakka, T. Fukunaga, and M. Misawa, “Neutron diffraction study on the structure of Na-Si-O-N oxynitride glasses,” J. Am. Ceram. Soc.76(3), 630–634 (1993).
[CrossRef]

Miyaji, F.

J. Jin, T. Yoko, F. Miyaji, S. Sakka, T. Fukunaga, and M. Misawa, “Neutron diffraction study on the structure of Na-Si-O-N oxynitride glasses,” J. Am. Ceram. Soc.76(3), 630–634 (1993).
[CrossRef]

Monteil, A.

G. Cormier, J. A. Capobianco, and A. Monteil, “Molecular dynamics simulation of the trivalent europium ion doped in silica and sodium disilicate glasses,” J. Non-Cryst. Solids152(2-3), 225–236 (1993).
[CrossRef]

Moon, B. K.

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, J. H. Jeong, B. K. Moon, J. H. Kim, and H. Y. Choi, “Crystalline structure dependence of luminescent properties of Eu3+-activated Y2O3–Al2O3 system phosphors,” Curr. Appl. Phys.9(3), S217–S221 (2009).
[CrossRef]

Mountjoy, G.

T. Qin, G. Mountjoy, N. Afify, M. Reid, Y. Yeung, A. Speghini, and M. Bettinelli, “Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass,” Phys. Rev. B84(10), 104206 (2011).
[CrossRef]

N. D. Afify and G. Mountjoy, “Molecular-dynamics modeling of Eu3+-ion clustering in SiO2 glass,” Phys. Rev. B79(2), 024202 (2009).
[CrossRef]

Mysen, B. O.

B. O. Mysen and J. D. Frantz, “Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units,” Contrib. Mineral. Petrol.117(1), 1–14 (1994).
[CrossRef]

Nawrocki, J.

J. Nawrocki, “The silanol group and its role in liquid chromatography,” J. Chromatogr. A779(1-2), 29–71 (1997).
[CrossRef]

Ni, H.

Oliveira, J. M.

A. M. B. Silva, C. M. Queiroz, S. Agathopoulos, R. N. Correia, M. H. V. Fernandes, and J. M. Oliveira, “Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS NMR,” J. Mol. Struct.986(1-3), 16–21 (2011).
[CrossRef]

Oomen, E. W. J. L.

E. W. J. L. Oomen and A. M. A. van Dongen, “Europium (III) in oxide glasses: dependence of the emission spectrum upon glass composition,” J. Non-Cryst. Solids111(2-3), 205–213 (1989).
[CrossRef]

Orlovskii, Y. V.

K. K. Pukhov, T. T. Basiev, Y. V. Orlovskii, and M. Glasbeek, “Multiphonon relaxation of the electronic excitation energy of rare-earth ions in laser crystals,” J. Lumin.76–77, 586–590 (1998).
[CrossRef]

Pal, M.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Mater. Sci. Eng. B175(2), 108–119 (2010).
[CrossRef]

Pan, Z.

Y. Bai, Y. Wang, K. Yang, X. Zhang, G. Peng, Y. Song, Z. Pan, and C. H. Wang, “The effect of Li on the spectrum of Er3+ in Li- and Er-codoped ZnO nanocrystals,” J. Phys. Chem. C112(32), 12259–12263 (2008).
[CrossRef]

Park, J. Y.

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, J. H. Jeong, B. K. Moon, J. H. Kim, and H. Y. Choi, “Crystalline structure dependence of luminescent properties of Eu3+-activated Y2O3–Al2O3 system phosphors,” Curr. Appl. Phys.9(3), S217–S221 (2009).
[CrossRef]

Park, S. W.

S. W. Park, H. Kyoung Yang, J. Won Chung, Y. Chen, B. Kee Moon, B. Chun Choi, J. H. Jeong, and J. Hwan Kim, “Photoluminescent properties of LaVO4:Eu3+ by structural transformation,” Physica B405(18), 4040–4044 (2010).
[CrossRef]

Patra, A.

K. K. Haldar and A. Patra, “Fluorescence enhancement and quenching of Eu3+ ions by Au–ZnO core-shell and Au nanoparticles,” Appl. Phys. Lett.95(6), 063103 (2009).
[CrossRef]

Paul, M. C.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Mater. Sci. Eng. B175(2), 108–119 (2010).
[CrossRef]

Peng, G.

Y. Bai, Y. Wang, K. Yang, X. Zhang, G. Peng, Y. Song, Z. Pan, and C. H. Wang, “The effect of Li on the spectrum of Er3+ in Li- and Er-codoped ZnO nanocrystals,” J. Phys. Chem. C112(32), 12259–12263 (2008).
[CrossRef]

Polman, A.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater.5(3), 159–167 (1996).
[CrossRef]

Postma, J. P. M.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys.81(8), 3684–3690 (1984).
[CrossRef]

Potapova, E.

E. Potapova, M. Grahn, A. Holmgren, and J. Hedlund, “The effect of calcium ions and sodium silicate on the adsorption of a model anionic flotation collector on magnetite studied by ATR-FTIR spectroscopy,” J. Colloid Interface Sci.345(1), 96–102 (2010).
[CrossRef] [PubMed]

Prasada Rao, R.

R. Prasada Rao, T. D. Tho, and S. Adams, “Ion transport pathways in molecular dynamics simulated alkali silicate glassy electrolytes,” Solid State Ion.192(1), 25–29 (2011).
[CrossRef]

Pukhov, K. K.

K. K. Pukhov, T. T. Basiev, Y. V. Orlovskii, and M. Glasbeek, “Multiphonon relaxation of the electronic excitation energy of rare-earth ions in laser crystals,” J. Lumin.76–77, 586–590 (1998).
[CrossRef]

Qin, T.

T. Qin, G. Mountjoy, N. Afify, M. Reid, Y. Yeung, A. Speghini, and M. Bettinelli, “Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass,” Phys. Rev. B84(10), 104206 (2011).
[CrossRef]

Queiroz, C. M.

A. M. B. Silva, C. M. Queiroz, S. Agathopoulos, R. N. Correia, M. H. V. Fernandes, and J. M. Oliveira, “Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS NMR,” J. Mol. Struct.986(1-3), 16–21 (2011).
[CrossRef]

Reid, M.

T. Qin, G. Mountjoy, N. Afify, M. Reid, Y. Yeung, A. Speghini, and M. Bettinelli, “Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass,” Phys. Rev. B84(10), 104206 (2011).
[CrossRef]

Righini, G. C.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008).
[CrossRef]

Riman, R. E.

M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995).
[CrossRef]

Robbe, O.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008).
[CrossRef]

Sahu, J. K.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Mater. Sci. Eng. B175(2), 108–119 (2010).
[CrossRef]

Sakka, S.

J. Jin, T. Yoko, F. Miyaji, S. Sakka, T. Fukunaga, and M. Misawa, “Neutron diffraction study on the structure of Na-Si-O-N oxynitride glasses,” J. Am. Ceram. Soc.76(3), 630–634 (1993).
[CrossRef]

Seeta Rama Raju, G.

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, J. H. Jeong, B. K. Moon, J. H. Kim, and H. Y. Choi, “Crystalline structure dependence of luminescent properties of Eu3+-activated Y2O3–Al2O3 system phosphors,” Curr. Appl. Phys.9(3), S217–S221 (2009).
[CrossRef]

Seshagiri, T. K.

M. Kumar, T. K. Seshagiri, and S. V. Godbole, “Fluorescence lifetime and Judd–Ofelt parameters of Eu3+ doped SrBPO5,” Physica B410, 141–146 (2013).
[CrossRef]

Shi, J.

Silva, A. M. B.

A. M. B. Silva, C. M. Queiroz, S. Agathopoulos, R. N. Correia, M. H. V. Fernandes, and J. M. Oliveira, “Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS NMR,” J. Mol. Struct.986(1-3), 16–21 (2011).
[CrossRef]

Smith, W.

I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, “DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism,” J. Mater. Chem.16(20), 1911–1918 (2006).
[CrossRef]

Snitzer, E.

M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995).
[CrossRef]

Snoeks, E.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater.5(3), 159–167 (1996).
[CrossRef]

Song, H.

Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun, and H. Song, “Highly modified spontaneous emissions in YVO4:Er3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett.100(8), 081104 (2012).
[CrossRef]

Song, Y.

Y. Bai, Y. Wang, K. Yang, X. Zhang, G. Peng, Y. Song, Z. Pan, and C. H. Wang, “The effect of Li on the spectrum of Er3+ in Li- and Er-codoped ZnO nanocrystals,” J. Phys. Chem. C112(32), 12259–12263 (2008).
[CrossRef]

Speghini, A.

T. Qin, G. Mountjoy, N. Afify, M. Reid, Y. Yeung, A. Speghini, and M. Bettinelli, “Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass,” Phys. Rev. B84(10), 104206 (2011).
[CrossRef]

Su, Q.

Sun, Z.

Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun, and H. Song, “Highly modified spontaneous emissions in YVO4:Er3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett.100(8), 081104 (2012).
[CrossRef]

Tho, T. D.

R. Prasada Rao, T. D. Tho, and S. Adams, “Ion transport pathways in molecular dynamics simulated alkali silicate glassy electrolytes,” Solid State Ion.192(1), 25–29 (2011).
[CrossRef]

Thummala, C.

P. Krishnapuram, S. K. Jakka, C. Thummala, and R. M. Lalapeta, “Photoluminescence characteristics of Eu2O3 doped calcium fluoroborate glasses,” J. Mol. Struct.1028, 170–175 (2012).
[CrossRef]

Todorov, I. T.

I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, “DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism,” J. Mater. Chem.16(20), 1911–1918 (2006).
[CrossRef]

Tong, L.

Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun, and H. Song, “Highly modified spontaneous emissions in YVO4:Er3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett.100(8), 081104 (2012).
[CrossRef]

Trachenko, K.

I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, “DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism,” J. Mater. Chem.16(20), 1911–1918 (2006).
[CrossRef]

Turrell, S.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008).
[CrossRef]

van Dongen, A. M. A.

E. W. J. L. Oomen and A. M. A. van Dongen, “Europium (III) in oxide glasses: dependence of the emission spectrum upon glass composition,” J. Non-Cryst. Solids111(2-3), 205–213 (1989).
[CrossRef]

van Gunsteren, W. F.

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys.81(8), 3684–3690 (1984).
[CrossRef]

Vijaya, N.

N. Vijaya and C. K. Jayasankar, “Structural and spectroscopic properties of Eu3+-doped zinc fluorophosphate glasses,” J. Mol. Struct.1036, 42–50 (2013).
[CrossRef]

Wang, C. H.

Y. Bai, Y. Wang, K. Yang, X. Zhang, G. Peng, Y. Song, Z. Pan, and C. H. Wang, “The effect of Li on the spectrum of Er3+ in Li- and Er-codoped ZnO nanocrystals,” J. Phys. Chem. C112(32), 12259–12263 (2008).
[CrossRef]

Wang, W.

Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun, and H. Song, “Highly modified spontaneous emissions in YVO4:Er3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett.100(8), 081104 (2012).
[CrossRef]

Wang, X.

Z. Hao, J. Zhang, X. Zhang, and X. Wang, “CaSc2O4:Eu3+: a tunable full-color emitting phosphor for white light emitting diodes,” Opt. Mater.33(3), 355–358 (2011).
[CrossRef]

Wang, Y.

Y. Bai, Y. Wang, K. Yang, X. Zhang, G. Peng, Y. Song, Z. Pan, and C. H. Wang, “The effect of Li on the spectrum of Er3+ in Li- and Er-codoped ZnO nanocrystals,” J. Phys. Chem. C112(32), 12259–12263 (2008).
[CrossRef]

Wei, R.

Wen, L.

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, “Investigation on nonradiative decay of 4I13/2→4I15/2 transition of Er3+-doped oxide glasses,” J. Lumin.106(1), 9–14 (2004).
[CrossRef]

Won Chung, J.

S. W. Park, H. Kyoung Yang, J. Won Chung, Y. Chen, B. Kee Moon, B. Chun Choi, J. H. Jeong, and J. Hwan Kim, “Photoluminescent properties of LaVO4:Eu3+ by structural transformation,” Physica B405(18), 4040–4044 (2010).
[CrossRef]

Xu, S.

Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun, and H. Song, “Highly modified spontaneous emissions in YVO4:Er3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett.100(8), 081104 (2012).
[CrossRef]

Xu, W.

Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun, and H. Song, “Highly modified spontaneous emissions in YVO4:Er3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett.100(8), 081104 (2012).
[CrossRef]

Yang, G.

Yang, J.

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, “Investigation on nonradiative decay of 4I13/2→4I15/2 transition of Er3+-doped oxide glasses,” J. Lumin.106(1), 9–14 (2004).
[CrossRef]

Yang, K.

Y. Bai, Y. Wang, K. Yang, X. Zhang, G. Peng, Y. Song, Z. Pan, and C. H. Wang, “The effect of Li on the spectrum of Er3+ in Li- and Er-codoped ZnO nanocrystals,” J. Phys. Chem. C112(32), 12259–12263 (2008).
[CrossRef]

Yeung, Y.

T. Qin, G. Mountjoy, N. Afify, M. Reid, Y. Yeung, A. Speghini, and M. Bettinelli, “Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass,” Phys. Rev. B84(10), 104206 (2011).
[CrossRef]

Yoko, T.

J. Jin, T. Yoko, F. Miyaji, S. Sakka, T. Fukunaga, and M. Misawa, “Neutron diffraction study on the structure of Na-Si-O-N oxynitride glasses,” J. Am. Ceram. Soc.76(3), 630–634 (1993).
[CrossRef]

Yoo, S.

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Mater. Sci. Eng. B175(2), 108–119 (2010).
[CrossRef]

Zhang, G.

Zhang, H.

Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun, and H. Song, “Highly modified spontaneous emissions in YVO4:Er3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett.100(8), 081104 (2012).
[CrossRef]

H. Guo, H. Zhang, R. Wei, M. Zheng, and L. Zhang, “Preparation, structural and luminescent properties of Ba2Gd2Si4O13:Eu3+ for white LEDs,” Opt. Express19(S2Suppl 2), A201–A206 (2011).
[CrossRef] [PubMed]

Zhang, J.

Z. Hao, J. Zhang, X. Zhang, and X. Wang, “CaSc2O4:Eu3+: a tunable full-color emitting phosphor for white light emitting diodes,” Opt. Mater.33(3), 355–358 (2011).
[CrossRef]

Zhang, L.

Zhang, X.

Z. Hao, J. Zhang, X. Zhang, and X. Wang, “CaSc2O4:Eu3+: a tunable full-color emitting phosphor for white light emitting diodes,” Opt. Mater.33(3), 355–358 (2011).
[CrossRef]

Y. Bai, Y. Wang, K. Yang, X. Zhang, G. Peng, Y. Song, Z. Pan, and C. H. Wang, “The effect of Li on the spectrum of Er3+ in Li- and Er-codoped ZnO nanocrystals,” J. Phys. Chem. C112(32), 12259–12263 (2008).
[CrossRef]

Zheng, M.

Zhu, Y.

Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun, and H. Song, “Highly modified spontaneous emissions in YVO4:Er3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett.100(8), 081104 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun, and H. Song, “Highly modified spontaneous emissions in YVO4:Er3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett.100(8), 081104 (2012).
[CrossRef]

K. K. Haldar and A. Patra, “Fluorescence enhancement and quenching of Eu3+ ions by Au–ZnO core-shell and Au nanoparticles,” Appl. Phys. Lett.95(6), 063103 (2009).
[CrossRef]

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008).
[CrossRef]

Bull. Mater. Sci. (1)

A. G. Kalampounias, “IR and Raman spectroscopic studies of sol–gel derived alkaline-earth,” Bull. Mater. Sci.34(2), 299–303 (2011).
[CrossRef]

Contrib. Mineral. Petrol. (1)

B. O. Mysen and J. D. Frantz, “Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units,” Contrib. Mineral. Petrol.117(1), 1–14 (1994).
[CrossRef]

Curr. Appl. Phys. (1)

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, J. H. Jeong, B. K. Moon, J. H. Kim, and H. Y. Choi, “Crystalline structure dependence of luminescent properties of Eu3+-activated Y2O3–Al2O3 system phosphors,” Curr. Appl. Phys.9(3), S217–S221 (2009).
[CrossRef]

J. Am. Ceram. Soc. (1)

J. Jin, T. Yoko, F. Miyaji, S. Sakka, T. Fukunaga, and M. Misawa, “Neutron diffraction study on the structure of Na-Si-O-N oxynitride glasses,” J. Am. Ceram. Soc.76(3), 630–634 (1993).
[CrossRef]

J. Chem. Phys. (1)

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys.81(8), 3684–3690 (1984).
[CrossRef]

J. Chromatogr. A (1)

J. Nawrocki, “The silanol group and its role in liquid chromatography,” J. Chromatogr. A779(1-2), 29–71 (1997).
[CrossRef]

J. Colloid Interface Sci. (1)

E. Potapova, M. Grahn, A. Holmgren, and J. Hedlund, “The effect of calcium ions and sodium silicate on the adsorption of a model anionic flotation collector on magnetite studied by ATR-FTIR spectroscopy,” J. Colloid Interface Sci.345(1), 96–102 (2010).
[CrossRef] [PubMed]

J. Comput. Chem. (1)

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “PACKMOL: a package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem.30(13), 2157–2164 (2009).
[CrossRef] [PubMed]

J. Lumin. (3)

J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, “Investigation on nonradiative decay of 4I13/2→4I15/2 transition of Er3+-doped oxide glasses,” J. Lumin.106(1), 9–14 (2004).
[CrossRef]

K. K. Pukhov, T. T. Basiev, Y. V. Orlovskii, and M. Glasbeek, “Multiphonon relaxation of the electronic excitation energy of rare-earth ions in laser crystals,” J. Lumin.76–77, 586–590 (1998).
[CrossRef]

M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995).
[CrossRef]

J. Mater. Chem. (1)

I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, “DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism,” J. Mater. Chem.16(20), 1911–1918 (2006).
[CrossRef]

J. Mol. Struct. (3)

N. Vijaya and C. K. Jayasankar, “Structural and spectroscopic properties of Eu3+-doped zinc fluorophosphate glasses,” J. Mol. Struct.1036, 42–50 (2013).
[CrossRef]

A. M. B. Silva, C. M. Queiroz, S. Agathopoulos, R. N. Correia, M. H. V. Fernandes, and J. M. Oliveira, “Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS NMR,” J. Mol. Struct.986(1-3), 16–21 (2011).
[CrossRef]

P. Krishnapuram, S. K. Jakka, C. Thummala, and R. M. Lalapeta, “Photoluminescence characteristics of Eu2O3 doped calcium fluoroborate glasses,” J. Mol. Struct.1028, 170–175 (2012).
[CrossRef]

J. Non-Cryst. Solids (6)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

E. W. J. L. Oomen and A. M. A. van Dongen, “Europium (III) in oxide glasses: dependence of the emission spectrum upon glass composition,” J. Non-Cryst. Solids111(2-3), 205–213 (1989).
[CrossRef]

J. Du and L. Kokou, “Europium environment and clustering in europium doped silica and sodium silicate glasses,” J. Non-Cryst. Solids357(11-13), 2235–2240 (2011).
[CrossRef]

G. Cormier, J. A. Capobianco, and A. Monteil, “Molecular dynamics simulation of the trivalent europium ion doped in silica and sodium disilicate glasses,” J. Non-Cryst. Solids152(2-3), 225–236 (1993).
[CrossRef]

J. Du and A. N. Cormack, “The structure of erbium doped sodium silicate glasses,” J. Non-Cryst. Solids351(27-29), 2263–2276 (2005).
[CrossRef]

L. Kokou and J. Du, “Rare earth ion clustering behavior in europium doped silicate glasses: Simulation size and glass structure effect,” J. Non-Cryst. Solids358(24), 3408–3417 (2012).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt. (1)

J. Bajer and A. Miranowicz, “Quantum versus classical descriptions of sub-Poissonian light generation in three-wave mixing,” J. Opt. B Quantum Semiclassical Opt.3(4), 251–259 (2001).
[CrossRef]

J. Phys. Chem. C (1)

Y. Bai, Y. Wang, K. Yang, X. Zhang, G. Peng, Y. Song, Z. Pan, and C. H. Wang, “The effect of Li on the spectrum of Er3+ in Li- and Er-codoped ZnO nanocrystals,” J. Phys. Chem. C112(32), 12259–12263 (2008).
[CrossRef]

J. Phys. Condens. Matter (1)

J. A. Johnson, C. J. Benmore, D. Holland, J. Du, B. Beuneu, and A. Mekki, “Influence of rare-earth ions on SiO2-Na2O-RE2O3 glass structure,” J. Phys. Condens. Matter23(6), 065404 (2011).
[CrossRef] [PubMed]

Mater. Sci. Eng. B (1)

M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Mater. Sci. Eng. B175(2), 108–119 (2010).
[CrossRef]

Opt. Express (2)

Opt. Mater. (3)

Z. Hao, J. Zhang, X. Zhang, and X. Wang, “CaSc2O4:Eu3+: a tunable full-color emitting phosphor for white light emitting diodes,” Opt. Mater.33(3), 355–358 (2011).
[CrossRef]

H. Desirena, E. De la Rosa, L. A. Díaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater.28(5), 560–568 (2006).
[CrossRef]

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater.5(3), 159–167 (1996).
[CrossRef]

Phys. Rev. B (2)

N. D. Afify and G. Mountjoy, “Molecular-dynamics modeling of Eu3+-ion clustering in SiO2 glass,” Phys. Rev. B79(2), 024202 (2009).
[CrossRef]

T. Qin, G. Mountjoy, N. Afify, M. Reid, Y. Yeung, A. Speghini, and M. Bettinelli, “Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass,” Phys. Rev. B84(10), 104206 (2011).
[CrossRef]

Physica B (2)

M. Kumar, T. K. Seshagiri, and S. V. Godbole, “Fluorescence lifetime and Judd–Ofelt parameters of Eu3+ doped SrBPO5,” Physica B410, 141–146 (2013).
[CrossRef]

S. W. Park, H. Kyoung Yang, J. Won Chung, Y. Chen, B. Kee Moon, B. Chun Choi, J. H. Jeong, and J. Hwan Kim, “Photoluminescent properties of LaVO4:Eu3+ by structural transformation,” Physica B405(18), 4040–4044 (2010).
[CrossRef]

Solid State Ion. (1)

R. Prasada Rao, T. D. Tho, and S. Adams, “Ion transport pathways in molecular dynamics simulated alkali silicate glassy electrolytes,” Solid State Ion.192(1), 25–29 (2011).
[CrossRef]

Other (4)

W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3,” in Argonne National Laboratory Report(1977).

J. Zarzycki, W. D. Scott, and C. Massart, Glasses and the Vitreous State (Cambridge University Press, 1991).

G. Liu and B. Jacquier, “Spectroscopic properties of rare earths in optical materials,” in Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2005), p. 550.

R. Peacock, “The intensities of lanthanide f ↔ f transitions,” in Rare Earths (Springer Berlin Heidelberg, 1975), pp. 83–122.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

3D box for the simulated system (a) S69N29 and (b) S89N9.

Fig. 2
Fig. 2

Optical absorption spectra of the synthesized sodium silicate glasses doped with Eu3+ ions. The variation in the sodium oxide concentration affects only the OA band attributed to the presence of OH radicals in the samples.

Fig. 3
Fig. 3

Luminescence spectra of Eu3+ ions for all the synthesized samples.

Fig. 4
Fig. 4

(a) Luminescence decay of the transition from 5D0 to 7F2 for the S69N29 samples as function of the time. (b) Luminescence lifetime measured for the transition from 5D0 to 7F2 as function of sodium oxide concentration in the glass matrix.

Fig. 5
Fig. 5

FTIR spectra in the region showing a band associated with the presence of OH in the glass matrix for all synthesized samples.

Fig. 6
Fig. 6

FTIR spectra in the region showing a band associated with the SiO4 structures in the glass matrix for all synthesized samples.

Fig. 7
Fig. 7

Radial distribution function of (a) S64N34 and (b) S94N4 and the coordination number (c) and (d) at the respective concentrations.

Fig. 8
Fig. 8

Fraction of bond angle distribution for the O-Eu-O, O-Si-O and Si-O-Si bonds of the S79N19 simulated glass system.

Fig. 9
Fig. 9

(a) X-ray diffraction and (b) neutron diffraction for all simulated glass samples. Note the change in the first peak of the two graphs. Decreasing Na2O concentration in the glass matrix reduces the intensity of the first peak and causes a shift to lower Q.

Fig. 10
Fig. 10

Concentration of NBO and BO as function of silicon concentration in the glass composition.

Fig. 11
Fig. 11

Fraction of Qn, n = 0,1,2,3,4 as function of silicon oxide concentration in the matrix. Q4 represents the number of silicon atoms connected with only oxygen type bridges, Q3 represents the number of silicon atoms connected with one type of non-bridge oxygen, Q2 represents the number of silicon atoms connected with two types of non-bridge oxygen, and so on. As expected the number of non-bridge oxygen decreases with increasing SiO2 concentration in the glass composition.

Fig. 12
Fig. 12

Graphical representation of non-radiative energy transfer from Eu3+ ions to bonded OH. Transfer to the SiO4 (Q4) structure is negligible because it requires a strong field interaction while the Rare-Earth ions have been weakened by 4f-4f transitions located below the 5s and 5p shells.

Tables (5)

Tables Icon

Table 1 Nominal Composition of the Synthesized Samplesa

Tables Icon

Table 2 Concentration (in mol %) of Each Matrix Component, Number of Each Type of Ion, Density (D [g.cm−3]) and Box Length (L [Å]) of Each System Simulated by the Molecular Dynamic

Tables Icon

Table 3 Buckingham Potential Parameters Used in This Studya

Tables Icon

Table 4 Areas of the 4 Adjusted Curves in the FTIR Band Associated with the Presence of Hydroxyl in the Glass Matrixa

Tables Icon

Table 5 Obtained Center and Area for the Fitted Curves of the FTIR Bands Associated with the SiO4 Structurea

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V(r)=Aexp( r ρ ) c r 6

Metrics