Abstract

We report near-infrared persistent luminescence and photochromism in Eu2+-Nd3+-codoped CaAl2O4 ceramics, a well-known blue persistent phosphor. After irradiation with UV light, the color of the sample body changed from white to purple. From the reflectance spectrum, the color center created by UV irradiation has a broad absorption band at 500 nm, which results in pink coloration. The purple color of the sample just after stopping UV irradiation is caused by mixing the blue persistent luminescence, due to the Eu2+:4f65d1→4f7 transition and the pink photochromic coloration. The sample also shows near-infrared persistent luminescence originating from the Nd3+:4F3/24IJ/2 transitions in addition to the blue persistent luminescence at 440 nm. Because of the similarity between Eu2+ and Nd3+ afterglow decay profiles, the electron traps contributing to both persistent luminescences are regarded as identical. The role of photo-oxidation, electron trapping and de-trapping are also discussed with regard to the persistent luminescence and photochromism.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (Taylor & Francis, 2007).
  2. M. Sonoda, M. Takano, J. Miyahara, and H. Kato, “Computed radiography utilizing scanning laser stimulated luminescence,” Radiology148(3), 833–838 (1983).
    [PubMed]
  3. R. A. Soref, “Optical memory characteristics of a SrS(Eu, Sm) phosphor,” Proc. IEEE54(3), 425–426 (1966).
    [CrossRef]
  4. S. Jutamulia, G. M. Storti, J. Lindmayer, and W. Seiderman, “Use of electron trapping materials in optical signal processing. 1: Parallel Boolean logic,” Appl. Opt.29(32), 4806–4811 (1990).
    [CrossRef] [PubMed]
  5. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
    [CrossRef]
  6. H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
    [CrossRef]
  7. H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O3: Eu2+, Nd3+,” J. Lumin.72–74, 287–289 (1997).
    [CrossRef]
  8. K. Takahashi, “Photostimulated luminescence (PSL) and color centers in BaFX:Eu2+ (X = Cl, Br, I) phosphors,” J. Electrochem. Soc.132(6), 1492–1494 (1985).
    [CrossRef]
  9. M. Akiyama, “Blue-green light photochromism in europium doped BaMgSiO4,” Appl. Phys. Lett.97(18), 181905 (2010).
    [CrossRef]
  10. Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater.59(8), 3174–3183 (2011).
    [CrossRef]
  11. K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
    [CrossRef]
  12. P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005).
    [CrossRef]
  13. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
    [CrossRef]
  14. J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C9(12), 2322–2325 (2012).
    [CrossRef]
  15. J. Hölsä, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1-2), 56–59 (2004).
    [CrossRef]
  16. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
    [CrossRef] [PubMed]
  17. Y. Teng, J. Zhou, Z. Ma, M. M. Smedskjaer, and J. Qiu, “Persistent near infrared phosphorescence from rare earth ions co-doped strontium aluminate phosphors,” J. Electrochem. Soc.158(2), K17–K19 (2011).
    [CrossRef]
  18. J. N. Yao, K. Hashimoto, and A. Fujishima, “Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light,” Nature355(6361), 624–626 (1992).
    [CrossRef]
  19. M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn.119(1386), 105–109 (2011).
    [CrossRef]
  20. A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas.45(3-6), 497–499 (2010).
    [CrossRef]
  21. Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
    [CrossRef] [PubMed]

2012

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C9(12), 2322–2325 (2012).
[CrossRef]

2011

Y. Teng, J. Zhou, Z. Ma, M. M. Smedskjaer, and J. Qiu, “Persistent near infrared phosphorescence from rare earth ions co-doped strontium aluminate phosphors,” J. Electrochem. Soc.158(2), K17–K19 (2011).
[CrossRef]

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater.59(8), 3174–3183 (2011).
[CrossRef]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn.119(1386), 105–109 (2011).
[CrossRef]

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef] [PubMed]

2010

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas.45(3-6), 497–499 (2010).
[CrossRef]

M. Akiyama, “Blue-green light photochromism in europium doped BaMgSiO4,” Appl. Phys. Lett.97(18), 181905 (2010).
[CrossRef]

2006

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

2005

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005).
[CrossRef]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

2004

J. Hölsä, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1-2), 56–59 (2004).
[CrossRef]

1997

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O3: Eu2+, Nd3+,” J. Lumin.72–74, 287–289 (1997).
[CrossRef]

1996

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

1992

J. N. Yao, K. Hashimoto, and A. Fujishima, “Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light,” Nature355(6361), 624–626 (1992).
[CrossRef]

1990

1985

K. Takahashi, “Photostimulated luminescence (PSL) and color centers in BaFX:Eu2+ (X = Cl, Br, I) phosphors,” J. Electrochem. Soc.132(6), 1492–1494 (1985).
[CrossRef]

1983

M. Sonoda, M. Takano, J. Miyahara, and H. Kato, “Computed radiography utilizing scanning laser stimulated luminescence,” Radiology148(3), 833–838 (1983).
[PubMed]

1966

R. A. Soref, “Optical memory characteristics of a SrS(Eu, Sm) phosphor,” Proc. IEEE54(3), 425–426 (1966).
[CrossRef]

Aitasalo, T.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

J. Hölsä, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1-2), 56–59 (2004).
[CrossRef]

Akiyama, M.

M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn.119(1386), 105–109 (2011).
[CrossRef]

M. Akiyama, “Blue-green light photochromism in europium doped BaMgSiO4,” Appl. Phys. Lett.97(18), 181905 (2010).
[CrossRef]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Bessière, A.

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas.45(3-6), 497–499 (2010).
[CrossRef]

Botterman, J.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Clabau, F.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Deniard, P.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Dorenbos, P.

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005).
[CrossRef]

Fujishima, A.

J. N. Yao, K. Hashimoto, and A. Fujishima, “Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light,” Nature355(6361), 624–626 (1992).
[CrossRef]

Garcia, A.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Gong, Y.

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater.59(8), 3174–3183 (2011).
[CrossRef]

Gourier, D.

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas.45(3-6), 497–499 (2010).
[CrossRef]

Hanada, T.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

Hashimoto, K.

J. N. Yao, K. Hashimoto, and A. Fujishima, “Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light,” Nature355(6361), 624–626 (1992).
[CrossRef]

Hölsä, J.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

J. Hölsä, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1-2), 56–59 (2004).
[CrossRef]

Jobic, S.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Jungner, H.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

J. Hölsä, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1-2), 56–59 (2004).
[CrossRef]

Jutamulia, S.

Katayama, Y.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C9(12), 2322–2325 (2012).
[CrossRef]

Kato, H.

M. Sonoda, M. Takano, J. Miyahara, and H. Kato, “Computed radiography utilizing scanning laser stimulated luminescence,” Radiology148(3), 833–838 (1983).
[PubMed]

Korthout, K.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Lastusaari, M.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

J. Hölsä, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1-2), 56–59 (2004).
[CrossRef]

Le Mercier, T.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Lecointre, A.

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas.45(3-6), 497–499 (2010).
[CrossRef]

Li, Y.

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater.59(8), 3174–3183 (2011).
[CrossRef]

Lindmayer, J.

Liu, F.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef] [PubMed]

Lu, Y.-Y.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef] [PubMed]

Ma, Z.

Y. Teng, J. Zhou, Z. Ma, M. M. Smedskjaer, and J. Qiu, “Persistent near infrared phosphorescence from rare earth ions co-doped strontium aluminate phosphors,” J. Electrochem. Soc.158(2), K17–K19 (2011).
[CrossRef]

Matsuzawa, T.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O3: Eu2+, Nd3+,” J. Lumin.72–74, 287–289 (1997).
[CrossRef]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Miyahara, J.

M. Sonoda, M. Takano, J. Miyahara, and H. Kato, “Computed radiography utilizing scanning laser stimulated luminescence,” Radiology148(3), 833–838 (1983).
[PubMed]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Nakanishi, T.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C9(12), 2322–2325 (2012).
[CrossRef]

Niittykoski, J.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

J. Hölsä, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1-2), 56–59 (2004).
[CrossRef]

Nikitenko, S.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Pan, Z.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef] [PubMed]

Poelman, D.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Qiu, J.

Y. Teng, J. Zhou, Z. Ma, M. M. Smedskjaer, and J. Qiu, “Persistent near infrared phosphorescence from rare earth ions co-doped strontium aluminate phosphors,” J. Electrochem. Soc.158(2), K17–K19 (2011).
[CrossRef]

Rocquefelte, X.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Sakai, K.

M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn.119(1386), 105–109 (2011).
[CrossRef]

Seiderman, W.

Smedskjaer, M. M.

Y. Teng, J. Zhou, Z. Ma, M. M. Smedskjaer, and J. Qiu, “Persistent near infrared phosphorescence from rare earth ions co-doped strontium aluminate phosphors,” J. Electrochem. Soc.158(2), K17–K19 (2011).
[CrossRef]

Smet, P. F.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Sonoda, M.

M. Sonoda, M. Takano, J. Miyahara, and H. Kato, “Computed radiography utilizing scanning laser stimulated luminescence,” Radiology148(3), 833–838 (1983).
[PubMed]

Soref, R. A.

R. A. Soref, “Optical memory characteristics of a SrS(Eu, Sm) phosphor,” Proc. IEEE54(3), 425–426 (1966).
[CrossRef]

Spano, G.

J. Hölsä, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1-2), 56–59 (2004).
[CrossRef]

Storti, G. M.

Takahashi, K.

K. Takahashi, “Photostimulated luminescence (PSL) and color centers in BaFX:Eu2+ (X = Cl, Br, I) phosphors,” J. Electrochem. Soc.132(6), 1492–1494 (1985).
[CrossRef]

Takano, M.

M. Sonoda, M. Takano, J. Miyahara, and H. Kato, “Computed radiography utilizing scanning laser stimulated luminescence,” Radiology148(3), 833–838 (1983).
[PubMed]

Takasaki, H.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Tanabe, S.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C9(12), 2322–2325 (2012).
[CrossRef]

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

Teng, Y.

Y. Teng, J. Zhou, Z. Ma, M. M. Smedskjaer, and J. Qiu, “Persistent near infrared phosphorescence from rare earth ions co-doped strontium aluminate phosphors,” J. Electrochem. Soc.158(2), K17–K19 (2011).
[CrossRef]

Ueda, J.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C9(12), 2322–2325 (2012).
[CrossRef]

Van den Eeckhout, K.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Viana, B.

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas.45(3-6), 497–499 (2010).
[CrossRef]

Wang, Y.

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater.59(8), 3174–3183 (2011).
[CrossRef]

Whangbo, M.-H.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

Xu, X.

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater.59(8), 3174–3183 (2011).
[CrossRef]

Yamada, H.

M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn.119(1386), 105–109 (2011).
[CrossRef]

Yamamoto, H.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O3: Eu2+, Nd3+,” J. Lumin.72–74, 287–289 (1997).
[CrossRef]

Yao, J. N.

J. N. Yao, K. Hashimoto, and A. Fujishima, “Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light,” Nature355(6361), 624–626 (1992).
[CrossRef]

Zhang, F.

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater.59(8), 3174–3183 (2011).
[CrossRef]

Zhou, J.

Y. Teng, J. Zhou, Z. Ma, M. M. Smedskjaer, and J. Qiu, “Persistent near infrared phosphorescence from rare earth ions co-doped strontium aluminate phosphors,” J. Electrochem. Soc.158(2), K17–K19 (2011).
[CrossRef]

Acta Mater.

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater.59(8), 3174–3183 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Akiyama, “Blue-green light photochromism in europium doped BaMgSiO4,” Appl. Phys. Lett.97(18), 181905 (2010).
[CrossRef]

Chem. Mater.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater.17(15), 3904–3912 (2005).
[CrossRef]

J. Alloy. Comp.

J. Hölsä, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1-2), 56–59 (2004).
[CrossRef]

J. Ceram. Soc. Jpn.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

M. Akiyama, H. Yamada, and K. Sakai, “Multi color density photochromism in reduced tridymite BaMgSiO4 by wavelength of irradiation light,” J. Ceram. Soc. Jpn.119(1386), 105–109 (2011).
[CrossRef]

J. Electrochem. Soc.

Y. Teng, J. Zhou, Z. Ma, M. M. Smedskjaer, and J. Qiu, “Persistent near infrared phosphorescence from rare earth ions co-doped strontium aluminate phosphors,” J. Electrochem. Soc.158(2), K17–K19 (2011).
[CrossRef]

K. Takahashi, “Photostimulated luminescence (PSL) and color centers in BaFX:Eu2+ (X = Cl, Br, I) phosphors,” J. Electrochem. Soc.132(6), 1492–1494 (1985).
[CrossRef]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc.152(7), H107–H110 (2005).
[CrossRef]

J. Lumin.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O3: Eu2+, Nd3+,” J. Lumin.72–74, 287–289 (1997).
[CrossRef]

J. Phys. Chem. B

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

Nat. Mater.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef] [PubMed]

Nature

J. N. Yao, K. Hashimoto, and A. Fujishima, “Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light,” Nature355(6361), 624–626 (1992).
[CrossRef]

Phys. Rev. B

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Phys. Status Solidi C

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C9(12), 2322–2325 (2012).
[CrossRef]

Proc. IEEE

R. A. Soref, “Optical memory characteristics of a SrS(Eu, Sm) phosphor,” Proc. IEEE54(3), 425–426 (1966).
[CrossRef]

Radiat. Meas.

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas.45(3-6), 497–499 (2010).
[CrossRef]

Radiology

M. Sonoda, M. Takano, J. Miyahara, and H. Kato, “Computed radiography utilizing scanning laser stimulated luminescence,” Radiology148(3), 833–838 (1983).
[PubMed]

Other

W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (Taylor & Francis, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Photograph of CaAl2O4:Eu2+-Nd3+ (a) before UV irradiation, (b) after UV irradiation, (c) after UV irradiation under dark field, (d) 1 hour after UV irradiation.

Fig. 2
Fig. 2

Excitation time variation of the reflectance spectrum of CaAl2O4:Eu2+-Nd3+ (1, 5, 20, 60, 280 s) and the difference spectrum between reflectance at 280 s and 1 s.

Fig. 3
Fig. 3

Photoluminescence by 370 nm excitation and persistent luminescence spectra 5 s after stopping 5 min of 330 nm excitation.

Fig. 4
Fig. 4

Afterglow curves for the persistent luminescence of Eu2+ and Nd3+ in CaAl2O4:Eu2+ -Nd3+ after 10 min of excitation by 330 nm light.

Metrics