Abstract

We report on the local modification of gold nanoparticle arrays by photochemical deposition of gold from solution. Our method allows to alter the localized surface plasmon resonance (LSPR) in a restricted area by exposure of gold salt (HAuCl4) to light, whereas the expansion of such sections depends on the illumination optics. The geometry parameters of the individual nanoparticles in the modified regions are characterized by SEM and AFM, while the optical properties of distinct array sections are analyzed by means of optical spectroscopy. A blueshift of the surface plasmon resonance wavelength is observed upon the deposition process. An explanation for the blueshift is found by performing calculations using an analytical dipolar interaction model (DIM), which allows us to distinguish the individual contributions of the particle geometry on the one hand and the changes in particle interaction on the other hand. The resulting simulated scattering spectra verify the blueshift of the LSPR, which can be attributed to an increase in aspect ratio of the particles during growth. Since plasmonically active nanoparticle arrays are known to be candidates for sensing applications, this method and the gained understanding can be exploited to fabricate large sensor substrates with local LSPR variations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908).
    [CrossRef]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  3. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
    [CrossRef] [PubMed]
  4. W. A. Murray, B. Auguié, and W. Barnes, “Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment,” J. Phys. Chem. C113(13), 5120–5125 (2009).
    [CrossRef]
  5. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
    [CrossRef] [PubMed]
  6. T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater.22(16), 1805–1825 (2010).
    [CrossRef] [PubMed]
  7. V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep.65(1-3), 1–38 (2009).
    [CrossRef]
  8. S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
    [CrossRef]
  9. X. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography,” Nano Lett.5(7), 1503–1507 (2005).
    [CrossRef] [PubMed]
  10. M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing,” J. Appl. Phys.109(7), 074310 (2011).
    [CrossRef]
  11. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
    [CrossRef]
  12. T. Härtling, A. Seidenstücker, P. Olk, A. Plettl, P. Ziemann, and L. M. Eng, “Controlled photochemical particle growth in two-dimensional ordered metal nanoparticle arrays,” Nanotechnology21(14), 145309 (2010).
    [CrossRef] [PubMed]
  13. T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
    [CrossRef]
  14. T. Härtling, Y. Alaverdyan, M. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C112(13), 4920–4924 (2008).
    [CrossRef]
  15. R. Kullock, S. Grafström, P. Evans, R. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B27(9), 1819–1827 (2010).
    [CrossRef]
  16. L. L. Zhao, K. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003).
    [CrossRef]
  17. N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys.123(22), 221103 (2005).
    [CrossRef] [PubMed]
  18. E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo, and J. Belloni, “Radiation-induced and chemical formation of gold clusters,” New J. Chem.22(11), 1257–1265 (1998).
    [CrossRef]
  19. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter48(24), 18178–18188 (1993).
    [CrossRef] [PubMed]
  20. W. S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/ , (1997–2012).
  21. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley and Sons, 1998).
  22. A. Wokaun, “Surface enhancement of optical fields,” Mol. Phys.56(1), 1–33 (1985).
    [CrossRef]
  23. T. Sakai, H. Enomoto, K. Torigoe, H. Sakai, and M. Abe, “Surfactant- and reducer-free synthesis of gold nanoparticles in aqueous solutions,” Colloids Surf. A Physicochem. Eng. Asp.347(1-3), 18–26 (2009).
    [CrossRef]

2011

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing,” J. Appl. Phys.109(7), 074310 (2011).
[CrossRef]

2010

T. Härtling, A. Seidenstücker, P. Olk, A. Plettl, P. Ziemann, and L. M. Eng, “Controlled photochemical particle growth in two-dimensional ordered metal nanoparticle arrays,” Nanotechnology21(14), 145309 (2010).
[CrossRef] [PubMed]

T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
[CrossRef]

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater.22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

R. Kullock, S. Grafström, P. Evans, R. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B27(9), 1819–1827 (2010).
[CrossRef]

2009

T. Sakai, H. Enomoto, K. Torigoe, H. Sakai, and M. Abe, “Surfactant- and reducer-free synthesis of gold nanoparticles in aqueous solutions,” Colloids Surf. A Physicochem. Eng. Asp.347(1-3), 18–26 (2009).
[CrossRef]

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep.65(1-3), 1–38 (2009).
[CrossRef]

W. A. Murray, B. Auguié, and W. Barnes, “Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment,” J. Phys. Chem. C113(13), 5120–5125 (2009).
[CrossRef]

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

2008

T. Härtling, Y. Alaverdyan, M. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C112(13), 4920–4924 (2008).
[CrossRef]

2007

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

2005

X. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography,” Nano Lett.5(7), 1503–1507 (2005).
[CrossRef] [PubMed]

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys.123(22), 221103 (2005).
[CrossRef] [PubMed]

2004

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

2003

L. L. Zhao, K. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003).
[CrossRef]

1998

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo, and J. Belloni, “Radiation-induced and chemical formation of gold clusters,” New J. Chem.22(11), 1257–1265 (1998).
[CrossRef]

1993

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

1985

A. Wokaun, “Surface enhancement of optical fields,” Mol. Phys.56(1), 1–33 (1985).
[CrossRef]

1908

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Abe, M.

T. Sakai, H. Enomoto, K. Torigoe, H. Sakai, and M. Abe, “Surfactant- and reducer-free synthesis of gold nanoparticles in aqueous solutions,” Colloids Surf. A Physicochem. Eng. Asp.347(1-3), 18–26 (2009).
[CrossRef]

Alaverdyan, Y.

T. Härtling, Y. Alaverdyan, M. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C112(13), 4920–4924 (2008).
[CrossRef]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Alves, E.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing,” J. Appl. Phys.109(7), 074310 (2011).
[CrossRef]

Aubard, J.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys.123(22), 221103 (2005).
[CrossRef] [PubMed]

Auguié, B.

W. A. Murray, B. Auguié, and W. Barnes, “Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment,” J. Phys. Chem. C113(13), 5120–5125 (2009).
[CrossRef]

Aussenegg, F. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys.123(22), 221103 (2005).
[CrossRef] [PubMed]

Averitt, R.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Barnes, W.

W. A. Murray, B. Auguié, and W. Barnes, “Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment,” J. Phys. Chem. C113(13), 5120–5125 (2009).
[CrossRef]

Barradas, N. P.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing,” J. Appl. Phys.109(7), 074310 (2011).
[CrossRef]

Belloni, J.

E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo, and J. Belloni, “Radiation-induced and chemical formation of gold clusters,” New J. Chem.22(11), 1257–1265 (1998).
[CrossRef]

Bigall, N. C.

T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
[CrossRef]

Cavaleiro, A.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing,” J. Appl. Phys.109(7), 074310 (2011).
[CrossRef]

Chen, S.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

Cunha, L.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing,” J. Appl. Phys.109(7), 074310 (2011).
[CrossRef]

Dmitriev, A.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Eng, L. M.

T. Härtling, A. Seidenstücker, P. Olk, A. Plettl, P. Ziemann, and L. M. Eng, “Controlled photochemical particle growth in two-dimensional ordered metal nanoparticle arrays,” Nanotechnology21(14), 145309 (2010).
[CrossRef] [PubMed]

T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
[CrossRef]

R. Kullock, S. Grafström, P. Evans, R. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B27(9), 1819–1827 (2010).
[CrossRef]

T. Härtling, Y. Alaverdyan, M. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C112(13), 4920–4924 (2008).
[CrossRef]

Enomoto, H.

T. Sakai, H. Enomoto, K. Torigoe, H. Sakai, and M. Abe, “Surfactant- and reducer-free synthesis of gold nanoparticles in aqueous solutions,” Colloids Surf. A Physicochem. Eng. Asp.347(1-3), 18–26 (2009).
[CrossRef]

Evans, P.

Eychmüller, A.

T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
[CrossRef]

Feldmann, J.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater.22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

Félidj, N.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys.123(22), 221103 (2005).
[CrossRef] [PubMed]

Fredriksson, H.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Fritz, S.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

Gachard, E.

E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo, and J. Belloni, “Radiation-induced and chemical formation of gold clusters,” New J. Chem.22(11), 1257–1265 (1998).
[CrossRef]

Grafström, S.

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

Halas, N.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Han, L.

T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
[CrossRef]

Härtling, T.

T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
[CrossRef]

T. Härtling, A. Seidenstücker, P. Olk, A. Plettl, P. Ziemann, and L. M. Eng, “Controlled photochemical particle growth in two-dimensional ordered metal nanoparticle arrays,” Nanotechnology21(14), 145309 (2010).
[CrossRef] [PubMed]

T. Härtling, Y. Alaverdyan, M. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C112(13), 4920–4924 (2008).
[CrossRef]

Hicks, E. M.

X. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography,” Nano Lett.5(7), 1503–1507 (2005).
[CrossRef] [PubMed]

Hilger, A.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

Hohenau, A.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys.123(22), 221103 (2005).
[CrossRef] [PubMed]

Hövel, H.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

Jäckel, F.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater.22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

Kabir, R.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing,” J. Appl. Phys.109(7), 074310 (2011).
[CrossRef]

Käll, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

T. Härtling, Y. Alaverdyan, M. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C112(13), 4920–4924 (2008).
[CrossRef]

Kasemo, B.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Keita, B.

E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo, and J. Belloni, “Radiation-induced and chemical formation of gold clusters,” New J. Chem.22(11), 1257–1265 (1998).
[CrossRef]

Kelly, K.

L. L. Zhao, K. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003).
[CrossRef]

Khatouri, J.

E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo, and J. Belloni, “Radiation-induced and chemical formation of gold clusters,” New J. Chem.22(11), 1257–1265 (1998).
[CrossRef]

Klar, T. A.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater.22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

Kreibig, U.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

Krenn, J. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys.123(22), 221103 (2005).
[CrossRef] [PubMed]

Kullock, R.

R. Kullock, S. Grafström, P. Evans, R. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B27(9), 1819–1827 (2010).
[CrossRef]

T. Härtling, Y. Alaverdyan, M. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C112(13), 4920–4924 (2008).
[CrossRef]

Langhammer, C.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Laurent, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys.123(22), 221103 (2005).
[CrossRef] [PubMed]

Lévi, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys.123(22), 221103 (2005).
[CrossRef] [PubMed]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Murray, W. A.

W. A. Murray, B. Auguié, and W. Barnes, “Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment,” J. Phys. Chem. C113(13), 5120–5125 (2009).
[CrossRef]

Nadjo, L.

E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo, and J. Belloni, “Radiation-induced and chemical formation of gold clusters,” New J. Chem.22(11), 1257–1265 (1998).
[CrossRef]

Oldenburg, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Olk, P.

T. Härtling, A. Seidenstücker, P. Olk, A. Plettl, P. Ziemann, and L. M. Eng, “Controlled photochemical particle growth in two-dimensional ordered metal nanoparticle arrays,” Nanotechnology21(14), 145309 (2010).
[CrossRef] [PubMed]

T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
[CrossRef]

Park, K.

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep.65(1-3), 1–38 (2009).
[CrossRef]

Plettl, A.

T. Härtling, A. Seidenstücker, P. Olk, A. Plettl, P. Ziemann, and L. M. Eng, “Controlled photochemical particle growth in two-dimensional ordered metal nanoparticle arrays,” Nanotechnology21(14), 145309 (2010).
[CrossRef] [PubMed]

T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
[CrossRef]

Pollard, R.

Remita, H.

E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo, and J. Belloni, “Radiation-induced and chemical formation of gold clusters,” New J. Chem.22(11), 1257–1265 (1998).
[CrossRef]

Rogach, A. L.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater.22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

Sakai, H.

T. Sakai, H. Enomoto, K. Torigoe, H. Sakai, and M. Abe, “Surfactant- and reducer-free synthesis of gold nanoparticles in aqueous solutions,” Colloids Surf. A Physicochem. Eng. Asp.347(1-3), 18–26 (2009).
[CrossRef]

Sakai, T.

T. Sakai, H. Enomoto, K. Torigoe, H. Sakai, and M. Abe, “Surfactant- and reducer-free synthesis of gold nanoparticles in aqueous solutions,” Colloids Surf. A Physicochem. Eng. Asp.347(1-3), 18–26 (2009).
[CrossRef]

Sau, T. K.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater.22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

Schatz, G. C.

X. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography,” Nano Lett.5(7), 1503–1507 (2005).
[CrossRef] [PubMed]

L. L. Zhao, K. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003).
[CrossRef]

Seidenstücker, A.

T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
[CrossRef]

T. Härtling, A. Seidenstücker, P. Olk, A. Plettl, P. Ziemann, and L. M. Eng, “Controlled photochemical particle growth in two-dimensional ordered metal nanoparticle arrays,” Nanotechnology21(14), 145309 (2010).
[CrossRef] [PubMed]

Sharma, V.

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep.65(1-3), 1–38 (2009).
[CrossRef]

Srinivasarao, M.

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep.65(1-3), 1–38 (2009).
[CrossRef]

Sutherland, D.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Svedendahl, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

Torigoe, K.

T. Sakai, H. Enomoto, K. Torigoe, H. Sakai, and M. Abe, “Surfactant- and reducer-free synthesis of gold nanoparticles in aqueous solutions,” Colloids Surf. A Physicochem. Eng. Asp.347(1-3), 18–26 (2009).
[CrossRef]

Torrell, M.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing,” J. Appl. Phys.109(7), 074310 (2011).
[CrossRef]

Uhlig, T.

T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

X. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography,” Nano Lett.5(7), 1503–1507 (2005).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

Vasilevskiy, M. I.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing,” J. Appl. Phys.109(7), 074310 (2011).
[CrossRef]

Vaz, F.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing,” J. Appl. Phys.109(7), 074310 (2011).
[CrossRef]

Vollmer, M.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

Wenzel, M.

T. Härtling, Y. Alaverdyan, M. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C112(13), 4920–4924 (2008).
[CrossRef]

Westcott, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Wiedwald, U.

T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

Wokaun, A.

A. Wokaun, “Surface enhancement of optical fields,” Mol. Phys.56(1), 1–33 (1985).
[CrossRef]

Zäch, M.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Zhang, X.

X. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography,” Nano Lett.5(7), 1503–1507 (2005).
[CrossRef] [PubMed]

Zhao, J.

X. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography,” Nano Lett.5(7), 1503–1507 (2005).
[CrossRef] [PubMed]

Zhao, L. L.

L. L. Zhao, K. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003).
[CrossRef]

Ziemann, P.

T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
[CrossRef]

T. Härtling, A. Seidenstücker, P. Olk, A. Plettl, P. Ziemann, and L. M. Eng, “Controlled photochemical particle growth in two-dimensional ordered metal nanoparticle arrays,” Nanotechnology21(14), 145309 (2010).
[CrossRef] [PubMed]

Adv. Mater.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater.22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Anal. Bioanal. Chem.

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

Ann. Phys.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Annu. Rev. Phys. Chem.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010).
[CrossRef]

Chem. Phys. Lett.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Colloids Surf. A Physicochem. Eng. Asp.

T. Sakai, H. Enomoto, K. Torigoe, H. Sakai, and M. Abe, “Surfactant- and reducer-free synthesis of gold nanoparticles in aqueous solutions,” Colloids Surf. A Physicochem. Eng. Asp.347(1-3), 18–26 (2009).
[CrossRef]

J. Appl. Phys.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing,” J. Appl. Phys.109(7), 074310 (2011).
[CrossRef]

J. Chem. Phys.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys.123(22), 221103 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Chem. B

L. L. Zhao, K. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003).
[CrossRef]

J. Phys. Chem. C

T. Härtling, Y. Alaverdyan, M. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C112(13), 4920–4924 (2008).
[CrossRef]

W. A. Murray, B. Auguié, and W. Barnes, “Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment,” J. Phys. Chem. C113(13), 5120–5125 (2009).
[CrossRef]

Mater. Sci. Eng. Rep.

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep.65(1-3), 1–38 (2009).
[CrossRef]

Mol. Phys.

A. Wokaun, “Surface enhancement of optical fields,” Mol. Phys.56(1), 1–33 (1985).
[CrossRef]

Nano Lett.

X. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography,” Nano Lett.5(7), 1503–1507 (2005).
[CrossRef] [PubMed]

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

Nanotechnology

T. Härtling, A. Seidenstücker, P. Olk, A. Plettl, P. Ziemann, and L. M. Eng, “Controlled photochemical particle growth in two-dimensional ordered metal nanoparticle arrays,” Nanotechnology21(14), 145309 (2010).
[CrossRef] [PubMed]

New J. Chem.

E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo, and J. Belloni, “Radiation-induced and chemical formation of gold clusters,” New J. Chem.22(11), 1257–1265 (1998).
[CrossRef]

Phys. Rev. B Condens. Matter

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter48(24), 18178–18188 (1993).
[CrossRef] [PubMed]

Other

W. S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/ , (1997–2012).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley and Sons, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Mechanism of photochemical deposition of gold from solution applied to separated sections of lithographically fabricated nanoparticle substrates. The growth of the particles can be potentially monitored while the reaction takes place by evaluating the plasmon resonance wavelength.

Fig. 2
Fig. 2

SEM (left column) and AFM (right column) pictures obtained from different spots within the same exposed array sections (increased illumination duration from top to bottom). A substantial increase in height is observed for increasing exposure times, while only a minor increase in diameter is present, leading to an increasingly spherical shape of the particles.

Fig. 3
Fig. 3

Graph (A) shows the obtained increase in height and diameter, while graph (B) depicts the evolution of the diameter dependent on height. Since the growth regime is small it can be fitted using a linear approximation. Graph (C) shows the induced change in aspect ratio h/(2R).

Fig. 4
Fig. 4

Schematics of the precipitation of Au(0) to the seed particles during irradiation. The diffusion of the activated gold species towards the seed particles shows a higher deposition rate at the top surface, which leads to the observed preferential increase in height.

Fig. 5
Fig. 5

(a) Evolution of the surface plasmon resonance wavelength during the illumination of individual particle array sections and growth due to photochemical deposition. The blueshift is 42 nm within 60 minutes of illumination (Position A → Position D). (b) Resonance wavelengths determined from a Gaussian fit of the experimental spectra.

Fig. 6
Fig. 6

Scattering spectra simulated with the dipolar interaction model (DIM) which takes the change of particle geometries and their interaction with neighboring particles into account. The simulations verify the experimentally observed blueshift of the resonance wavelength of 43 nm during photochemical growth over 60 minutes.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

(HA u 3+ C l 4 ) hυ (HA u 3+ C l 4 )* (HA u 3+ C l 3 Cl) HA u 2+ C l 3 +Cl
2HA u 2+ C l 3 HA u 3+ C l 4 +HA u + C l 2
HA u + C l 2 A u 0 +HCl+Cl .
α xy = R 2 h 2 ε m ε d 3 ε d +3 L xy ( ε m ε d ) .
L xy = g(e) 2 e 2 [ π 2 tan 1 (g(e)) ] g 2 (e) 2 ,
with g(e)= ( 1 e 2 e 2 ) 1 2  and  e 2 =1 h 2 (2R) 2 ,
σ sca = k 4 6π | α xy | 2  .
ε m,real (ω)=( 1 1 L xy ) ε d  .
C xy = 1 d 3 j0 e ( k ˜ r ˜ j + ϕ ˜ j ) r ˜ j 3 { k ˜ 2 [ r ˜ j 2 x ˜ j 2 ]+ 1i k ˜ r ˜ j r ˜ j 2 [ 3 x ˜ j 2 r ˜ j 2 ] },
α array = α xy 1+ C xy α xy  .
α array,xy = R 2 h 2 ε m ε d 3 ε d +3 L array,xy ( ε m ε d )
L array,xy = L xy + R 2 h 6 C xy  .
2R=1.75h+87[nm].
L xy B 0 + B 1 h 2R
L eff,xy B 0 + B 1 h 2R + R 2 h 6 C xy ,

Metrics