Abstract

Thermal anneal is known to arrest the growth of laser-induced damage in optical materials. However, the response of the material which leads to this observed behavior is poorly understood. In this work, we investigate the effect of isothermal anneal at 1100°C for 12 hours on the growth rate of laser-induced damage sites in fused silica. Growth rate was significantly lower for annealed initiated damage sites than that for untreated sites. This decrease in growth rate was associated with the closure of small surface and subsurface cracks, suggesting that aggressive growth rate is due, at least in part, to subsurface fracture complexity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
    [CrossRef]
  2. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [CrossRef]
  3. C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90(4), 041110 (2007).
    [CrossRef]
  4. C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(Suppl 4), A859–A864 (2011).
    [CrossRef] [PubMed]
  5. G. Raze, J. M. Morchain, M. Loiseau, L. Lamaignere, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
    [CrossRef]
  6. H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
    [CrossRef]
  7. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
    [CrossRef] [PubMed]
  8. R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multiparameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt. 50(22), D12–D20 (2011).
    [CrossRef] [PubMed]
  9. R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
    [CrossRef] [PubMed]
  10. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
    [CrossRef]
  11. G. Hu, Y. Zhao, D. Li, Q. Xiao, J. Shao, and Z. Fan, “Studies of laser damage morphology reveal subsurface feature in fused silica,” Surf. Interface Anal. 42(9), 1465–1468 (2010).
    [CrossRef]
  12. P. Hrma, W. T. Han, and A. R. Cooper, “Thermal healing of cracks in glass,” J. Non-Cryst. Solids 102(1-3), 88–94 (1988).
    [CrossRef]
  13. F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, and S. J. Burns, “Fracture of fused silica with 351 nm laser-generated surface cracks,” J. Mater. Res. 14(02), 597–605 (1999).
    [CrossRef]
  14. M. J. Matthews, J. S. Stolken, R. M. Vignes, M. A. Norton, S. Yang, J. D. Cooke, G. M. Guss, and J. J. Adams, “Residual stress and damage-induced critical fracture on CO2 laser treated fused silica,” Proc. SPIE 7504, 750410, 750410-12 (2009).
    [CrossRef]
  15. T. K. Gupta, “Crack healing in Al2O3, MgO, and related materials,” in Advances in Ceramics, W. D. Kingery, ed. (American Ceramic Society, 1984), pp. 750–766.
  16. Y. A. Zagoruiko, “Modification of optical properties of ZnSe crystals by means of photothermal treatment,” Proc. SPIE 3578, 480–483 (1999).
    [CrossRef]
  17. L. J. Atherton, F. Rainer, J. J. De Yoreo, I. M. Thomas, N. Zaitseva, and F. De Marco, “Thermal and laser conditioning of production- and rapid-growth KDP and KD*P crystals,” Proc. SPIE 2114, 36–45 (1994).
    [CrossRef]
  18. G. L. Tian, J. B. Huang, T. Wang, H. B. He, and J. D. Shao, “Microstructure and laser-induced damage threshold of ZrO2 coatings dependence on annealing temperature,” Appl. Surf. Sci. 239(2), 201–208 (2005).
    [CrossRef]
  19. N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, and L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
    [CrossRef]
  20. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
    [CrossRef]
  21. P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21(18), 3249–3255 (1982).
    [CrossRef] [PubMed]
  22. R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
    [CrossRef]
  23. S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606–2616 (2010).
    [CrossRef]
  24. Corning, “HPFS(R) Fused Silica Standard Grade,” www.corning.com/assets/0/965/989/1081/4A3CF573-9901-4848-9E8F-C3BA500EA7B5.pdf (2003).
  25. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
    [CrossRef] [PubMed]
  26. M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
    [CrossRef]
  27. V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of fused-silica with different hydroxyl contents,” Br. Ceram., Trans. J. 90, 59–60 (1991).
  28. G. W. Scherer, Relaxation in Glass and Composites (Krieger, 1992).
  29. R. N. Raman, M. J. Matthews, J. J. Adams, and S. G. Demos, “Monitoring annealing via CO2 laser heating of defect populations on fused silica surfaces using photoluminescence microscopy,” Opt. Express 18(14), 15207–15215 (2010).
    [CrossRef] [PubMed]
  30. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
    [CrossRef]
  31. S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
    [CrossRef]
  32. R. A. B. Devine, “On the physical models of annealing of radiation-induced defects in amorphous SiO2,” Nucl. Instrum. Methods Phys. Res. B 46(1-4), 261–264 (1990).
    [CrossRef]
  33. S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, J. Nishii, and H. Misawa, “Optically induced defects in vitreous silica,” Appl. Surf. Sci. 154-155, 696–700 (2000).
    [CrossRef]
  34. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
    [CrossRef] [PubMed]
  35. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
    [CrossRef] [PubMed]
  36. M. D. Feit and A. M. Rubenchik, “Laser intensity modulation by nonabsorbing defects,” Proc. SPIE 2966, 475–480 (1997).
    [CrossRef]
  37. W. W. Mullins, “Flattening of a nearly plane solid surface due to capillarity,” J. Appl. Phys. 30(1), 77–83 (1959).
    [CrossRef]
  38. N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41(1), 18–22 (1958).
    [CrossRef]
  39. C. F. Yen and R. L. Coble, “Spheroidization of tubular voids in Al2O3 crystals at high-temperatures,” J. Am. Ceram. Soc. 55(10), 507–509 (1972).
    [CrossRef]

2012 (3)

2011 (3)

2010 (5)

2009 (3)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

M. J. Matthews, J. S. Stolken, R. M. Vignes, M. A. Norton, S. Yang, J. D. Cooke, G. M. Guss, and J. J. Adams, “Residual stress and damage-induced critical fracture on CO2 laser treated fused silica,” Proc. SPIE 7504, 750410, 750410-12 (2009).
[CrossRef]

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

2007 (1)

C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90(4), 041110 (2007).
[CrossRef]

2006 (1)

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

2005 (1)

G. L. Tian, J. B. Huang, T. Wang, H. B. He, and J. D. Shao, “Microstructure and laser-induced damage threshold of ZrO2 coatings dependence on annealing temperature,” Appl. Surf. Sci. 239(2), 201–208 (2005).
[CrossRef]

2004 (2)

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

2003 (2)

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[CrossRef]

G. Raze, J. M. Morchain, M. Loiseau, L. Lamaignere, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

2002 (2)

J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

2000 (1)

S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, J. Nishii, and H. Misawa, “Optically induced defects in vitreous silica,” Appl. Surf. Sci. 154-155, 696–700 (2000).
[CrossRef]

1999 (2)

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, and S. J. Burns, “Fracture of fused silica with 351 nm laser-generated surface cracks,” J. Mater. Res. 14(02), 597–605 (1999).
[CrossRef]

Y. A. Zagoruiko, “Modification of optical properties of ZnSe crystals by means of photothermal treatment,” Proc. SPIE 3578, 480–483 (1999).
[CrossRef]

1998 (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

1997 (1)

M. D. Feit and A. M. Rubenchik, “Laser intensity modulation by nonabsorbing defects,” Proc. SPIE 2966, 475–480 (1997).
[CrossRef]

1994 (1)

L. J. Atherton, F. Rainer, J. J. De Yoreo, I. M. Thomas, N. Zaitseva, and F. De Marco, “Thermal and laser conditioning of production- and rapid-growth KDP and KD*P crystals,” Proc. SPIE 2114, 36–45 (1994).
[CrossRef]

1991 (1)

V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of fused-silica with different hydroxyl contents,” Br. Ceram., Trans. J. 90, 59–60 (1991).

1990 (1)

R. A. B. Devine, “On the physical models of annealing of radiation-induced defects in amorphous SiO2,” Nucl. Instrum. Methods Phys. Res. B 46(1-4), 261–264 (1990).
[CrossRef]

1988 (1)

P. Hrma, W. T. Han, and A. R. Cooper, “Thermal healing of cracks in glass,” J. Non-Cryst. Solids 102(1-3), 88–94 (1988).
[CrossRef]

1982 (1)

1972 (1)

C. F. Yen and R. L. Coble, “Spheroidization of tubular voids in Al2O3 crystals at high-temperatures,” J. Am. Ceram. Soc. 55(10), 507–509 (1972).
[CrossRef]

1959 (1)

W. W. Mullins, “Flattening of a nearly plane solid surface due to capillarity,” J. Appl. Phys. 30(1), 77–83 (1959).
[CrossRef]

1958 (1)

N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41(1), 18–22 (1958).
[CrossRef]

Abdulla, G. M.

Adams, J. J.

R. N. Raman, M. J. Matthews, J. J. Adams, and S. G. Demos, “Monitoring annealing via CO2 laser heating of defect populations on fused silica surfaces using photoluminescence microscopy,” Opt. Express 18(14), 15207–15215 (2010).
[CrossRef] [PubMed]

M. J. Matthews, J. S. Stolken, R. M. Vignes, M. A. Norton, S. Yang, J. D. Cooke, G. M. Guss, and J. J. Adams, “Residual stress and damage-induced critical fracture on CO2 laser treated fused silica,” Proc. SPIE 7504, 750410, 750410-12 (2009).
[CrossRef]

Atherton, L. J.

L. J. Atherton, F. Rainer, J. J. De Yoreo, I. M. Thomas, N. Zaitseva, and F. De Marco, “Thermal and laser conditioning of production- and rapid-growth KDP and KD*P crystals,” Proc. SPIE 2114, 36–45 (1994).
[CrossRef]

Auerbach, J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[CrossRef]

Bercegol, H.

G. Raze, J. M. Morchain, M. Loiseau, L. Lamaignere, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Bin, F.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Brusasco, R. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

Bude, J. D.

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[CrossRef] [PubMed]

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, and L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Burns, S. J.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, and S. J. Burns, “Fracture of fused silica with 351 nm laser-generated surface cracks,” J. Mater. Res. 14(02), 597–605 (1999).
[CrossRef]

Butler, J. A.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

Carr, C. W.

R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
[CrossRef] [PubMed]

R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multiparameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt. 50(22), D12–D20 (2011).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(Suppl 4), A859–A864 (2011).
[CrossRef] [PubMed]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
[CrossRef] [PubMed]

C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90(4), 041110 (2007).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Coble, R. L.

C. F. Yen and R. L. Coble, “Spheroidization of tubular voids in Al2O3 crystals at high-temperatures,” J. Am. Ceram. Soc. 55(10), 507–509 (1972).
[CrossRef]

Cooke, D.

Cooke, J. D.

M. J. Matthews, J. S. Stolken, R. M. Vignes, M. A. Norton, S. Yang, J. D. Cooke, G. M. Guss, and J. J. Adams, “Residual stress and damage-induced critical fracture on CO2 laser treated fused silica,” Proc. SPIE 7504, 750410, 750410-12 (2009).
[CrossRef]

Cooper, A. R.

P. Hrma, W. T. Han, and A. R. Cooper, “Thermal healing of cracks in glass,” J. Non-Cryst. Solids 102(1-3), 88–94 (1988).
[CrossRef]

Cross, D. A.

Dahmani, F.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, and S. J. Burns, “Fracture of fused silica with 351 nm laser-generated surface cracks,” J. Mater. Res. 14(02), 597–605 (1999).
[CrossRef]

De Marco, F.

L. J. Atherton, F. Rainer, J. J. De Yoreo, I. M. Thomas, N. Zaitseva, and F. De Marco, “Thermal and laser conditioning of production- and rapid-growth KDP and KD*P crystals,” Proc. SPIE 2114, 36–45 (1994).
[CrossRef]

De Yoreo, J. J.

L. J. Atherton, F. Rainer, J. J. De Yoreo, I. M. Thomas, N. Zaitseva, and F. De Marco, “Thermal and laser conditioning of production- and rapid-growth KDP and KD*P crystals,” Proc. SPIE 2114, 36–45 (1994).
[CrossRef]

Demos, S. G.

R. N. Raman, M. J. Matthews, J. J. Adams, and S. G. Demos, “Monitoring annealing via CO2 laser heating of defect populations on fused silica surfaces using photoluminescence microscopy,” Opt. Express 18(14), 15207–15215 (2010).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[CrossRef]

Devine, R. A. B.

R. A. B. Devine, “On the physical models of annealing of radiation-induced defects in amorphous SiO2,” Nucl. Instrum. Methods Phys. Res. B 46(1-4), 261–264 (1990).
[CrossRef]

Draggoo, V. G.

Elhadj, S.

Fan, Z.

G. Hu, Y. Zhao, D. Li, Q. Xiao, J. Shao, and Z. Fan, “Studies of laser damage morphology reveal subsurface feature in fused silica,” Surf. Interface Anal. 42(9), 1465–1468 (2010).
[CrossRef]

Fang, W.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Feit, M. D.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, and L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

M. D. Feit and A. M. Rubenchik, “Laser intensity modulation by nonabsorbing defects,” Proc. SPIE 2966, 475–480 (1997).
[CrossRef]

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Feng, J.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Ferriera, J. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Florry, J. S.

V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of fused-silica with different hydroxyl contents,” Br. Ceram., Trans. J. 90, 59–60 (1991).

Fu-Quan, L.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Golini, D.

J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[CrossRef]

Guss, G. M.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606–2616 (2010).
[CrossRef]

M. J. Matthews, J. S. Stolken, R. M. Vignes, M. A. Norton, S. Yang, J. D. Cooke, G. M. Guss, and J. J. Adams, “Residual stress and damage-induced critical fracture on CO2 laser treated fused silica,” Proc. SPIE 7504, 750410, 750410-12 (2009).
[CrossRef]

Hackel, R. P.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[CrossRef]

Han, W. T.

P. Hrma, W. T. Han, and A. R. Cooper, “Thermal healing of cracks in glass,” J. Non-Cryst. Solids 102(1-3), 88–94 (1988).
[CrossRef]

Haupt, D. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

He, H. B.

G. L. Tian, J. B. Huang, T. Wang, H. B. He, and J. D. Shao, “Microstructure and laser-induced damage threshold of ZrO2 coatings dependence on annealing temperature,” Appl. Surf. Sci. 239(2), 201–208 (2005).
[CrossRef]

Honig, J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[CrossRef]

Hrma, P.

P. Hrma, W. T. Han, and A. R. Cooper, “Thermal healing of cracks in glass,” J. Non-Cryst. Solids 102(1-3), 88–94 (1988).
[CrossRef]

Hrubesh, L. W.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

Hu, G.

G. Hu, Y. Zhao, D. Li, Q. Xiao, J. Shao, and Z. Fan, “Studies of laser damage morphology reveal subsurface feature in fused silica,” Surf. Interface Anal. 42(9), 1465–1468 (2010).
[CrossRef]

Huang, J. B.

G. L. Tian, J. B. Huang, T. Wang, H. B. He, and J. D. Shao, “Microstructure and laser-induced damage threshold of ZrO2 coatings dependence on annealing temperature,” Appl. Surf. Sci. 239(2), 201–208 (2005).
[CrossRef]

Hutcheon, I. D.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Josse, M. A.

G. Raze, J. M. Morchain, M. Loiseau, L. Lamaignere, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Juodkazis, S.

S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, J. Nishii, and H. Misawa, “Optically induced defects in vitreous silica,” Appl. Surf. Sci. 154-155, 696–700 (2000).
[CrossRef]

Kinney, J. H.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Kucheyev, S. O.

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[CrossRef]

Lamaignere, L.

G. Raze, J. M. Morchain, M. Loiseau, L. Lamaignere, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Lambropoulos, J. C.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, and S. J. Burns, “Fracture of fused silica with 351 nm laser-generated surface cracks,” J. Mater. Res. 14(02), 597–605 (1999).
[CrossRef]

Laurence, T. A.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, and L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Li, D.

G. Hu, Y. Zhao, D. Li, Q. Xiao, J. Shao, and Z. Fan, “Studies of laser damage morphology reveal subsurface feature in fused silica,” Surf. Interface Anal. 42(9), 1465–1468 (2010).
[CrossRef]

Liao, Z. M.

Lindsey, E. F.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Loiseau, M.

G. Raze, J. M. Morchain, M. Loiseau, L. Lamaignere, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Lowdermilk, W. H.

Luthi, R. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[CrossRef]

Ly, S.

Matsuo, S.

S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, J. Nishii, and H. Misawa, “Optically induced defects in vitreous silica,” Appl. Surf. Sci. 154-155, 696–700 (2000).
[CrossRef]

Matthews, M. J.

Menapace, J.

Menapace, J. A.

J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[CrossRef]

Milam, D.

Miller, P. E.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, and L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[CrossRef]

Misawa, H.

S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, J. Nishii, and H. Misawa, “Optically induced defects in vitreous silica,” Appl. Surf. Sci. 154-155, 696–700 (2000).
[CrossRef]

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

Morchain, J. M.

G. Raze, J. M. Morchain, M. Loiseau, L. Lamaignere, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Mullins, W. W.

W. W. Mullins, “Flattening of a nearly plane solid surface due to capillarity,” J. Appl. Phys. 30(1), 77–83 (1959).
[CrossRef]

Negres, R. A.

Nichols, M.

J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[CrossRef]

Nishii, J.

S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, J. Nishii, and H. Misawa, “Optically induced defects in vitreous silica,” Appl. Surf. Sci. 154-155, 696–700 (2000).
[CrossRef]

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(Suppl 4), A859–A864 (2011).
[CrossRef] [PubMed]

R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multiparameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt. 50(22), D12–D20 (2011).
[CrossRef] [PubMed]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
[CrossRef] [PubMed]

M. J. Matthews, J. S. Stolken, R. M. Vignes, M. A. Norton, S. Yang, J. D. Cooke, G. M. Guss, and J. J. Adams, “Residual stress and damage-induced critical fracture on CO2 laser treated fused silica,” Proc. SPIE 7504, 750410, 750410-12 (2009).
[CrossRef]

Nostrand, M. C.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[CrossRef]

Papernov, S.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, and S. J. Burns, “Fracture of fused silica with 351 nm laser-generated surface cracks,” J. Mater. Res. 14(02), 597–605 (1999).
[CrossRef]

Parham, T.

J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[CrossRef]

Parikh, N. M.

N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41(1), 18–22 (1958).
[CrossRef]

Penetrante, B.

J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[CrossRef]

Penetrante, B. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

Peterson, J.

J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[CrossRef]

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Rainer, F.

L. J. Atherton, F. Rainer, J. J. De Yoreo, I. M. Thomas, N. Zaitseva, and F. De Marco, “Thermal and laser conditioning of production- and rapid-growth KDP and KD*P crystals,” Proc. SPIE 2114, 36–45 (1994).
[CrossRef]

Raman, R. N.

Raze, G.

G. Raze, J. M. Morchain, M. Loiseau, L. Lamaignere, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Rubenchik, A. M.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

M. D. Feit and A. M. Rubenchik, “Laser intensity modulation by nonabsorbing defects,” Proc. SPIE 2966, 475–480 (1997).
[CrossRef]

Schmid, A. W.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, and S. J. Burns, “Fracture of fused silica with 351 nm laser-generated surface cracks,” J. Mater. Res. 14(02), 597–605 (1999).
[CrossRef]

Sell, W. D.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[CrossRef]

Shao, J.

G. Hu, Y. Zhao, D. Li, Q. Xiao, J. Shao, and Z. Fan, “Studies of laser damage morphology reveal subsurface feature in fused silica,” Surf. Interface Anal. 42(9), 1465–1468 (2010).
[CrossRef]

Shao, J. D.

G. L. Tian, J. B. Huang, T. Wang, H. B. He, and J. D. Shao, “Microstructure and laser-induced damage threshold of ZrO2 coatings dependence on annealing temperature,” Appl. Surf. Sci. 239(2), 201–208 (2005).
[CrossRef]

Shen, N.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, and L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

Slomba, A.

J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[CrossRef]

Spaeth, M. L.

C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90(4), 041110 (2007).
[CrossRef]

Stanley, J. A.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[CrossRef]

Steele, W. A.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, and L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Stolken, J. S.

M. J. Matthews, J. S. Stolken, R. M. Vignes, M. A. Norton, S. Yang, J. D. Cooke, G. M. Guss, and J. J. Adams, “Residual stress and damage-induced critical fracture on CO2 laser treated fused silica,” Proc. SPIE 7504, 750410, 750410-12 (2009).
[CrossRef]

Sun, H. B.

S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, J. Nishii, and H. Misawa, “Optically induced defects in vitreous silica,” Appl. Surf. Sci. 154-155, 696–700 (2000).
[CrossRef]

Suratwala, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Suratwala, T. I.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, and L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

Taylor, D.

V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of fused-silica with different hydroxyl contents,” Br. Ceram., Trans. J. 90, 59–60 (1991).

Temple, P. A.

Thomas, I. M.

L. J. Atherton, F. Rainer, J. J. De Yoreo, I. M. Thomas, N. Zaitseva, and F. De Marco, “Thermal and laser conditioning of production- and rapid-growth KDP and KD*P crystals,” Proc. SPIE 2114, 36–45 (1994).
[CrossRef]

Tian, G. L.

G. L. Tian, J. B. Huang, T. Wang, H. B. He, and J. D. Shao, “Microstructure and laser-induced damage threshold of ZrO2 coatings dependence on annealing temperature,” Appl. Surf. Sci. 239(2), 201–208 (2005).
[CrossRef]

Trenholme, J. B.

C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90(4), 041110 (2007).
[CrossRef]

Vickers, J. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[CrossRef]

Vignes, R. M.

M. J. Matthews, J. S. Stolken, R. M. Vignes, M. A. Norton, S. Yang, J. D. Cooke, G. M. Guss, and J. J. Adams, “Residual stress and damage-induced critical fracture on CO2 laser treated fused silica,” Proc. SPIE 7504, 750410, 750410-12 (2009).
[CrossRef]

Wang, T.

G. L. Tian, J. B. Huang, T. Wang, H. B. He, and J. D. Shao, “Microstructure and laser-induced damage threshold of ZrO2 coatings dependence on annealing temperature,” Appl. Surf. Sci. 239(2), 201–208 (2005).
[CrossRef]

Wan-Guo, Z.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Wan-Qing, H.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Watanabe, M.

S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, J. Nishii, and H. Misawa, “Optically induced defects in vitreous silica,” Appl. Surf. Sci. 154-155, 696–700 (2000).
[CrossRef]

Wegner, P. J.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606–2616 (2010).
[CrossRef]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[CrossRef]

Wei, H.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Weiland, T. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[CrossRef]

Wong, J.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Wong, L. L.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, and L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

Xiao, Q.

G. Hu, Y. Zhao, D. Li, Q. Xiao, J. Shao, and Z. Fan, “Studies of laser damage morphology reveal subsurface feature in fused silica,” Surf. Interface Anal. 42(9), 1465–1468 (2010).
[CrossRef]

Xiao-Feng, W.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Xiao-Min, Z.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Yang, S.

M. J. Matthews, J. S. Stolken, R. M. Vignes, M. A. Norton, S. Yang, J. D. Cooke, G. M. Guss, and J. J. Adams, “Residual stress and damage-induced critical fracture on CO2 laser treated fused silica,” Proc. SPIE 7504, 750410, 750410-12 (2009).
[CrossRef]

Yang, S. T.

Yen, C. F.

C. F. Yen and R. L. Coble, “Spheroidization of tubular voids in Al2O3 crystals at high-temperatures,” J. Am. Ceram. Soc. 55(10), 507–509 (1972).
[CrossRef]

Yong, X.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Zagoruiko, Y. A.

Y. A. Zagoruiko, “Modification of optical properties of ZnSe crystals by means of photothermal treatment,” Proc. SPIE 3578, 480–483 (1999).
[CrossRef]

Zaitseva, N.

L. J. Atherton, F. Rainer, J. J. De Yoreo, I. M. Thomas, N. Zaitseva, and F. De Marco, “Thermal and laser conditioning of production- and rapid-growth KDP and KD*P crystals,” Proc. SPIE 2114, 36–45 (1994).
[CrossRef]

Zandian, V.

V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of fused-silica with different hydroxyl contents,” Br. Ceram., Trans. J. 90, 59–60 (1991).

Zhao, Y.

G. Hu, Y. Zhao, D. Li, Q. Xiao, J. Shao, and Z. Fan, “Studies of laser damage morphology reveal subsurface feature in fused silica,” Surf. Interface Anal. 42(9), 1465–1468 (2010).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90(4), 041110 (2007).
[CrossRef]

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[CrossRef]

Appl. Surf. Sci. (2)

G. L. Tian, J. B. Huang, T. Wang, H. B. He, and J. D. Shao, “Microstructure and laser-induced damage threshold of ZrO2 coatings dependence on annealing temperature,” Appl. Surf. Sci. 239(2), 201–208 (2005).
[CrossRef]

S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, J. Nishii, and H. Misawa, “Optically induced defects in vitreous silica,” Appl. Surf. Sci. 154-155, 696–700 (2000).
[CrossRef]

Br. Ceram., Trans. J. (1)

V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of fused-silica with different hydroxyl contents,” Br. Ceram., Trans. J. 90, 59–60 (1991).

Chin. Phys. Lett. (1)

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

J. Am. Ceram. Soc. (3)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41(1), 18–22 (1958).
[CrossRef]

C. F. Yen and R. L. Coble, “Spheroidization of tubular voids in Al2O3 crystals at high-temperatures,” J. Am. Ceram. Soc. 55(10), 507–509 (1972).
[CrossRef]

J. Appl. Phys. (1)

W. W. Mullins, “Flattening of a nearly plane solid surface due to capillarity,” J. Appl. Phys. 30(1), 77–83 (1959).
[CrossRef]

J. Mater. Res. (1)

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, and S. J. Burns, “Fracture of fused silica with 351 nm laser-generated surface cracks,” J. Mater. Res. 14(02), 597–605 (1999).
[CrossRef]

J. Non-Cryst. Solids (3)

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

P. Hrma, W. T. Han, and A. R. Cooper, “Thermal healing of cracks in glass,” J. Non-Cryst. Solids 102(1-3), 88–94 (1988).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

R. A. B. Devine, “On the physical models of annealing of radiation-induced defects in amorphous SiO2,” Nucl. Instrum. Methods Phys. Res. B 46(1-4), 261–264 (1990).
[CrossRef]

Opt. Eng. (1)

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, and L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Proc. SPIE (8)

M. D. Feit and A. M. Rubenchik, “Laser intensity modulation by nonabsorbing defects,” Proc. SPIE 2966, 475–480 (1997).
[CrossRef]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

G. Raze, J. M. Morchain, M. Loiseau, L. Lamaignere, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[CrossRef]

Y. A. Zagoruiko, “Modification of optical properties of ZnSe crystals by means of photothermal treatment,” Proc. SPIE 3578, 480–483 (1999).
[CrossRef]

L. J. Atherton, F. Rainer, J. J. De Yoreo, I. M. Thomas, N. Zaitseva, and F. De Marco, “Thermal and laser conditioning of production- and rapid-growth KDP and KD*P crystals,” Proc. SPIE 2114, 36–45 (1994).
[CrossRef]

M. J. Matthews, J. S. Stolken, R. M. Vignes, M. A. Norton, S. Yang, J. D. Cooke, G. M. Guss, and J. J. Adams, “Residual stress and damage-induced critical fracture on CO2 laser treated fused silica,” Proc. SPIE 7504, 750410, 750410-12 (2009).
[CrossRef]

Surf. Interface Anal. (1)

G. Hu, Y. Zhao, D. Li, Q. Xiao, J. Shao, and Z. Fan, “Studies of laser damage morphology reveal subsurface feature in fused silica,” Surf. Interface Anal. 42(9), 1465–1468 (2010).
[CrossRef]

Other (3)

T. K. Gupta, “Crack healing in Al2O3, MgO, and related materials,” in Advances in Ceramics, W. D. Kingery, ed. (American Ceramic Society, 1984), pp. 750–766.

Corning, “HPFS(R) Fused Silica Standard Grade,” www.corning.com/assets/0/965/989/1081/4A3CF573-9901-4848-9E8F-C3BA500EA7B5.pdf (2003).

G. W. Scherer, Relaxation in Glass and Composites (Krieger, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Shot-by-shot progression of growth rate (mean ± standard error) of damage sites under 10 ± 1 J/cm2, 351 nm laser fluence annealed at 1100°C (circles) compared to that of unannealed sites (squares). (b) Progression of growth rate of large sites (100-200 μm ECD) before and after anneal. Site diameter range and p-values are indicated.

Fig. 2
Fig. 2

Response of stress-induced birefringence to anneal: (a-b) are images of a large damage site, while (c-d) are images of a small damage site. Arrows point to regions of maximum birefringence outside of the fractured region.

Fig. 3
Fig. 3

Response of photoluminescence to anneal (pseudo-color) under 355 nm excitation. (a-b) are images of a grown damage site, (c-d) are images of a small damage site.

Fig. 4
Fig. 4

Comparison of SEM images before and after anneal for a large (a-b) and a small (c-d) site. Top arrow (a) indicates a nanofiber, while bottom arrow (c) indicates hackle.

Fig. 5
Fig. 5

Top-view (a-d) and side-view (e-h) images showing light scattering response to anneal for sites with different ECD. All images are backlit with the exception of (c-d), which are lit off-axis.

Tables (1)

Tables Icon

Table 1 Summary of Findings

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δσ= λ 2πCd × cos 1 ( 1 2 I 1 I 0 )
α=ln( ECD n ECD n1 )

Metrics