Abstract

We report a comprehensive study of γ-irradiation on optical, electrical, and laser characteristics of pure and transition-metal doped single and polycrystalline ZnS and ZnSe. Polished pure, Cr-doped, and Ag, Au, Cu, Al, In, and Mn co-doped ZnS and ZnSe crystals after absorption and electro-conductivity characterization were γ-irradiated at doses of 1.28x108 rad at −3°C. Dynamic room temperature absorption studies, electro-conductivity measurements, and mid-IR lasing were performed after different exposition times of crystals at room temperature. Cr:ZnSe and Cr:ZnS lasers based on identical γ-irradiated and non-irradiated crystals featured very similar pump thresholds, slope efficiencies, and output powers. New fluorescence band spanning over 1.3-2.1 μm in the γ-irradiated Au:Cr:ZnS was attributed to 3A23T2(F) transition of Cr4+.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
    [CrossRef]
  2. S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5-μm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
    [CrossRef]
  3. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
    [CrossRef]
  4. I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In)GaAsN-GaAsSb type-II ‘W’ quantum-well lasers for emission at (λ=1.55 μm,),” Appl. Phys. Lett.83(14), 2742–2744 (2003).
    [CrossRef]
  5. I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II ‘W’ quantum-well lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
    [CrossRef]
  6. L. J. Mawst, J. Yu.-T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown dilute-nitride type-II quantum wells,” IEEE Sel. Top. Quantum Electron.14(4), 979–991 (2008).
    [CrossRef]
  7. N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
    [CrossRef]
  8. N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ: 3.4 μm and λ: 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
    [CrossRef]
  9. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
    [CrossRef]
  10. G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. O. Ndap, X. Ma, and A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett.24(1), 19–21 (1999).
    [CrossRef] [PubMed]
  11. I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater.26(4), 395–412 (2004).
    [CrossRef]
  12. S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003).
    [CrossRef]
  13. S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 810–822 (2007).
    [CrossRef]
  14. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev.4(1), 21–41 (2010).
    [CrossRef]
  15. V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010).
    [CrossRef]
  16. V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II-VI semiconductors,” J. Lumin.125(1-2), 184–195 (2007).
    [CrossRef]
  17. A. Halperin and R. Pinker, “Color centers in ZnS single crystals,” J. Chem. Phys.34(6), 2031–2035 (1961).
    [CrossRef]
  18. F. C. Rong, W. A. Barry, J. F. Donegan, and G. D. Watkins, “Vacancies, interstitials, and close Frenkel pairs on the zinc sublattice of ZnSe,” Phys. Rev. B Condens. Matter54(11), 7779–7788 (1996).
    [CrossRef] [PubMed]
  19. K. Chow and G. Watkins, “Electronic structure and migrational properties of interstitial zinc in ZnSe,” Phys. Rev. B60(12), 8628–8639 (1999).
    [CrossRef]
  20. M. Karai, K. Kido, H. Naito, K. Kurosawa, M. Okuda, T. Fujino, and M. Kitagawa, “Defect states in ZnSe single crystals irradiated with gamma rays,” J. Appl. Phys.69(1), 291–298 (1991).
    [CrossRef]
  21. F. Rong and G. D. Watkins, “Optically detected magnetic-resonance observation of the isolated zinc interstitial in irradiated ZnSe,” Phys. Rev. Lett.58(14), 1486–1489 (1987).
    [CrossRef] [PubMed]
  22. G. Watkins, “EPR observation of close Frenkel pairs in irradiated ZnSe,” Phys. Rev. Lett.33(4), 223–225 (1974).
    [CrossRef]
  23. A. K. C. Ho and K. C. Kao, “The hall effect in gamma-irradiated ZnSe,” Radiat. Eff.17(1–2), 137–138 (1973).
    [CrossRef]
  24. R. Detweiler and B. Kulp, “Annealing of radiation damage in ZnSe,” Phys. Rev.146(2), 513–516 (1966).
    [CrossRef]
  25. B. Kulp and R. Detweiler, “Threshold for electron radiation damage in ZnSe,” Phys. Rev.129(6), 2422–2424 (1963).
    [CrossRef]
  26. M. M. Sychov, E. V. Komarov, L. V. Grigor’ev, S. V. Myakin, I. V. Vasil’eva, A. I. Kuznetsov, and V. P. Usacheva, “Modification of zinc sulfide phosphors by irradiation with gamma-ray photons and electrons,” Semiconductors40(9), 1016–1020 (2006).
    [CrossRef]
  27. C. Kim, J. M. Peppers, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Chromium doped ZnSe and ZnS gain media for optically and electrically pumped mid-IR lasers,” Proc. SPIE7193, 71932R, 71932R-11 (2009).
    [CrossRef]
  28. T. T. Basiev and S. B. Mirov, in Room Temperature Tunable Color Center Lasers, Laser Science and Technology Book Series, V. S. Letokhov, C. V. Shank, Y. R. Shen, and H. Walter, eds. (Gordon and Breach Science Publishers/Harwood Academic Publishers, 1994), Vol. 16, pp. 1–160.
  29. P. J. Dean, B. J. Fitzpatrick, and R. N. Bhargava, “Optical properties of ZnSe doped with Ag and Au,” Phys. Rev. B26(4), 2016–2035 (1982).
    [CrossRef]
  30. Y. Uehara, “Electronic structure of luminescence center of ZnS:Ag phosphors,” J. Chem. Phys.62(8), 2982–2995 (1975).
    [CrossRef]
  31. S. Emura and S. Masunaga, “Pressure effects on the absorption spectra of KBr:Ag+,” Phys. Rev. B Condens. Matter49(2), 849–853 (1994).
    [CrossRef] [PubMed]
  32. V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium‐activated forsterite for near‐infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett.53(26), 2590–2592 (1988).
    [CrossRef]
  33. N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron.18(1), 73–74 (1988).
    [CrossRef]
  34. M. Yu. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Cr4+-doped Li2CaSiO4 crystal: growth and spectroscopic properties,” Opt. Commun.231(1-6), 273–280 (2004).
    [CrossRef]
  35. I. Broser, H. Maier, and H.-J. Schulz, “Fine structure of the infrared absorption and emission spectra of Cu2+ in ZnS and CdS crystals,” Phys. Rev.140(6A), A2135–A2138 (1965).
    [CrossRef]
  36. F. Träger, ed., Handbook of Lasers and Optics (Springer, 2007).

2012 (2)

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ: 3.4 μm and λ: 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

2010 (2)

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev.4(1), 21–41 (2010).
[CrossRef]

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010).
[CrossRef]

2009 (1)

C. Kim, J. M. Peppers, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Chromium doped ZnSe and ZnS gain media for optically and electrically pumped mid-IR lasers,” Proc. SPIE7193, 71932R, 71932R-11 (2009).
[CrossRef]

2008 (1)

L. J. Mawst, J. Yu.-T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown dilute-nitride type-II quantum wells,” IEEE Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

2007 (2)

V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II-VI semiconductors,” J. Lumin.125(1-2), 184–195 (2007).
[CrossRef]

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 810–822 (2007).
[CrossRef]

2006 (1)

M. M. Sychov, E. V. Komarov, L. V. Grigor’ev, S. V. Myakin, I. V. Vasil’eva, A. I. Kuznetsov, and V. P. Usacheva, “Modification of zinc sulfide phosphors by irradiation with gamma-ray photons and electrons,” Semiconductors40(9), 1016–1020 (2006).
[CrossRef]

2005 (1)

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5-μm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

2004 (4)

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II ‘W’ quantum-well lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
[CrossRef]

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

M. Yu. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Cr4+-doped Li2CaSiO4 crystal: growth and spectroscopic properties,” Opt. Commun.231(1-6), 273–280 (2004).
[CrossRef]

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater.26(4), 395–412 (2004).
[CrossRef]

2003 (2)

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In)GaAsN-GaAsSb type-II ‘W’ quantum-well lasers for emission at (λ=1.55 μm,),” Appl. Phys. Lett.83(14), 2742–2744 (2003).
[CrossRef]

1999 (2)

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. O. Ndap, X. Ma, and A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett.24(1), 19–21 (1999).
[CrossRef] [PubMed]

K. Chow and G. Watkins, “Electronic structure and migrational properties of interstitial zinc in ZnSe,” Phys. Rev. B60(12), 8628–8639 (1999).
[CrossRef]

1996 (2)

F. C. Rong, W. A. Barry, J. F. Donegan, and G. D. Watkins, “Vacancies, interstitials, and close Frenkel pairs on the zinc sublattice of ZnSe,” Phys. Rev. B Condens. Matter54(11), 7779–7788 (1996).
[CrossRef] [PubMed]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

1995 (1)

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
[CrossRef]

1994 (1)

S. Emura and S. Masunaga, “Pressure effects on the absorption spectra of KBr:Ag+,” Phys. Rev. B Condens. Matter49(2), 849–853 (1994).
[CrossRef] [PubMed]

1991 (1)

M. Karai, K. Kido, H. Naito, K. Kurosawa, M. Okuda, T. Fujino, and M. Kitagawa, “Defect states in ZnSe single crystals irradiated with gamma rays,” J. Appl. Phys.69(1), 291–298 (1991).
[CrossRef]

1988 (2)

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium‐activated forsterite for near‐infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett.53(26), 2590–2592 (1988).
[CrossRef]

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron.18(1), 73–74 (1988).
[CrossRef]

1987 (1)

F. Rong and G. D. Watkins, “Optically detected magnetic-resonance observation of the isolated zinc interstitial in irradiated ZnSe,” Phys. Rev. Lett.58(14), 1486–1489 (1987).
[CrossRef] [PubMed]

1982 (1)

P. J. Dean, B. J. Fitzpatrick, and R. N. Bhargava, “Optical properties of ZnSe doped with Ag and Au,” Phys. Rev. B26(4), 2016–2035 (1982).
[CrossRef]

1975 (1)

Y. Uehara, “Electronic structure of luminescence center of ZnS:Ag phosphors,” J. Chem. Phys.62(8), 2982–2995 (1975).
[CrossRef]

1974 (1)

G. Watkins, “EPR observation of close Frenkel pairs in irradiated ZnSe,” Phys. Rev. Lett.33(4), 223–225 (1974).
[CrossRef]

1973 (1)

A. K. C. Ho and K. C. Kao, “The hall effect in gamma-irradiated ZnSe,” Radiat. Eff.17(1–2), 137–138 (1973).
[CrossRef]

1966 (1)

R. Detweiler and B. Kulp, “Annealing of radiation damage in ZnSe,” Phys. Rev.146(2), 513–516 (1966).
[CrossRef]

1965 (1)

I. Broser, H. Maier, and H.-J. Schulz, “Fine structure of the infrared absorption and emission spectra of Cu2+ in ZnS and CdS crystals,” Phys. Rev.140(6A), A2135–A2138 (1965).
[CrossRef]

1963 (1)

B. Kulp and R. Detweiler, “Threshold for electron radiation damage in ZnSe,” Phys. Rev.129(6), 2422–2424 (1963).
[CrossRef]

1961 (1)

A. Halperin and R. Pinker, “Color centers in ZnS single crystals,” J. Chem. Phys.34(6), 2031–2035 (1961).
[CrossRef]

Akimov, V. A.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010).
[CrossRef]

Alfano, R. R.

M. Yu. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Cr4+-doped Li2CaSiO4 crystal: growth and spectroscopic properties,” Opt. Commun.231(1-6), 273–280 (2004).
[CrossRef]

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium‐activated forsterite for near‐infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett.53(26), 2590–2592 (1988).
[CrossRef]

Angert, N. B.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron.18(1), 73–74 (1988).
[CrossRef]

Badikov, V. V.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003).
[CrossRef]

Bai, Y.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ: 3.4 μm and λ: 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Bandyopadhyay, N.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ: 3.4 μm and λ: 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

Bank, S. R.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5-μm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

Barry, W. A.

F. C. Rong, W. A. Barry, J. F. Donegan, and G. D. Watkins, “Vacancies, interstitials, and close Frenkel pairs on the zinc sublattice of ZnSe,” Phys. Rev. B Condens. Matter54(11), 7779–7788 (1996).
[CrossRef] [PubMed]

Bartoli, F. J.

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
[CrossRef]

Bhargava, R. N.

P. J. Dean, B. J. Fitzpatrick, and R. N. Bhargava, “Optical properties of ZnSe doped with Ag and Au,” Phys. Rev. B26(4), 2016–2035 (1982).
[CrossRef]

Borodin, N. I.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron.18(1), 73–74 (1988).
[CrossRef]

Broser, I.

I. Broser, H. Maier, and H.-J. Schulz, “Fine structure of the infrared absorption and emission spectra of Cu2+ in ZnS and CdS crystals,” Phys. Rev.140(6A), A2135–A2138 (1965).
[CrossRef]

Burger, A.

Bykov, A. B.

M. Yu. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Cr4+-doped Li2CaSiO4 crystal: growth and spectroscopic properties,” Opt. Commun.231(1-6), 273–280 (2004).
[CrossRef]

Carrig, T. J.

Chow, K.

K. Chow and G. Watkins, “Electronic structure and migrational properties of interstitial zinc in ZnSe,” Phys. Rev. B60(12), 8628–8639 (1999).
[CrossRef]

Dean, P. J.

P. J. Dean, B. J. Fitzpatrick, and R. N. Bhargava, “Optical properties of ZnSe doped with Ag and Au,” Phys. Rev. B26(4), 2016–2035 (1982).
[CrossRef]

DeLoach, L. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

Detweiler, R.

R. Detweiler and B. Kulp, “Annealing of radiation damage in ZnSe,” Phys. Rev.146(2), 513–516 (1966).
[CrossRef]

B. Kulp and R. Detweiler, “Threshold for electron radiation damage in ZnSe,” Phys. Rev.129(6), 2422–2424 (1963).
[CrossRef]

Donegan, J. F.

F. C. Rong, W. A. Barry, J. F. Donegan, and G. D. Watkins, “Vacancies, interstitials, and close Frenkel pairs on the zinc sublattice of ZnSe,” Phys. Rev. B Condens. Matter54(11), 7779–7788 (1996).
[CrossRef] [PubMed]

Emura, S.

S. Emura and S. Masunaga, “Pressure effects on the absorption spectra of KBr:Ag+,” Phys. Rev. B Condens. Matter49(2), 849–853 (1994).
[CrossRef] [PubMed]

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 810–822 (2007).
[CrossRef]

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev.4(1), 21–41 (2010).
[CrossRef]

C. Kim, J. M. Peppers, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Chromium doped ZnSe and ZnS gain media for optically and electrically pumped mid-IR lasers,” Proc. SPIE7193, 71932R, 71932R-11 (2009).
[CrossRef]

V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II-VI semiconductors,” J. Lumin.125(1-2), 184–195 (2007).
[CrossRef]

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003).
[CrossRef]

Fitzpatrick, B. J.

P. J. Dean, B. J. Fitzpatrick, and R. N. Bhargava, “Optical properties of ZnSe doped with Ag and Au,” Phys. Rev. B26(4), 2016–2035 (1982).
[CrossRef]

Frolov, M. P.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010).
[CrossRef]

Fujino, T.

M. Karai, K. Kido, H. Naito, K. Kurosawa, M. Okuda, T. Fujino, and M. Kitagawa, “Defect states in ZnSe single crystals irradiated with gamma rays,” J. Appl. Phys.69(1), 291–298 (1991).
[CrossRef]

Gallian, A.

V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II-VI semiconductors,” J. Lumin.125(1-2), 184–195 (2007).
[CrossRef]

Gapontsev, D.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003).
[CrossRef]

Gapontsev, V.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003).
[CrossRef]

Garmash, V. M.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron.18(1), 73–74 (1988).
[CrossRef]

Gayen, S. K.

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium‐activated forsterite for near‐infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett.53(26), 2590–2592 (1988).
[CrossRef]

Goddard, L. L.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5-μm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

Graham, K.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003).
[CrossRef]

Grigor’ev, L. V.

M. M. Sychov, E. V. Komarov, L. V. Grigor’ev, S. V. Myakin, I. V. Vasil’eva, A. I. Kuznetsov, and V. P. Usacheva, “Modification of zinc sulfide phosphors by irradiation with gamma-ray photons and electrons,” Semiconductors40(9), 1016–1020 (2006).
[CrossRef]

Halperin, A.

A. Halperin and R. Pinker, “Color centers in ZnS single crystals,” J. Chem. Phys.34(6), 2031–2035 (1961).
[CrossRef]

Harris, J. S.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5-μm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

Ho, A. K. C.

A. K. C. Ho and K. C. Kao, “The hall effect in gamma-irradiated ZnSe,” Radiat. Eff.17(1–2), 137–138 (1973).
[CrossRef]

Hoffman, C. A.

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
[CrossRef]

Huang, J. Yu.-T.

L. J. Mawst, J. Yu.-T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown dilute-nitride type-II quantum wells,” IEEE Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

Kao, K. C.

A. K. C. Ho and K. C. Kao, “The hall effect in gamma-irradiated ZnSe,” Radiat. Eff.17(1–2), 137–138 (1973).
[CrossRef]

Karai, M.

M. Karai, K. Kido, H. Naito, K. Kurosawa, M. Okuda, T. Fujino, and M. Kitagawa, “Defect states in ZnSe single crystals irradiated with gamma rays,” J. Appl. Phys.69(1), 291–298 (1991).
[CrossRef]

Kido, K.

M. Karai, K. Kido, H. Naito, K. Kurosawa, M. Okuda, T. Fujino, and M. Kitagawa, “Defect states in ZnSe single crystals irradiated with gamma rays,” J. Appl. Phys.69(1), 291–298 (1991).
[CrossRef]

Kim, C.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev.4(1), 21–41 (2010).
[CrossRef]

C. Kim, J. M. Peppers, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Chromium doped ZnSe and ZnS gain media for optically and electrically pumped mid-IR lasers,” Proc. SPIE7193, 71932R, 71932R-11 (2009).
[CrossRef]

Kitagawa, M.

M. Karai, K. Kido, H. Naito, K. Kurosawa, M. Okuda, T. Fujino, and M. Kitagawa, “Defect states in ZnSe single crystals irradiated with gamma rays,” J. Appl. Phys.69(1), 291–298 (1991).
[CrossRef]

Komarov, E. V.

M. M. Sychov, E. V. Komarov, L. V. Grigor’ev, S. V. Myakin, I. V. Vasil’eva, A. I. Kuznetsov, and V. P. Usacheva, “Modification of zinc sulfide phosphors by irradiation with gamma-ray photons and electrons,” Semiconductors40(9), 1016–1020 (2006).
[CrossRef]

Korostelin, Yu. V.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010).
[CrossRef]

Kozlovsky, V. I.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010).
[CrossRef]

Krupke, W. F.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

Kuech, T. F.

L. J. Mawst, J. Yu.-T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown dilute-nitride type-II quantum wells,” IEEE Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

Kulp, B.

R. Detweiler and B. Kulp, “Annealing of radiation damage in ZnSe,” Phys. Rev.146(2), 513–516 (1966).
[CrossRef]

B. Kulp and R. Detweiler, “Threshold for electron radiation damage in ZnSe,” Phys. Rev.129(6), 2422–2424 (1963).
[CrossRef]

Kurosawa, K.

M. Karai, K. Kido, H. Naito, K. Kurosawa, M. Okuda, T. Fujino, and M. Kitagawa, “Defect states in ZnSe single crystals irradiated with gamma rays,” J. Appl. Phys.69(1), 291–298 (1991).
[CrossRef]

Kuznetsov, A. I.

M. M. Sychov, E. V. Komarov, L. V. Grigor’ev, S. V. Myakin, I. V. Vasil’eva, A. I. Kuznetsov, and V. P. Usacheva, “Modification of zinc sulfide phosphors by irradiation with gamma-ray photons and electrons,” Semiconductors40(9), 1016–1020 (2006).
[CrossRef]

Landman, A. I.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010).
[CrossRef]

Ma, X.

Maier, H.

I. Broser, H. Maier, and H.-J. Schulz, “Fine structure of the infrared absorption and emission spectra of Cu2+ in ZnS and CdS crystals,” Phys. Rev.140(6A), A2135–A2138 (1965).
[CrossRef]

Martovitsky, V. P.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010).
[CrossRef]

Martyshkin, D.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev.4(1), 21–41 (2010).
[CrossRef]

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 810–822 (2007).
[CrossRef]

Martyshkin, D. V.

C. Kim, J. M. Peppers, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Chromium doped ZnSe and ZnS gain media for optically and electrically pumped mid-IR lasers,” Proc. SPIE7193, 71932R, 71932R-11 (2009).
[CrossRef]

Masunaga, S.

S. Emura and S. Masunaga, “Pressure effects on the absorption spectra of KBr:Ag+,” Phys. Rev. B Condens. Matter49(2), 849–853 (1994).
[CrossRef] [PubMed]

Mawst, L. J.

L. J. Mawst, J. Yu.-T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown dilute-nitride type-II quantum wells,” IEEE Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II ‘W’ quantum-well lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In)GaAsN-GaAsSb type-II ‘W’ quantum-well lasers for emission at (λ=1.55 μm,),” Appl. Phys. Lett.83(14), 2742–2744 (2003).
[CrossRef]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II ‘W’ quantum-well lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In)GaAsN-GaAsSb type-II ‘W’ quantum-well lasers for emission at (λ=1.55 μm,),” Appl. Phys. Lett.83(14), 2742–2744 (2003).
[CrossRef]

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
[CrossRef]

Mirov, S.

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 810–822 (2007).
[CrossRef]

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev.4(1), 21–41 (2010).
[CrossRef]

C. Kim, J. M. Peppers, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Chromium doped ZnSe and ZnS gain media for optically and electrically pumped mid-IR lasers,” Proc. SPIE7193, 71932R, 71932R-11 (2009).
[CrossRef]

V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II-VI semiconductors,” J. Lumin.125(1-2), 184–195 (2007).
[CrossRef]

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003).
[CrossRef]

Mislavskii, V. V.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010).
[CrossRef]

Moskalev, I.

V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II-VI semiconductors,” J. Lumin.125(1-2), 184–195 (2007).
[CrossRef]

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 810–822 (2007).
[CrossRef]

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev.4(1), 21–41 (2010).
[CrossRef]

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003).
[CrossRef]

Myakin, S. V.

M. M. Sychov, E. V. Komarov, L. V. Grigor’ev, S. V. Myakin, I. V. Vasil’eva, A. I. Kuznetsov, and V. P. Usacheva, “Modification of zinc sulfide phosphors by irradiation with gamma-ray photons and electrons,” Semiconductors40(9), 1016–1020 (2006).
[CrossRef]

Naito, H.

M. Karai, K. Kido, H. Naito, K. Kurosawa, M. Okuda, T. Fujino, and M. Kitagawa, “Defect states in ZnSe single crystals irradiated with gamma rays,” J. Appl. Phys.69(1), 291–298 (1991).
[CrossRef]

Ndap, J. O.

Nida, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

Okhrimchuk, A. G.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron.18(1), 73–74 (1988).
[CrossRef]

Okuda, M.

M. Karai, K. Kido, H. Naito, K. Kurosawa, M. Okuda, T. Fujino, and M. Kitagawa, “Defect states in ZnSe single crystals irradiated with gamma rays,” J. Appl. Phys.69(1), 291–298 (1991).
[CrossRef]

Page, R. H.

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. O. Ndap, X. Ma, and A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett.24(1), 19–21 (1999).
[CrossRef] [PubMed]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

Panyutin, V.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003).
[CrossRef]

Payne, S. A.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

Peppers, J. M.

C. Kim, J. M. Peppers, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Chromium doped ZnSe and ZnS gain media for optically and electrically pumped mid-IR lasers,” Proc. SPIE7193, 71932R, 71932R-11 (2009).
[CrossRef]

Petricevic, V.

M. Yu. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Cr4+-doped Li2CaSiO4 crystal: growth and spectroscopic properties,” Opt. Commun.231(1-6), 273–280 (2004).
[CrossRef]

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium‐activated forsterite for near‐infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett.53(26), 2590–2592 (1988).
[CrossRef]

Pinker, R.

A. Halperin and R. Pinker, “Color centers in ZnS single crystals,” J. Chem. Phys.34(6), 2031–2035 (1961).
[CrossRef]

Podmar’kov, Yu. P.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010).
[CrossRef]

Ram-Mohan, L. R.

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
[CrossRef]

Razeghi, M.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ: 3.4 μm and λ: 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Rong, F.

F. Rong and G. D. Watkins, “Optically detected magnetic-resonance observation of the isolated zinc interstitial in irradiated ZnSe,” Phys. Rev. Lett.58(14), 1486–1489 (1987).
[CrossRef] [PubMed]

Rong, F. C.

F. C. Rong, W. A. Barry, J. F. Donegan, and G. D. Watkins, “Vacancies, interstitials, and close Frenkel pairs on the zinc sublattice of ZnSe,” Phys. Rev. B Condens. Matter54(11), 7779–7788 (1996).
[CrossRef] [PubMed]

Schaffers, K. I.

Schulz, H.-J.

I. Broser, H. Maier, and H.-J. Schulz, “Fine structure of the infrared absorption and emission spectra of Cu2+ in ZnS and CdS crystals,” Phys. Rev.140(6A), A2135–A2138 (1965).
[CrossRef]

Sharonov, M. Yu.

M. Yu. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Cr4+-doped Li2CaSiO4 crystal: growth and spectroscopic properties,” Opt. Commun.231(1-6), 273–280 (2004).
[CrossRef]

Shestakov, A. V.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron.18(1), 73–74 (1988).
[CrossRef]

Siyuchenko, O. G.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron.18(1), 73–74 (1988).
[CrossRef]

Skasyrsky, Ya. K.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010).
[CrossRef]

Slivken, S.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ: 3.4 μm and λ: 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

Sorokin, E.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003).
[CrossRef]

Sorokina, I. T.

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater.26(4), 395–412 (2004).
[CrossRef]

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003).
[CrossRef]

Sychov, M. M.

M. M. Sychov, E. V. Komarov, L. V. Grigor’ev, S. V. Myakin, I. V. Vasil’eva, A. I. Kuznetsov, and V. P. Usacheva, “Modification of zinc sulfide phosphors by irradiation with gamma-ray photons and electrons,” Semiconductors40(9), 1016–1020 (2006).
[CrossRef]

Tansu, N.

L. J. Mawst, J. Yu.-T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown dilute-nitride type-II quantum wells,” IEEE Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II ‘W’ quantum-well lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In)GaAsN-GaAsSb type-II ‘W’ quantum-well lasers for emission at (λ=1.55 μm,),” Appl. Phys. Lett.83(14), 2742–2744 (2003).
[CrossRef]

Tsao, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

Tsvid, G.

L. J. Mawst, J. Yu.-T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown dilute-nitride type-II quantum wells,” IEEE Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

Uehara, Y.

Y. Uehara, “Electronic structure of luminescence center of ZnS:Ag phosphors,” J. Chem. Phys.62(8), 2982–2995 (1975).
[CrossRef]

Usacheva, V. P.

M. M. Sychov, E. V. Komarov, L. V. Grigor’ev, S. V. Myakin, I. V. Vasil’eva, A. I. Kuznetsov, and V. P. Usacheva, “Modification of zinc sulfide phosphors by irradiation with gamma-ray photons and electrons,” Semiconductors40(9), 1016–1020 (2006).
[CrossRef]

Vasil’eva, I. V.

M. M. Sychov, E. V. Komarov, L. V. Grigor’ev, S. V. Myakin, I. V. Vasil’eva, A. I. Kuznetsov, and V. P. Usacheva, “Modification of zinc sulfide phosphors by irradiation with gamma-ray photons and electrons,” Semiconductors40(9), 1016–1020 (2006).
[CrossRef]

Voronov, A. A.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010).
[CrossRef]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II ‘W’ quantum-well lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In)GaAsN-GaAsSb type-II ‘W’ quantum-well lasers for emission at (λ=1.55 μm,),” Appl. Phys. Lett.83(14), 2742–2744 (2003).
[CrossRef]

Wagner, G. J.

Watkins, G.

K. Chow and G. Watkins, “Electronic structure and migrational properties of interstitial zinc in ZnSe,” Phys. Rev. B60(12), 8628–8639 (1999).
[CrossRef]

G. Watkins, “EPR observation of close Frenkel pairs in irradiated ZnSe,” Phys. Rev. Lett.33(4), 223–225 (1974).
[CrossRef]

Watkins, G. D.

F. C. Rong, W. A. Barry, J. F. Donegan, and G. D. Watkins, “Vacancies, interstitials, and close Frenkel pairs on the zinc sublattice of ZnSe,” Phys. Rev. B Condens. Matter54(11), 7779–7788 (1996).
[CrossRef] [PubMed]

F. Rong and G. D. Watkins, “Optically detected magnetic-resonance observation of the isolated zinc interstitial in irradiated ZnSe,” Phys. Rev. Lett.58(14), 1486–1489 (1987).
[CrossRef] [PubMed]

Wilke, G. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

Wistey, M. A.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5-μm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

Xu, D. P.

L. J. Mawst, J. Yu.-T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown dilute-nitride type-II quantum wells,” IEEE Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

Yeh, J. Y.

L. J. Mawst, J. Yu.-T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown dilute-nitride type-II quantum wells,” IEEE Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

Yeh, J.-Y.

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

Yuen, H. B.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5-μm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

Zhitnyuk, V. A.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron.18(1), 73–74 (1988).
[CrossRef]

Appl. Phys. Lett. (5)

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium‐activated forsterite for near‐infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett.53(26), 2590–2592 (1988).
[CrossRef]

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In)GaAsN-GaAsSb type-II ‘W’ quantum-well lasers for emission at (λ=1.55 μm,),” Appl. Phys. Lett.83(14), 2742–2744 (2003).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ: 3.4 μm and λ: 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

IEE Proc., Optoelectron. (1)

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5-μm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005).
[CrossRef]

S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 810–822 (2007).
[CrossRef]

IEEE Sel. Top. Quantum Electron. (1)

L. J. Mawst, J. Yu.-T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown dilute-nitride type-II quantum wells,” IEEE Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

J. Appl. Phys. (2)

M. Karai, K. Kido, H. Naito, K. Kurosawa, M. Okuda, T. Fujino, and M. Kitagawa, “Defect states in ZnSe single crystals irradiated with gamma rays,” J. Appl. Phys.69(1), 291–298 (1991).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II ‘W’ quantum-well lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
[CrossRef]

J. Chem. Phys. (2)

Y. Uehara, “Electronic structure of luminescence center of ZnS:Ag phosphors,” J. Chem. Phys.62(8), 2982–2995 (1975).
[CrossRef]

A. Halperin and R. Pinker, “Color centers in ZnS single crystals,” J. Chem. Phys.34(6), 2031–2035 (1961).
[CrossRef]

J. Lumin. (1)

V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II-VI semiconductors,” J. Lumin.125(1-2), 184–195 (2007).
[CrossRef]

J. Phys. Condens. Matter (1)

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

Laser Photonics Rev. (1)

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev.4(1), 21–41 (2010).
[CrossRef]

Opt. Commun. (1)

M. Yu. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Cr4+-doped Li2CaSiO4 crystal: growth and spectroscopic properties,” Opt. Commun.231(1-6), 273–280 (2004).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater.26(4), 395–412 (2004).
[CrossRef]

Phys. Rev. (3)

R. Detweiler and B. Kulp, “Annealing of radiation damage in ZnSe,” Phys. Rev.146(2), 513–516 (1966).
[CrossRef]

B. Kulp and R. Detweiler, “Threshold for electron radiation damage in ZnSe,” Phys. Rev.129(6), 2422–2424 (1963).
[CrossRef]

I. Broser, H. Maier, and H.-J. Schulz, “Fine structure of the infrared absorption and emission spectra of Cu2+ in ZnS and CdS crystals,” Phys. Rev.140(6A), A2135–A2138 (1965).
[CrossRef]

Phys. Rev. B (2)

K. Chow and G. Watkins, “Electronic structure and migrational properties of interstitial zinc in ZnSe,” Phys. Rev. B60(12), 8628–8639 (1999).
[CrossRef]

P. J. Dean, B. J. Fitzpatrick, and R. N. Bhargava, “Optical properties of ZnSe doped with Ag and Au,” Phys. Rev. B26(4), 2016–2035 (1982).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

S. Emura and S. Masunaga, “Pressure effects on the absorption spectra of KBr:Ag+,” Phys. Rev. B Condens. Matter49(2), 849–853 (1994).
[CrossRef] [PubMed]

F. C. Rong, W. A. Barry, J. F. Donegan, and G. D. Watkins, “Vacancies, interstitials, and close Frenkel pairs on the zinc sublattice of ZnSe,” Phys. Rev. B Condens. Matter54(11), 7779–7788 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

F. Rong and G. D. Watkins, “Optically detected magnetic-resonance observation of the isolated zinc interstitial in irradiated ZnSe,” Phys. Rev. Lett.58(14), 1486–1489 (1987).
[CrossRef] [PubMed]

G. Watkins, “EPR observation of close Frenkel pairs in irradiated ZnSe,” Phys. Rev. Lett.33(4), 223–225 (1974).
[CrossRef]

Phys. Status Solidi B (1)

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010).
[CrossRef]

Proc. SPIE (1)

C. Kim, J. M. Peppers, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Chromium doped ZnSe and ZnS gain media for optically and electrically pumped mid-IR lasers,” Proc. SPIE7193, 71932R, 71932R-11 (2009).
[CrossRef]

Radiat. Eff. (1)

A. K. C. Ho and K. C. Kao, “The hall effect in gamma-irradiated ZnSe,” Radiat. Eff.17(1–2), 137–138 (1973).
[CrossRef]

Semiconductors (1)

M. M. Sychov, E. V. Komarov, L. V. Grigor’ev, S. V. Myakin, I. V. Vasil’eva, A. I. Kuznetsov, and V. P. Usacheva, “Modification of zinc sulfide phosphors by irradiation with gamma-ray photons and electrons,” Semiconductors40(9), 1016–1020 (2006).
[CrossRef]

Sov. J. Quantum Electron. (1)

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron.18(1), 73–74 (1988).
[CrossRef]

Other (2)

F. Träger, ed., Handbook of Lasers and Optics (Springer, 2007).

T. T. Basiev and S. B. Mirov, in Room Temperature Tunable Color Center Lasers, Laser Science and Technology Book Series, V. S. Letokhov, C. V. Shank, Y. R. Shen, and H. Walter, eds. (Gordon and Breach Science Publishers/Harwood Academic Publishers, 1994), Vol. 16, pp. 1–160.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Absorption spectra of A) a undoped ZnS crystal before irradiation (dash-dot-dot line iv); after 5 minutes (solid line i), 15 minutes (dot line ii) and 20 minutes (dashed line iii) storage at RT after low temperature γ-irradiation with a dose 1.28x108 Rad; (B) ZnSe crystals before (dash-dot-dot line ii) and after 5 minutes (solid line i) storage at RT after low temperature γ-irradiation with a dose 1.28x108 Rad.

Fig. 2
Fig. 2

(A) Absorption spectra of the Cr:ZnSe crystal before (i) irradiation and after 8 days storage at RT (ii). (B) Temporal dependence of the absorption coefficient at 1690 nm after irradiation (dash line show results after 8 day storage at RT).

Fig. 3
Fig. 3

(A) and (C) Absorption spectra of the Au:Cr:ZnS with different Au concentration before (i, v) and after (ii, vi) irradiation, (B) polarized absorption spectra after irradiation for E//z (curve iv) and E⊥z (curve iii) light polarization.

Fig. 4
Fig. 4

Absorption spectra of (A) Ag:Cr:ZnS and (B) Cu:Cr:ZnS crystal before (i, iii) and after (ii, iv) irradiation.

Fig. 5
Fig. 5

(A) RT PL spectra of Au:Cr:ZnS (curve i) and Cr:ZnS (curve ii) under 532 nm excitation; (B) Difference between PL spectra of Au:Cr:ZnS and Cr:ZnS representing 3A23T2(F) emission spectrum of tetrahedral Cr4+ ions.

Fig. 6
Fig. 6

Experimental setup for laser characterization of Cr: ZnS and Cr: ZnSe samples before and after γ-irradiation.

Fig. 7
Fig. 7

Output power of the Cr:ZnS (A) and Cr:ZnSe (B) lasers as a function of incident power for non-irradiated (solid symbols) and γ-irradiated (1.28x107 Rad) (open symbols) gain elements.

Metrics