Abstract

Yttrium aluminium garnet (YAG) crystal fibers with a core diameter of 40 μm were cladded by high index glasses using the co-drawing laser-heated pedestal growth method. Due to the extremely large cooling rates in the fabrication processes, unexpected and phenomenally large index drops of 0.018 and at least 0.02 were found from the as-grown capillary and the YAG crystal fiber cladding compared with bulk N-SF57’s, respectively. The high-index glass cladding is effective in reducing the number of guided modes, and the intensity profiles of the crystal fiber show there are only four guided modes at 532 nm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser heated miniature pedestal growth apparatus for single crystal optical fibers,” Rev. Sci. Instrum.55(11), 1791–1796 (1984).
    [CrossRef]
  2. C. A. Burrus and L. A. Coldren, “Growth of single-crystal sapphire-clad ruby fibers,” Appl. Phys. Lett.31(6), 383–385 (1977).
    [CrossRef]
  3. M. J. F. Digonnet, C. J. Gaeta, D. O'Meara, and H. J. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol.5(5), 642–646 (1987).
    [CrossRef]
  4. C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett.29(5), 439–441 (2004).
    [CrossRef] [PubMed]
  5. K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express16(16), 12264–12271 (2008).
    [CrossRef] [PubMed]
  6. C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett.35(6), 811–813 (2010).
    [CrossRef] [PubMed]
  7. Y. S. Lin, T. C. Cheng, C. C. Tsai, K. Y. Hsu, D. Y. Jheng, C. Y. Lo, P. S. Yeh, and S. L. Huang, “High-luminance white-light point source using Ce,Sm:YAG double-clad crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1494–1496 (2010).
    [CrossRef]
  8. C. C. Lai, C. P. Ke, S. K. Liu, D. Y. Jheng, D. J. Wang, M. Y. Chen, Y. S. Li, P. S. Yeh, and S. L. Huang, “Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett.36(6), 784–786 (2011).
    [CrossRef] [PubMed]
  9. K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal fiber based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).
  10. X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett.37(14), 2898–2900 (2012).
    [CrossRef] [PubMed]
  11. X. Délen, L. Deyra, A. Benoit, M. Hanna, F. Balembois, B. Cocquelin, D. Sangla, F. Salin, J. Didierjean, and P. Georges, “Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257 nm,” Opt. Lett.38(6), 995–997 (2013).
    [CrossRef] [PubMed]
  12. M. Matsukura, O. Nakamura, S. Watanabe, A. Miyamoto, Y. Furukawa, Y. Sato, T. Taira, T. Suzudo, and H. Mifune, “Laser properties of composite Nd:GdVO4 single crystal grown by the double die EFG method,” in Conference on Lasers and Electro-Optics (CLEO 2007) Technical Digest, Baltimore (US) (Optical Society of America, May, 2007), paper CFA2.
  13. J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Fiber-laser-pumped Er:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.15(2), 361–371 (2009).
    [CrossRef]
  14. I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Peretti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater.32(9), 1251–1255 (2010).
    [CrossRef]
  15. N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, “High efficiency, resonantly diode pumped, double-clad, Er:YAG-core, waveguide laser,” Opt. Express20(23), 25554–25561 (2012).
    [CrossRef] [PubMed]
  16. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007), Chap. 3.
  17. D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm,” Appl. Opt.37(21), 4933–4935 (1998).
    [CrossRef] [PubMed]
  18. Schott AG data sheet.
  19. H. Bach and N. Nuroth, eds., The Properties of Optical Glass (Springer Verlag, 1995), Chap. 2.
  20. W. Koechner and M. Bass, Solid-State Lasers (Springer, 2003), Chap. 2.
  21. Schott Technical information TIE-29, Refractive Index and Dispersion (2007).
  22. J. Nishimura and K. Morishita, “Control of spectral characteristics of dispersive optical fibers by annealing,” J. Lightwave Technol.15(2), 294–298 (1997).
    [CrossRef]
  23. J. Stone and H. E. Earl, “Surface effects and reflection refractometry of optical fibres,” Opt. Quantum Electron.8(5), 459–463 (1976).
    [CrossRef]
  24. J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron.15(1), 61–70 (2009).
    [CrossRef]
  25. H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a step-index fiber,” J. Lightwave Technol.24(3), 1350–1355 (2006).
    [CrossRef]

2013

2012

2011

2010

C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett.35(6), 811–813 (2010).
[CrossRef] [PubMed]

Y. S. Lin, T. C. Cheng, C. C. Tsai, K. Y. Hsu, D. Y. Jheng, C. Y. Lo, P. S. Yeh, and S. L. Huang, “High-luminance white-light point source using Ce,Sm:YAG double-clad crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1494–1496 (2010).
[CrossRef]

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Peretti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater.32(9), 1251–1255 (2010).
[CrossRef]

2009

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron.15(1), 61–70 (2009).
[CrossRef]

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Fiber-laser-pumped Er:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.15(2), 361–371 (2009).
[CrossRef]

2008

2006

2004

1998

1997

J. Nishimura and K. Morishita, “Control of spectral characteristics of dispersive optical fibers by annealing,” J. Lightwave Technol.15(2), 294–298 (1997).
[CrossRef]

1987

M. J. F. Digonnet, C. J. Gaeta, D. O'Meara, and H. J. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol.5(5), 642–646 (1987).
[CrossRef]

1984

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser heated miniature pedestal growth apparatus for single crystal optical fibers,” Rev. Sci. Instrum.55(11), 1791–1796 (1984).
[CrossRef]

1977

C. A. Burrus and L. A. Coldren, “Growth of single-crystal sapphire-clad ruby fibers,” Appl. Phys. Lett.31(6), 383–385 (1977).
[CrossRef]

1976

J. Stone and H. E. Earl, “Surface effects and reflection refractometry of optical fibres,” Opt. Quantum Electron.8(5), 459–463 (1976).
[CrossRef]

Ahmed, M. A.

Aubry, N.

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett.37(14), 2898–2900 (2012).
[CrossRef] [PubMed]

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Peretti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater.32(9), 1251–1255 (2010).
[CrossRef]

Balembois, F.

Benoit, A.

Bigotta, S.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Peretti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater.32(9), 1251–1255 (2010).
[CrossRef]

Burrus, C. A.

C. A. Burrus and L. A. Coldren, “Growth of single-crystal sapphire-clad ruby fibers,” Appl. Phys. Lett.31(6), 383–385 (1977).
[CrossRef]

Byer, R. L.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser heated miniature pedestal growth apparatus for single crystal optical fibers,” Rev. Sci. Instrum.55(11), 1791–1796 (1984).
[CrossRef]

Chang, W.

Chang, Y. H.

Chen, J. C.

Chen, M. Y.

Chen, P. Y.

Chen, T. H.

Cheng, T. C.

Y. S. Lin, T. C. Cheng, C. C. Tsai, K. Y. Hsu, D. Y. Jheng, C. Y. Lo, P. S. Yeh, and S. L. Huang, “High-luminance white-light point source using Ce,Sm:YAG double-clad crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1494–1496 (2010).
[CrossRef]

Clarkson, W. A.

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Fiber-laser-pumped Er:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.15(2), 361–371 (2009).
[CrossRef]

Cocquelin, B.

Coldren, L. A.

C. A. Burrus and L. A. Coldren, “Growth of single-crystal sapphire-clad ruby fibers,” Appl. Phys. Lett.31(6), 383–385 (1977).
[CrossRef]

Délen, X.

Deyra, L.

Didierjean, J.

Digonnet, M. J. F.

M. J. F. Digonnet, C. J. Gaeta, D. O'Meara, and H. J. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol.5(5), 642–646 (1987).
[CrossRef]

Dubinskii, M.

Earl, H. E.

J. Stone and H. E. Earl, “Surface effects and reflection refractometry of optical fibres,” Opt. Quantum Electron.8(5), 459–463 (1976).
[CrossRef]

Eichhorn, M.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Peretti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater.32(9), 1251–1255 (2010).
[CrossRef]

Fejer, M. M.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser heated miniature pedestal growth apparatus for single crystal optical fibers,” Rev. Sci. Instrum.55(11), 1791–1796 (1984).
[CrossRef]

Fini, J. M.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron.15(1), 61–70 (2009).
[CrossRef]

Fromzel, V.

Gaeta, C. J.

M. J. F. Digonnet, C. J. Gaeta, D. O'Meara, and H. J. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol.5(5), 642–646 (1987).
[CrossRef]

Georges, P.

Graf, T.

Hanna, M.

Ho, T. S.

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal fiber based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).

Hsu, K. Y.

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal fiber based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).

Y. S. Lin, T. C. Cheng, C. C. Tsai, K. Y. Hsu, D. Y. Jheng, C. Y. Lo, P. S. Yeh, and S. L. Huang, “High-luminance white-light point source using Ce,Sm:YAG double-clad crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1494–1496 (2010).
[CrossRef]

C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett.35(6), 811–813 (2010).
[CrossRef] [PubMed]

K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express16(16), 12264–12271 (2008).
[CrossRef] [PubMed]

Hsu, P. K.

Huang, K. Y.

Huang, S. L.

Jheng, D. Y.

Ke, C. P.

Kieleck, C.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Peretti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater.32(9), 1251–1255 (2010).
[CrossRef]

Kim, J. W.

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Fiber-laser-pumped Er:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.15(2), 361–371 (2009).
[CrossRef]

Lai, C. C.

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal fiber based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).

C. C. Lai, C. P. Ke, S. K. Liu, D. Y. Jheng, D. J. Wang, M. Y. Chen, Y. S. Li, P. S. Yeh, and S. L. Huang, “Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett.36(6), 784–786 (2011).
[CrossRef] [PubMed]

Li, Y. S.

Liao, Y. H.

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal fiber based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).

Lin, Y. S.

Y. S. Lin, T. C. Cheng, C. C. Tsai, K. Y. Hsu, D. Y. Jheng, C. Y. Lo, P. S. Yeh, and S. L. Huang, “High-luminance white-light point source using Ce,Sm:YAG double-clad crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1494–1496 (2010).
[CrossRef]

C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett.35(6), 811–813 (2010).
[CrossRef] [PubMed]

Liu, S. K.

Lo, C. Y.

Y. S. Lin, T. C. Cheng, C. C. Tsai, K. Y. Hsu, D. Y. Jheng, C. Y. Lo, P. S. Yeh, and S. L. Huang, “High-luminance white-light point source using Ce,Sm:YAG double-clad crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1494–1496 (2010).
[CrossRef]

C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett.29(5), 439–441 (2004).
[CrossRef] [PubMed]

Magel, G. A.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser heated miniature pedestal growth apparatus for single crystal optical fibers,” Rev. Sci. Instrum.55(11), 1791–1796 (1984).
[CrossRef]

Mansuripur, M.

Martial, I.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Peretti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater.32(9), 1251–1255 (2010).
[CrossRef]

Meissner, H.

Mermelstein, M. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron.15(1), 61–70 (2009).
[CrossRef]

Morishita, K.

J. Nishimura and K. Morishita, “Control of spectral characteristics of dispersive optical fibers by annealing,” J. Lightwave Technol.15(2), 294–298 (1997).
[CrossRef]

Mu, X.

Nicholson, J. W.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron.15(1), 61–70 (2009).
[CrossRef]

Nightingale, J. L.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser heated miniature pedestal growth apparatus for single crystal optical fibers,” Rev. Sci. Instrum.55(11), 1791–1796 (1984).
[CrossRef]

Nishimura, J.

J. Nishimura and K. Morishita, “Control of spectral characteristics of dispersive optical fibers by annealing,” J. Lightwave Technol.15(2), 294–298 (1997).
[CrossRef]

O'Meara, D.

M. J. F. Digonnet, C. J. Gaeta, D. O'Meara, and H. J. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol.5(5), 642–646 (1987).
[CrossRef]

Page, R.

Peretti, R.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Peretti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater.32(9), 1251–1255 (2010).
[CrossRef]

Piehler, S.

Polynkin, P.

Sahu, J. K.

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Fiber-laser-pumped Er:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.15(2), 361–371 (2009).
[CrossRef]

Salin, F.

Sangla, D.

Shaw, H. J.

M. J. F. Digonnet, C. J. Gaeta, D. O'Meara, and H. J. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol.5(5), 642–646 (1987).
[CrossRef]

Shen, D. Y.

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Fiber-laser-pumped Er:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.15(2), 361–371 (2009).
[CrossRef]

Small, D. L.

Stone, J.

J. Stone and H. E. Earl, “Surface effects and reflection refractometry of optical fibres,” Opt. Quantum Electron.8(5), 459–463 (1976).
[CrossRef]

Sun, E.

Ter-Gabrielyan, N.

Tsai, C. C.

Y. S. Lin, T. C. Cheng, C. C. Tsai, K. Y. Hsu, D. Y. Jheng, C. Y. Lo, P. S. Yeh, and S. L. Huang, “High-luminance white-light point source using Ce,Sm:YAG double-clad crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1494–1496 (2010).
[CrossRef]

C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett.35(6), 811–813 (2010).
[CrossRef] [PubMed]

Tu, S. Y.

Voss, A.

Wang, D. J.

Wang, Y. T.

Yablon, A. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron.15(1), 61–70 (2009).
[CrossRef]

Yeh, P. S.

Yoda, H.

Zelmon, D. E.

Zhuo, W. J.

Appl. Opt.

Appl. Phys. Lett.

C. A. Burrus and L. A. Coldren, “Growth of single-crystal sapphire-clad ruby fibers,” Appl. Phys. Lett.31(6), 383–385 (1977).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Fiber-laser-pumped Er:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.15(2), 361–371 (2009).
[CrossRef]

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron.15(1), 61–70 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. S. Lin, T. C. Cheng, C. C. Tsai, K. Y. Hsu, D. Y. Jheng, C. Y. Lo, P. S. Yeh, and S. L. Huang, “High-luminance white-light point source using Ce,Sm:YAG double-clad crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1494–1496 (2010).
[CrossRef]

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal fiber based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).

J. Lightwave Technol.

M. J. F. Digonnet, C. J. Gaeta, D. O'Meara, and H. J. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol.5(5), 642–646 (1987).
[CrossRef]

H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a step-index fiber,” J. Lightwave Technol.24(3), 1350–1355 (2006).
[CrossRef]

J. Nishimura and K. Morishita, “Control of spectral characteristics of dispersive optical fibers by annealing,” J. Lightwave Technol.15(2), 294–298 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Peretti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater.32(9), 1251–1255 (2010).
[CrossRef]

Opt. Quantum Electron.

J. Stone and H. E. Earl, “Surface effects and reflection refractometry of optical fibres,” Opt. Quantum Electron.8(5), 459–463 (1976).
[CrossRef]

Rev. Sci. Instrum.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser heated miniature pedestal growth apparatus for single crystal optical fibers,” Rev. Sci. Instrum.55(11), 1791–1796 (1984).
[CrossRef]

Other

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007), Chap. 3.

Schott AG data sheet.

H. Bach and N. Nuroth, eds., The Properties of Optical Glass (Springer Verlag, 1995), Chap. 2.

W. Koechner and M. Bass, Solid-State Lasers (Springer, 2003), Chap. 2.

Schott Technical information TIE-29, Refractive Index and Dispersion (2007).

M. Matsukura, O. Nakamura, S. Watanabe, A. Miyamoto, Y. Furukawa, Y. Sato, T. Taira, T. Suzudo, and H. Mifune, “Laser properties of composite Nd:GdVO4 single crystal grown by the double die EFG method,” in Conference on Lasers and Electro-Optics (CLEO 2007) Technical Digest, Baltimore (US) (Optical Society of America, May, 2007), paper CFA2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dispersion of YAG, N-SF57 bulk and capillary, and NA of the N-SF57-clad YAG crystal fiber. Dots: Index measurement data of the N-SF57 capillary.

Fig. 2
Fig. 2

Refractive index change Δn as a function of the annealing rate of N-SF57 glass. The original annealing rate is 7 °C/hr.

Fig. 3
Fig. 3

Microscope photos of (a) the glass-clad crystal fiber under growth using CD-LHPG process, (b) cross-section of N-SF57 glass capillary with inner and outer diameters of 130 and 330 μm, (c) end face of N-SF57-clad YAG crystal fiber. The diameters of core and cladding are 40 and 353 μm, respectively. The core eccentricity is 23.7 μm.

Fig. 4
Fig. 4

Intensity profiles of SF57HHT-clad YAG crystal fiber at (a) 532 nm, (b) 633 nm, (c) 1064 nm, as-grown, and (d) 1064 nm, annealed.

Fig. 5
Fig. 5

Index drop curves of the N-SF57 capillary and fiber cladding. Dots: measurement data. Curve “capillary”: by fitting the measurement data. Due to the larger measurement uncertainty at 441 nm, the curve is shown as “dashed” for the wavelengths below 639 nm. The fit index drop is 0.018 at 532 nm. Curve “cladding”: estimation of the fiber cladding by scaling curve “capillary” to 0.02 at 532 nm.

Fig. 6
Fig. 6

Intensity profiles of the N-SF57-clad YAG crystal fiber measured at (a) 780 nm, (b) 633 nm, and (c) 532 nm. (d) Simulated profile using the combination of the intensities of the lowest four modes.

Tables (1)

Tables Icon

Table 1 Thermal Parameters of Materials

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V= 2π λ aNA= 2π λ a n YAG 2 n glass 2
Δn= m n log( h x h 0 )

Metrics