Abstract

The light polarization has an effect on spectral properties of a multilayered photonic crystal infiltrated with a bistable chiral-tilted homeotropic nematic liquid crystal (LC) as a defect layer. By varying the direction of polarization of incident, linearly polarized light interacting with the birefringent LC, the tunability of defect modes in wavelength and amplitude and the broadening of the low-transmittance range can be realized in the transmission spectrum. The LC features two optically stable states and two voltage-sustained states. The bistability makes the device of low energy consumption. Such a hybrid can be used as not only a wavelength selector, optical shutter or multichannel switch but also a stopband-tunable device.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.67(17), 2295–2298 (1991).
    [CrossRef] [PubMed]
  4. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996).
    [CrossRef]
  5. S. Noda, “Three-dimensional photonic crystals operating at optical wavelength region,” Physica B279(1-3), 142–149 (2000).
    [CrossRef]
  6. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002).
    [CrossRef] [PubMed]
  7. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B65(20), 201104 (2002).
    [CrossRef]
  8. M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett.84(4), 460–462 (2004).
    [CrossRef]
  9. V. A. Belyakov and S. V. Semenov, “Optical defect modes in chiral liquid crystals,” J. Exp. Theor. Phys.112(4), 694–710 (2011).
    [CrossRef]
  10. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
    [CrossRef] [PubMed]
  11. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys.41(Part 2, No. 12B), L1482–L1484 (2002).
    [CrossRef]
  12. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett.82(21), 3593–3594 (2003).
    [CrossRef]
  13. R. Ozaki, H. Moritake, K. Yoshino, and M. Ozaki, “Analysis of defect mode switching response time in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” J. Appl. Phys.101(3), 033503 (2007).
    [CrossRef]
  14. Y. Matsuhisa, R. Ozaki, K. Yoshino, and M. Ozaki, “High Q defect mode and laser action in one-dimensional hybrid photonic crystal containing cholesteric liquid crystal,” Appl. Phys. Lett.89(10), 101109 (2006).
    [CrossRef]
  15. R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode switching in one-dimensional photonic crystal with nematic liquid crystal as defect layer,” Jpn. J. Appl. Phys.42(Part 2, No. 6B), L669–L671 (2003).
    [CrossRef]
  16. R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer,” Jpn. J. Appl. Phys.43(No. 11B), L1477–L1479 (2004).
    [CrossRef]
  17. V. Ya. Zyryanov, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, and V. F. Shabanov, “Electrooptical switching in a one-dimensional photonic crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)488(1), 118–126 (2008).
    [CrossRef]
  18. V. Ya. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express18(2), 1283–1288 (2010).
    [CrossRef] [PubMed]
  19. Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Ya. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett.36(14), 2632–2634 (2011).
    [CrossRef] [PubMed]
  20. Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express19(10), 9744–9749 (2011).
    [CrossRef] [PubMed]
  21. Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express19(24), 23952–23957 (2011).
    [CrossRef] [PubMed]
  22. J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett.85(23), 5511–5513 (2004).
    [CrossRef]
  23. C.-Y. Wu, Y.-H. Zou, I. Timofeev, Y.-T. Lin, V. Ya. Zyryanov, J.-S. Hsu, and W. Lee, “Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer,” Opt. Express19(8), 7349–7355 (2011).
    [CrossRef] [PubMed]
  24. D. W. Berreman, “Optics in stratified and anisotropic media: 4 × 4-Matrix formulation,” J. Opt. Soc. Am.62(4), 502–510 (1972).
    [CrossRef]
  25. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am.69(5), 742–756 (1979).
    [CrossRef]
  26. Y.-T. Lin, W.-Y. Chang, C.-Y. Wu, V. Ya. Zyryanov, and W. Lee, “Optical properties of one-dimensional photonic crystal with a twisted-nematic defect layer,” Opt. Express18(26), 26959–26964 (2010).
    [CrossRef] [PubMed]
  27. S. T. Wu and C. S. Wu, “Mixed-mode twisted-nematic cell for transmissive liquid crystal display,” Displays20(5), 231–236 (1999).
    [CrossRef]

2011 (5)

2010 (2)

2008 (1)

V. Ya. Zyryanov, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, and V. F. Shabanov, “Electrooptical switching in a one-dimensional photonic crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)488(1), 118–126 (2008).
[CrossRef]

2007 (1)

R. Ozaki, H. Moritake, K. Yoshino, and M. Ozaki, “Analysis of defect mode switching response time in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” J. Appl. Phys.101(3), 033503 (2007).
[CrossRef]

2006 (1)

Y. Matsuhisa, R. Ozaki, K. Yoshino, and M. Ozaki, “High Q defect mode and laser action in one-dimensional hybrid photonic crystal containing cholesteric liquid crystal,” Appl. Phys. Lett.89(10), 101109 (2006).
[CrossRef]

2004 (3)

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer,” Jpn. J. Appl. Phys.43(No. 11B), L1477–L1479 (2004).
[CrossRef]

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett.85(23), 5511–5513 (2004).
[CrossRef]

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett.84(4), 460–462 (2004).
[CrossRef]

2003 (2)

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett.82(21), 3593–3594 (2003).
[CrossRef]

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode switching in one-dimensional photonic crystal with nematic liquid crystal as defect layer,” Jpn. J. Appl. Phys.42(Part 2, No. 6B), L669–L671 (2003).
[CrossRef]

2002 (3)

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys.41(Part 2, No. 12B), L1482–L1484 (2002).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002).
[CrossRef] [PubMed]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B65(20), 201104 (2002).
[CrossRef]

2000 (1)

S. Noda, “Three-dimensional photonic crystals operating at optical wavelength region,” Physica B279(1-3), 142–149 (2000).
[CrossRef]

1999 (1)

S. T. Wu and C. S. Wu, “Mixed-mode twisted-nematic cell for transmissive liquid crystal display,” Displays20(5), 231–236 (1999).
[CrossRef]

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

1996 (1)

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996).
[CrossRef]

1991 (1)

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.67(17), 2295–2298 (1991).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

1979 (1)

1972 (1)

Arkhipkin, V. G.

V. Ya. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express18(2), 1283–1288 (2010).
[CrossRef] [PubMed]

V. Ya. Zyryanov, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, and V. F. Shabanov, “Electrooptical switching in a one-dimensional photonic crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)488(1), 118–126 (2008).
[CrossRef]

Belyakov, V. A.

V. A. Belyakov and S. V. Semenov, “Optical defect modes in chiral liquid crystals,” J. Exp. Theor. Phys.112(4), 694–710 (2011).
[CrossRef]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Berreman, D. W.

Brand, S.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996).
[CrossRef]

Cao, J. R.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett.84(4), 460–462 (2004).
[CrossRef]

Chang, W.-Y.

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Chen, C.-H.

Chen, S.-H.

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett.85(23), 5511–5513 (2004).
[CrossRef]

Choi, S. J.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett.84(4), 460–462 (2004).
[CrossRef]

Dapkus, P. D.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett.84(4), 460–462 (2004).
[CrossRef]

De La Rue, R. M.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996).
[CrossRef]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.67(17), 2295–2298 (1991).
[CrossRef] [PubMed]

Gunyakov, V. A.

V. Ya. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express18(2), 1283–1288 (2010).
[CrossRef] [PubMed]

V. Ya. Zyryanov, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, and V. F. Shabanov, “Electrooptical switching in a one-dimensional photonic crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)488(1), 118–126 (2008).
[CrossRef]

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Hou, C.-T.

Hsiao, Y.-C.

Hsu, J.-S.

Joannopoulos, J. D.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B65(20), 201104 (2002).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B65(20), 201104 (2002).
[CrossRef]

Kim, W. J.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett.84(4), 460–462 (2004).
[CrossRef]

Krauss, T. F.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996).
[CrossRef]

Kuang, W.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett.84(4), 460–462 (2004).
[CrossRef]

Lee, W.

Leung, K. M.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.67(17), 2295–2298 (1991).
[CrossRef] [PubMed]

Liang, B.-J.

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett.85(23), 5511–5513 (2004).
[CrossRef]

Lin, Y.-T.

Luo, C.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B65(20), 201104 (2002).
[CrossRef]

Marshall, W. K.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett.84(4), 460–462 (2004).
[CrossRef]

Matsuhisa, Y.

Y. Matsuhisa, R. Ozaki, K. Yoshino, and M. Ozaki, “High Q defect mode and laser action in one-dimensional hybrid photonic crystal containing cholesteric liquid crystal,” Appl. Phys. Lett.89(10), 101109 (2006).
[CrossRef]

Matsui, T.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett.82(21), 3593–3594 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys.41(Part 2, No. 12B), L1482–L1484 (2002).
[CrossRef]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Moritake, H.

R. Ozaki, H. Moritake, K. Yoshino, and M. Ozaki, “Analysis of defect mode switching response time in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” J. Appl. Phys.101(3), 033503 (2007).
[CrossRef]

Myslivets, S. A.

V. Ya. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express18(2), 1283–1288 (2010).
[CrossRef] [PubMed]

V. Ya. Zyryanov, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, and V. F. Shabanov, “Electrooptical switching in a one-dimensional photonic crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)488(1), 118–126 (2008).
[CrossRef]

Noda, S.

S. Noda, “Three-dimensional photonic crystals operating at optical wavelength region,” Physica B279(1-3), 142–149 (2000).
[CrossRef]

O’Brien, J. D.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett.84(4), 460–462 (2004).
[CrossRef]

Ozaki, M.

R. Ozaki, H. Moritake, K. Yoshino, and M. Ozaki, “Analysis of defect mode switching response time in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” J. Appl. Phys.101(3), 033503 (2007).
[CrossRef]

Y. Matsuhisa, R. Ozaki, K. Yoshino, and M. Ozaki, “High Q defect mode and laser action in one-dimensional hybrid photonic crystal containing cholesteric liquid crystal,” Appl. Phys. Lett.89(10), 101109 (2006).
[CrossRef]

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer,” Jpn. J. Appl. Phys.43(No. 11B), L1477–L1479 (2004).
[CrossRef]

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode switching in one-dimensional photonic crystal with nematic liquid crystal as defect layer,” Jpn. J. Appl. Phys.42(Part 2, No. 6B), L669–L671 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett.82(21), 3593–3594 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys.41(Part 2, No. 12B), L1482–L1484 (2002).
[CrossRef]

Ozaki, R.

R. Ozaki, H. Moritake, K. Yoshino, and M. Ozaki, “Analysis of defect mode switching response time in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” J. Appl. Phys.101(3), 033503 (2007).
[CrossRef]

Y. Matsuhisa, R. Ozaki, K. Yoshino, and M. Ozaki, “High Q defect mode and laser action in one-dimensional hybrid photonic crystal containing cholesteric liquid crystal,” Appl. Phys. Lett.89(10), 101109 (2006).
[CrossRef]

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer,” Jpn. J. Appl. Phys.43(No. 11B), L1477–L1479 (2004).
[CrossRef]

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode switching in one-dimensional photonic crystal with nematic liquid crystal as defect layer,” Jpn. J. Appl. Phys.42(Part 2, No. 6B), L669–L671 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett.82(21), 3593–3594 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys.41(Part 2, No. 12B), L1482–L1484 (2002).
[CrossRef]

Parshin, A. M.

Pendry, J. B.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B65(20), 201104 (2002).
[CrossRef]

Semenov, S. V.

V. A. Belyakov and S. V. Semenov, “Optical defect modes in chiral liquid crystals,” J. Exp. Theor. Phys.112(4), 694–710 (2011).
[CrossRef]

Shabanov, V. F.

V. Ya. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express18(2), 1283–1288 (2010).
[CrossRef] [PubMed]

V. Ya. Zyryanov, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, and V. F. Shabanov, “Electrooptical switching in a one-dimensional photonic crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)488(1), 118–126 (2008).
[CrossRef]

Shih, M. H.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett.84(4), 460–462 (2004).
[CrossRef]

Tang, C.-Y.

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Timofeev, I.

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Wu, C. S.

S. T. Wu and C. S. Wu, “Mixed-mode twisted-nematic cell for transmissive liquid crystal display,” Displays20(5), 231–236 (1999).
[CrossRef]

Wu, C.-Y.

Wu, S. T.

S. T. Wu and C. S. Wu, “Mixed-mode twisted-nematic cell for transmissive liquid crystal display,” Displays20(5), 231–236 (1999).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.67(17), 2295–2298 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yeh, P.

Yoshino, K.

R. Ozaki, H. Moritake, K. Yoshino, and M. Ozaki, “Analysis of defect mode switching response time in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” J. Appl. Phys.101(3), 033503 (2007).
[CrossRef]

Y. Matsuhisa, R. Ozaki, K. Yoshino, and M. Ozaki, “High Q defect mode and laser action in one-dimensional hybrid photonic crystal containing cholesteric liquid crystal,” Appl. Phys. Lett.89(10), 101109 (2006).
[CrossRef]

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer,” Jpn. J. Appl. Phys.43(No. 11B), L1477–L1479 (2004).
[CrossRef]

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode switching in one-dimensional photonic crystal with nematic liquid crystal as defect layer,” Jpn. J. Appl. Phys.42(Part 2, No. 6B), L669–L671 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett.82(21), 3593–3594 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys.41(Part 2, No. 12B), L1482–L1484 (2002).
[CrossRef]

Yukawa, H.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett.84(4), 460–462 (2004).
[CrossRef]

Zou, Y.-H.

Zyryanov, V. Ya.

Appl. Phys. Lett. (4)

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett.84(4), 460–462 (2004).
[CrossRef]

J.-S. Hsu, B.-J. Liang, and S.-H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett.85(23), 5511–5513 (2004).
[CrossRef]

Y. Matsuhisa, R. Ozaki, K. Yoshino, and M. Ozaki, “High Q defect mode and laser action in one-dimensional hybrid photonic crystal containing cholesteric liquid crystal,” Appl. Phys. Lett.89(10), 101109 (2006).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett.82(21), 3593–3594 (2003).
[CrossRef]

Displays (1)

S. T. Wu and C. S. Wu, “Mixed-mode twisted-nematic cell for transmissive liquid crystal display,” Displays20(5), 231–236 (1999).
[CrossRef]

J. Appl. Phys. (1)

R. Ozaki, H. Moritake, K. Yoshino, and M. Ozaki, “Analysis of defect mode switching response time in one-dimensional photonic crystal with a nematic liquid crystal defect layer,” J. Appl. Phys.101(3), 033503 (2007).
[CrossRef]

J. Exp. Theor. Phys. (1)

V. A. Belyakov and S. V. Semenov, “Optical defect modes in chiral liquid crystals,” J. Exp. Theor. Phys.112(4), 694–710 (2011).
[CrossRef]

J. Opt. Soc. Am. (2)

Jpn. J. Appl. Phys. (3)

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys.41(Part 2, No. 12B), L1482–L1484 (2002).
[CrossRef]

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode switching in one-dimensional photonic crystal with nematic liquid crystal as defect layer,” Jpn. J. Appl. Phys.42(Part 2, No. 6B), L669–L671 (2003).
[CrossRef]

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer,” Jpn. J. Appl. Phys.43(No. 11B), L1477–L1479 (2004).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

V. Ya. Zyryanov, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, and V. F. Shabanov, “Electrooptical switching in a one-dimensional photonic crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)488(1), 118–126 (2008).
[CrossRef]

Nature (2)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002).
[CrossRef] [PubMed]

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (1)

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B65(20), 201104 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.67(17), 2295–2298 (1991).
[CrossRef] [PubMed]

Physica B (1)

S. Noda, “Three-dimensional photonic crystals operating at optical wavelength region,” Physica B279(1-3), 142–149 (2000).
[CrossRef]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The sandwich structure of a hybrid cell based on 1D PC containing LC as a central defect layer (top) and the dynamic switching for the four states of the PC/BHN cell (bottom). The arrows in the side view indicate the transmission axes of the polarizer (P) and analyzer (A) as well as the rubbing direction (R).

Fig. 2
Fig. 2

Simulations of the transmission spectra of a PC/BHN cell under the parallel-polarizer scheme at various polarization angles. Left, the bH state; right, the tH state. (L = 9.6 μm and θ0 = 70°.)

Fig. 3
Fig. 3

Transmission spectra within the PBG of a PC/BHN cell in four different states with parallel polarizers.

Fig. 4
Fig. 4

MATLAB simulation of the director components nx, ny in the bT and tT states. Rubbing direction coincides with the y-axis.

Fig. 5
Fig. 5

Transmission spectra of the PC/BHN in (a) the bT and (b) tT states under three different experimental conditions (ϕ = 0°).

Fig. 6
Fig. 6

Transmittances of the PC/BHN in (a) the bT and (b) tT states at various polarization angles (ϕ = 0°, 30°, and 60°) under crossed polarizers. Note that the polarization angle is measured between the rubbing direction and the transmission axis of the front polarizer.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n eff = Nλ 2L ,
n= n e n o n e 2 sin 2 θ+ n o 2 cos 2 θ ,

Metrics