Abstract

The effects of single femtosecond laser pulse irradiation (130 fs pulse duration, 800 nm center wavelength) on the structure of binary lithium silicate glasses of varying chemical compositions were investigated by micro-Raman spectroscopy. Permanent modifications were generated at the surface of the glass samples with varying laser fluences in the ablative regime and evaluated for changes in the corresponding Raman band positions and bandwidths. For increasing laser fluences, the position of certain Raman bands changed, indicating an increase in the mass density of the glass inside the irradiated area. Simultaneously, the widths of all investigated bands increased, indicating a higher degree of disorder in the glass structure with respect to bond-angle and bond-length variations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
    [CrossRef]
  2. P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
    [CrossRef]
  3. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B19(10), 2496–2504 (2002).
    [CrossRef]
  4. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater.17(3), 379–386 (2001).
    [CrossRef]
  5. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
    [CrossRef]
  6. M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process.76(5), 857–860 (2003).
    [CrossRef]
  7. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  8. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
    [CrossRef]
  9. H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron.4(5), 840–848 (1998).
    [CrossRef]
  10. D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
    [CrossRef]
  11. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94(4), 041911 (2009).
    [CrossRef]
  12. T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
    [CrossRef]
  13. M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
    [CrossRef]
  14. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90(18), 181109 (2007).
    [CrossRef]
  15. S. A. Brawer and W. B. White, “Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates,” J. Chem. Phys.63(6), 2421–2432 (1975).
    [CrossRef]
  16. B. O. Mysen, D. Virgo, and C. M. Scarfe, “Relations between the anionic structure and viscosity of silicate melts—a Raman spectroscopic study,” Am. Mineral.65, 690–710 (1980).
  17. J. C. Phillips, “Structure and selectively enhanced Raman spectra of high-silica alkali ailicate glasses,” Phys. Rev. B32(8), 5350–5355 (1985).
    [CrossRef]
  18. T. Maehara, T. Yano, and S. Shibata, “Structural rules of phase separation in alkali silicate melts analyzed by high temperature Raman spectroscopy,” J. Non-Cryst. Solids351(49-51), 3685–3692 (2005).
    [CrossRef]
  19. J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B106(3), 295–299 (2004).
    [CrossRef]
  20. L. Robinet, C. Coupry, K. Eremin, and C. Hall, “The use of Raman spectrometry to predict the stability of historic glasses,” J. Raman Spectrosc.37(7), 789–797 (2006).
    [CrossRef]
  21. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
    [CrossRef]
  22. D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
    [CrossRef]
  23. D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
    [CrossRef]
  24. H. Scholze, Glass—Nature, Structure and Properties (Springer-Verlag, 1988).
  25. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett.7(5), 196–198 (1982).
    [CrossRef] [PubMed]
  26. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
    [CrossRef]
  27. D. W. Matson, S. K. Sharma, and J. A. Philpotts, “The structure of high silica alkali silicate glasses—a Raman spectroscopic investigation,” J. Non-Cryst. Solids58(2-3), 323–352 (1983).
    [CrossRef]
  28. S. K. Sharma, J. F. Mammone, and M. F. Nicol, “Raman investigation of ring configurations in vitreous silica,” Nature292(5819), 140–141 (1981).
    [CrossRef]
  29. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math.11(2), 431–441 (1963).
    [CrossRef]
  30. P. McMillan, “Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy,” Am. Mineral.69, 622–644 (1984).
  31. N. Kitamura, K. Fukumi, H. Mizoguchi, M. Makihara, A. Higuchi, N. Ohno, and T. Fukunaga, “High pressure densification of lithium silicate glasses,” J. Non-Cryst. Solids274(1-3), 244–248 (2000).
    [CrossRef]
  32. G. S. Henderson, G. M. Bancroft, and M. E. Fleet, “Raman spectra of gallium and germanium substituted silicate glasses: variations in intermediate range order,” Am. Mineral.70, 946–960 (1985).
  33. B. O. Mysen and J. D. Frantz, “Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-SiO2, K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25–1475°C,” Chem. Geol.96(3-4), 321–332 (1992).
    [CrossRef]
  34. B. O. Mysen and J. D. Frantz, “Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units,” Contrib. Mineral. Petrol.117(1), 1–14 (1994).
    [CrossRef]
  35. R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett.57(6), 747–750 (1986).
    [CrossRef] [PubMed]
  36. P. McMillan, B. T. Poe, P. Gillet, and B. Reynard, “A study of SiO2 glass and supercooled liquid to 1950 K via high temperature Raman spectroscopy,” Geochim. Cosmochim. Acta58(17), 3653–3664 (1994).
    [CrossRef]
  37. P. McMillan, B. Piriou, and R. Couty, “A Raman study of pressure-densified vitreous silica,” J. Chem. Phys.81(10), 4234–4236 (1984).
    [CrossRef]
  38. M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, “A Raman spectroscopic study of shock-wave densification of vitreous silica,” Phys. Chem. Miner.26(4), 304–311 (1999).
    [CrossRef]
  39. B. Hehlen, “Inter-tetrahedra bond angle of permanently densified silicas extracted from their Raman spectra,” J. Phys. Condens. Matter22(2), 025401 (2010).
    [CrossRef] [PubMed]
  40. T. Deschamps, C. Martinet, D. R. Neuville, D. de Ligny, C. Coussa-Simon, and B. Champagnon, “Silica under hydrostatic pressure: a non continous medium behavior,” J. Non-Cryst. Solids355(48-49), 2422–2424 (2009).
    [CrossRef]
  41. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1(4), 605–613 (2011).
    [CrossRef]

2012 (2)

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

2011 (2)

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1(4), 605–613 (2011).
[CrossRef]

2010 (2)

2009 (2)

T. Deschamps, C. Martinet, D. R. Neuville, D. de Ligny, C. Coussa-Simon, and B. Champagnon, “Silica under hydrostatic pressure: a non continous medium behavior,” J. Non-Cryst. Solids355(48-49), 2422–2424 (2009).
[CrossRef]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94(4), 041911 (2009).
[CrossRef]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

2007 (2)

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90(18), 181109 (2007).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

2006 (1)

L. Robinet, C. Coupry, K. Eremin, and C. Hall, “The use of Raman spectrometry to predict the stability of historic glasses,” J. Raman Spectrosc.37(7), 789–797 (2006).
[CrossRef]

2005 (1)

T. Maehara, T. Yano, and S. Shibata, “Structural rules of phase separation in alkali silicate melts analyzed by high temperature Raman spectroscopy,” J. Non-Cryst. Solids351(49-51), 3685–3692 (2005).
[CrossRef]

2004 (2)

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B106(3), 295–299 (2004).
[CrossRef]

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

2003 (4)

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process.76(5), 857–860 (2003).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

2002 (1)

2001 (1)

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater.17(3), 379–386 (2001).
[CrossRef]

2000 (1)

N. Kitamura, K. Fukumi, H. Mizoguchi, M. Makihara, A. Higuchi, N. Ohno, and T. Fukunaga, “High pressure densification of lithium silicate glasses,” J. Non-Cryst. Solids274(1-3), 244–248 (2000).
[CrossRef]

1999 (2)

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
[CrossRef]

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, “A Raman spectroscopic study of shock-wave densification of vitreous silica,” Phys. Chem. Miner.26(4), 304–311 (1999).
[CrossRef]

1998 (1)

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron.4(5), 840–848 (1998).
[CrossRef]

1996 (1)

1994 (2)

B. O. Mysen and J. D. Frantz, “Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units,” Contrib. Mineral. Petrol.117(1), 1–14 (1994).
[CrossRef]

P. McMillan, B. T. Poe, P. Gillet, and B. Reynard, “A study of SiO2 glass and supercooled liquid to 1950 K via high temperature Raman spectroscopy,” Geochim. Cosmochim. Acta58(17), 3653–3664 (1994).
[CrossRef]

1992 (1)

B. O. Mysen and J. D. Frantz, “Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-SiO2, K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25–1475°C,” Chem. Geol.96(3-4), 321–332 (1992).
[CrossRef]

1986 (1)

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett.57(6), 747–750 (1986).
[CrossRef] [PubMed]

1985 (2)

G. S. Henderson, G. M. Bancroft, and M. E. Fleet, “Raman spectra of gallium and germanium substituted silicate glasses: variations in intermediate range order,” Am. Mineral.70, 946–960 (1985).

J. C. Phillips, “Structure and selectively enhanced Raman spectra of high-silica alkali ailicate glasses,” Phys. Rev. B32(8), 5350–5355 (1985).
[CrossRef]

1984 (2)

P. McMillan, “Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy,” Am. Mineral.69, 622–644 (1984).

P. McMillan, B. Piriou, and R. Couty, “A Raman study of pressure-densified vitreous silica,” J. Chem. Phys.81(10), 4234–4236 (1984).
[CrossRef]

1983 (1)

D. W. Matson, S. K. Sharma, and J. A. Philpotts, “The structure of high silica alkali silicate glasses—a Raman spectroscopic investigation,” J. Non-Cryst. Solids58(2-3), 323–352 (1983).
[CrossRef]

1982 (1)

1981 (1)

S. K. Sharma, J. F. Mammone, and M. F. Nicol, “Raman investigation of ring configurations in vitreous silica,” Nature292(5819), 140–141 (1981).
[CrossRef]

1980 (1)

B. O. Mysen, D. Virgo, and C. M. Scarfe, “Relations between the anionic structure and viscosity of silicate melts—a Raman spectroscopic study,” Am. Mineral.65, 690–710 (1980).

1975 (1)

S. A. Brawer and W. B. White, “Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates,” J. Chem. Phys.63(6), 2421–2432 (1975).
[CrossRef]

1963 (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math.11(2), 431–441 (1963).
[CrossRef]

Achtstein, A. W.

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

Ams, M.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Aoki, N.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process.76(5), 857–860 (2003).
[CrossRef]

Ashmore, J.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

Audouard, E.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94(4), 041911 (2009).
[CrossRef]

Bachelier, G.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Bancroft, G. M.

G. S. Henderson, G. M. Bancroft, and M. E. Fleet, “Raman spectra of gallium and germanium substituted silicate glasses: variations in intermediate range order,” Am. Mineral.70, 946–960 (1985).

Bell, P. M.

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett.57(6), 747–750 (1986).
[CrossRef] [PubMed]

Ben-Yakar, A.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

Bonse, J.

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
[CrossRef]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94(4), 041911 (2009).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
[CrossRef]

Borrelli, N. F.

Brawer, S. A.

S. A. Brawer and W. B. White, “Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates,” J. Chem. Phys.63(6), 2421–2432 (1975).
[CrossRef]

Bressel, L.

Brunéel, J. L.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater.17(3), 379–386 (2001).
[CrossRef]

Buividas, R.

Bulgakova, N. M.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94(4), 041911 (2009).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Byer, R. L.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

Cao, S.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90(18), 181109 (2007).
[CrossRef]

Cardinal, T.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater.17(3), 379–386 (2001).
[CrossRef]

Champagnon, B.

T. Deschamps, C. Martinet, D. R. Neuville, D. de Ligny, C. Coussa-Simon, and B. Champagnon, “Silica under hydrostatic pressure: a non continous medium behavior,” J. Non-Cryst. Solids355(48-49), 2422–2424 (2009).
[CrossRef]

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

Cheng, Y.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process.76(5), 857–860 (2003).
[CrossRef]

Coupry, C.

L. Robinet, C. Coupry, K. Eremin, and C. Hall, “The use of Raman spectrometry to predict the stability of historic glasses,” J. Raman Spectrosc.37(7), 789–797 (2006).
[CrossRef]

Coussa-Simon, C.

T. Deschamps, C. Martinet, D. R. Neuville, D. de Ligny, C. Coussa-Simon, and B. Champagnon, “Silica under hydrostatic pressure: a non continous medium behavior,” J. Non-Cryst. Solids355(48-49), 2422–2424 (2009).
[CrossRef]

Couty, R.

P. McMillan, B. Piriou, and R. Couty, “A Raman study of pressure-densified vitreous silica,” J. Chem. Phys.81(10), 4234–4236 (1984).
[CrossRef]

Couzi, M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater.17(3), 379–386 (2001).
[CrossRef]

Dai, Y.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90(18), 181109 (2007).
[CrossRef]

Davies, G.

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B106(3), 295–299 (2004).
[CrossRef]

Davis, K. M.

de Ligny, D.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1(4), 605–613 (2011).
[CrossRef]

T. Deschamps, C. Martinet, D. R. Neuville, D. de Ligny, C. Coussa-Simon, and B. Champagnon, “Silica under hydrostatic pressure: a non continous medium behavior,” J. Non-Cryst. Solids355(48-49), 2422–2424 (2009).
[CrossRef]

Dekker, P.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Deschamps, T.

T. Deschamps, C. Martinet, D. R. Neuville, D. de Ligny, C. Coussa-Simon, and B. Champagnon, “Silica under hydrostatic pressure: a non continous medium behavior,” J. Non-Cryst. Solids355(48-49), 2422–2424 (2009).
[CrossRef]

Eberstein, M.

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

Efimov, O. M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater.17(3), 379–386 (2001).
[CrossRef]

Ehrentraut, L.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Ehrt, D.

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

Eichler, H. J.

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron.4(5), 840–848 (1998).
[CrossRef]

Eremin, K.

L. Robinet, C. Coupry, K. Eremin, and C. Hall, “The use of Raman spectrometry to predict the stability of historic glasses,” J. Raman Spectrosc.37(7), 789–797 (2006).
[CrossRef]

Fleet, M. E.

G. S. Henderson, G. M. Bancroft, and M. E. Fleet, “Raman spectra of gallium and germanium substituted silicate glasses: variations in intermediate range order,” Am. Mineral.70, 946–960 (1985).

Frantz, J. D.

B. O. Mysen and J. D. Frantz, “Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units,” Contrib. Mineral. Petrol.117(1), 1–14 (1994).
[CrossRef]

B. O. Mysen and J. D. Frantz, “Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-SiO2, K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25–1475°C,” Chem. Geol.96(3-4), 321–332 (1992).
[CrossRef]

Fuerbach, A.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Fukumi, K.

N. Kitamura, K. Fukumi, H. Mizoguchi, M. Makihara, A. Higuchi, N. Ohno, and T. Fukunaga, “High pressure densification of lithium silicate glasses,” J. Non-Cryst. Solids274(1-3), 244–248 (2000).
[CrossRef]

Fukunaga, T.

N. Kitamura, K. Fukumi, H. Mizoguchi, M. Makihara, A. Higuchi, N. Ohno, and T. Fukunaga, “High pressure densification of lithium silicate glasses,” J. Non-Cryst. Solids274(1-3), 244–248 (2000).
[CrossRef]

Galvan-Sosa, M.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Gawelda, W.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Gillet, P.

P. McMillan, B. T. Poe, P. Gillet, and B. Reynard, “A study of SiO2 glass and supercooled liquid to 1950 K via high temperature Raman spectroscopy,” Geochim. Cosmochim. Acta58(17), 3653–3664 (1994).
[CrossRef]

Glebov, L. B.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater.17(3), 379–386 (2001).
[CrossRef]

Grehn, M.

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

Gross, S.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Hall, C.

L. Robinet, C. Coupry, K. Eremin, and C. Hall, “The use of Raman spectrometry to predict the stability of historic glasses,” J. Raman Spectrosc.37(7), 789–797 (2006).
[CrossRef]

Harkin, A.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

Hehlen, B.

B. Hehlen, “Inter-tetrahedra bond angle of permanently densified silicas extracted from their Raman spectra,” J. Phys. Condens. Matter22(2), 025401 (2010).
[CrossRef] [PubMed]

Helvajian, H.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process.76(5), 857–860 (2003).
[CrossRef]

Hemley, R. J.

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett.57(6), 747–750 (1986).
[CrossRef] [PubMed]

Henderson, G. S.

G. S. Henderson, G. M. Bancroft, and M. E. Fleet, “Raman spectra of gallium and germanium substituted silicate glasses: variations in intermediate range order,” Am. Mineral.70, 946–960 (1985).

Hennig, J.

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

Hertel, I. V.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94(4), 041911 (2009).
[CrossRef]

Higuchi, A.

N. Kitamura, K. Fukumi, H. Mizoguchi, M. Makihara, A. Higuchi, N. Ohno, and T. Fukunaga, “High pressure densification of lithium silicate glasses,” J. Non-Cryst. Solids274(1-3), 244–248 (2000).
[CrossRef]

Hirao, K.

Höfner, M.

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

Juodkazis, S.

Kautek, W.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
[CrossRef]

Kawachi, M.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process.76(5), 857–860 (2003).
[CrossRef]

Kitamura, N.

N. Kitamura, K. Fukumi, H. Mizoguchi, M. Makihara, A. Higuchi, N. Ohno, and T. Fukunaga, “High pressure densification of lithium silicate glasses,” J. Non-Cryst. Solids274(1-3), 244–248 (2000).
[CrossRef]

Kittel, T.

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

Krol, D. M.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

Krüger, J.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
[CrossRef]

Kuemmel, P.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron.4(5), 840–848 (1998).
[CrossRef]

Little, D. J.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Liu, J. M.

Lu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90(18), 181109 (2007).
[CrossRef]

Ma, H.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90(18), 181109 (2007).
[CrossRef]

Maehara, T.

T. Maehara, T. Yano, and S. Shibata, “Structural rules of phase separation in alkali silicate melts analyzed by high temperature Raman spectroscopy,” J. Non-Cryst. Solids351(49-51), 3685–3692 (2005).
[CrossRef]

Makihara, M.

N. Kitamura, K. Fukumi, H. Mizoguchi, M. Makihara, A. Higuchi, N. Ohno, and T. Fukunaga, “High pressure densification of lithium silicate glasses,” J. Non-Cryst. Solids274(1-3), 244–248 (2000).
[CrossRef]

Mammone, J. F.

S. K. Sharma, J. F. Mammone, and M. F. Nicol, “Raman investigation of ring configurations in vitreous silica,” Nature292(5819), 140–141 (1981).
[CrossRef]

Mao, H. K.

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett.57(6), 747–750 (1986).
[CrossRef] [PubMed]

Marquardt, D. W.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math.11(2), 431–441 (1963).
[CrossRef]

Martinet, C.

T. Deschamps, C. Martinet, D. R. Neuville, D. de Ligny, C. Coussa-Simon, and B. Champagnon, “Silica under hydrostatic pressure: a non continous medium behavior,” J. Non-Cryst. Solids355(48-49), 2422–2424 (2009).
[CrossRef]

Martinez, V.

Masuda, M.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process.76(5), 857–860 (2003).
[CrossRef]

Matson, D. W.

D. W. Matson, S. K. Sharma, and J. A. Philpotts, “The structure of high silica alkali silicate glasses—a Raman spectroscopic investigation,” J. Non-Cryst. Solids58(2-3), 323–352 (1983).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

McMillan, P.

P. McMillan, B. T. Poe, P. Gillet, and B. Reynard, “A study of SiO2 glass and supercooled liquid to 1950 K via high temperature Raman spectroscopy,” Geochim. Cosmochim. Acta58(17), 3653–3664 (1994).
[CrossRef]

P. McMillan, B. Piriou, and R. Couty, “A Raman study of pressure-densified vitreous silica,” J. Chem. Phys.81(10), 4234–4236 (1984).
[CrossRef]

P. McMillan, “Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy,” Am. Mineral.69, 622–644 (1984).

Mermillod-Blondin, A.

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94(4), 041911 (2009).
[CrossRef]

Meshcheryakov, Yu. P.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94(4), 041911 (2009).
[CrossRef]

Midorikawa, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process.76(5), 857–860 (2003).
[CrossRef]

Miese, C. T.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Miura, K.

Mizeikis, V.

Mizoguchi, H.

N. Kitamura, K. Fukumi, H. Mizoguchi, M. Makihara, A. Higuchi, N. Ohno, and T. Fukunaga, “High pressure densification of lithium silicate glasses,” J. Non-Cryst. Solids274(1-3), 244–248 (2000).
[CrossRef]

Mo, X.

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B106(3), 295–299 (2004).
[CrossRef]

Mysen, B. O.

B. O. Mysen and J. D. Frantz, “Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units,” Contrib. Mineral. Petrol.117(1), 1–14 (1994).
[CrossRef]

B. O. Mysen and J. D. Frantz, “Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-SiO2, K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25–1475°C,” Chem. Geol.96(3-4), 321–332 (1992).
[CrossRef]

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett.57(6), 747–750 (1986).
[CrossRef] [PubMed]

B. O. Mysen, D. Virgo, and C. M. Scarfe, “Relations between the anionic structure and viscosity of silicate melts—a Raman spectroscopic study,” Am. Mineral.65, 690–710 (1980).

Neuville, D. R.

T. Deschamps, C. Martinet, D. R. Neuville, D. de Ligny, C. Coussa-Simon, and B. Champagnon, “Silica under hydrostatic pressure: a non continous medium behavior,” J. Non-Cryst. Solids355(48-49), 2422–2424 (2009).
[CrossRef]

Nicol, M. F.

S. K. Sharma, J. F. Mammone, and M. F. Nicol, “Raman investigation of ring configurations in vitreous silica,” Nature292(5819), 140–141 (1981).
[CrossRef]

Nolte, S.

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Ohno, N.

N. Kitamura, K. Fukumi, H. Mizoguchi, M. Makihara, A. Higuchi, N. Ohno, and T. Fukunaga, “High pressure densification of lithium silicate glasses,” J. Non-Cryst. Solids274(1-3), 244–248 (2000).
[CrossRef]

Okuno, M.

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, “A Raman spectroscopic study of shock-wave densification of vitreous silica,” Phys. Chem. Miner.26(4), 304–311 (1999).
[CrossRef]

Orlic, S.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron.4(5), 840–848 (1998).
[CrossRef]

Park, S. H.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater.17(3), 379–386 (2001).
[CrossRef]

Phillips, J. C.

J. C. Phillips, “Structure and selectively enhanced Raman spectra of high-silica alkali ailicate glasses,” Phys. Rev. B32(8), 5350–5355 (1985).
[CrossRef]

Philpotts, J. A.

D. W. Matson, S. K. Sharma, and J. A. Philpotts, “The structure of high silica alkali silicate glasses—a Raman spectroscopic investigation,” J. Non-Cryst. Solids58(2-3), 323–352 (1983).
[CrossRef]

Piriou, B.

P. McMillan, B. Piriou, and R. Couty, “A Raman study of pressure-densified vitreous silica,” J. Chem. Phys.81(10), 4234–4236 (1984).
[CrossRef]

Poe, B. T.

P. McMillan, B. T. Poe, P. Gillet, and B. Reynard, “A study of SiO2 glass and supercooled liquid to 1950 K via high temperature Raman spectroscopy,” Geochim. Cosmochim. Acta58(17), 3653–3664 (1994).
[CrossRef]

Puerto, D.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Qiu, J.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90(18), 181109 (2007).
[CrossRef]

Reinhardt, F.

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

Reynard, B.

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, “A Raman spectroscopic study of shock-wave densification of vitreous silica,” Phys. Chem. Miner.26(4), 304–311 (1999).
[CrossRef]

P. McMillan, B. T. Poe, P. Gillet, and B. Reynard, “A study of SiO2 glass and supercooled liquid to 1950 K via high temperature Raman spectroscopy,” Geochim. Cosmochim. Acta58(17), 3653–3664 (1994).
[CrossRef]

Richardson, K. A.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater.17(3), 379–386 (2001).
[CrossRef]

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

Robinet, L.

L. Robinet, C. Coupry, K. Eremin, and C. Hall, “The use of Raman spectrometry to predict the stability of historic glasses,” J. Raman Spectrosc.37(7), 789–797 (2006).
[CrossRef]

Rosenfeld, A.

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94(4), 041911 (2009).
[CrossRef]

Rudolph, P.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
[CrossRef]

Scarfe, C. M.

B. O. Mysen, D. Virgo, and C. M. Scarfe, “Relations between the anionic structure and viscosity of silicate melts—a Raman spectroscopic study,” Am. Mineral.65, 690–710 (1980).

Seuthe, T.

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

Sharma, S. K.

D. W. Matson, S. K. Sharma, and J. A. Philpotts, “The structure of high silica alkali silicate glasses—a Raman spectroscopic investigation,” J. Non-Cryst. Solids58(2-3), 323–352 (1983).
[CrossRef]

S. K. Sharma, J. F. Mammone, and M. F. Nicol, “Raman investigation of ring configurations in vitreous silica,” Nature292(5819), 140–141 (1981).
[CrossRef]

Shen, M.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

Shibata, S.

T. Maehara, T. Yano, and S. Shibata, “Structural rules of phase separation in alkali silicate melts analyzed by high temperature Raman spectroscopy,” J. Non-Cryst. Solids351(49-51), 3685–3692 (2005).
[CrossRef]

Shihoyama, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process.76(5), 857–860 (2003).
[CrossRef]

Shimada, Y.

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, “A Raman spectroscopic study of shock-wave densification of vitreous silica,” Phys. Chem. Miner.26(4), 304–311 (1999).
[CrossRef]

Siegel, J.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Solis, J.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Sonneville, C.

Stoian, R.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94(4), 041911 (2009).
[CrossRef]

Stone, H. A.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

Streltsov, A. M.

Sugimoto, N.

Sugioka, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process.76(5), 857–860 (2003).
[CrossRef]

Syono, Y.

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, “A Raman spectroscopic study of shock-wave densification of vitreous silica,” Phys. Chem. Miner.26(4), 304–311 (1999).
[CrossRef]

Tan, J.

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B106(3), 295–299 (2004).
[CrossRef]

Theiss, C.

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

Toyoda, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process.76(5), 857–860 (2003).
[CrossRef]

Tsai, W. J.

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

Tünnermann, A.

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Van Stryland, E.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater.17(3), 379–386 (2001).
[CrossRef]

Virgo, D.

B. O. Mysen, D. Virgo, and C. M. Scarfe, “Relations between the anionic structure and viscosity of silicate melts—a Raman spectroscopic study,” Am. Mineral.65, 690–710 (1980).

Wang, W.

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B106(3), 295–299 (2004).
[CrossRef]

Wappelt, A.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron.4(5), 840–848 (1998).
[CrossRef]

White, W. B.

S. A. Brawer and W. B. White, “Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates,” J. Chem. Phys.63(6), 2421–2432 (1975).
[CrossRef]

Will, M.

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Willaime, C.

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, “A Raman spectroscopic study of shock-wave densification of vitreous silica,” Phys. Chem. Miner.26(4), 304–311 (1999).
[CrossRef]

Withford, M. J.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Woggon, U.

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

Yano, T.

T. Maehara, T. Yano, and S. Shibata, “Structural rules of phase separation in alkali silicate melts analyzed by high temperature Raman spectroscopy,” J. Non-Cryst. Solids351(49-51), 3685–3692 (2005).
[CrossRef]

Yu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90(18), 181109 (2007).
[CrossRef]

Zhao, S.

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B106(3), 295–299 (2004).
[CrossRef]

Zhu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90(18), 181109 (2007).
[CrossRef]

AIP Conf. Proc. (1)

M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012).
[CrossRef]

Am. Mineral. (3)

B. O. Mysen, D. Virgo, and C. M. Scarfe, “Relations between the anionic structure and viscosity of silicate melts—a Raman spectroscopic study,” Am. Mineral.65, 690–710 (1980).

P. McMillan, “Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy,” Am. Mineral.69, 622–644 (1984).

G. S. Henderson, G. M. Bancroft, and M. E. Fleet, “Raman spectra of gallium and germanium substituted silicate glasses: variations in intermediate range order,” Am. Mineral.70, 946–960 (1985).

Appl. Phys. Lett. (5)

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90(18), 181109 (2007).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94(4), 041911 (2009).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (4)

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process.76(5), 857–860 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

Chem. Geol. (1)

B. O. Mysen and J. D. Frantz, “Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-SiO2, K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25–1475°C,” Chem. Geol.96(3-4), 321–332 (1992).
[CrossRef]

Contrib. Mineral. Petrol. (1)

B. O. Mysen and J. D. Frantz, “Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units,” Contrib. Mineral. Petrol.117(1), 1–14 (1994).
[CrossRef]

Geochim. Cosmochim. Acta (1)

P. McMillan, B. T. Poe, P. Gillet, and B. Reynard, “A study of SiO2 glass and supercooled liquid to 1950 K via high temperature Raman spectroscopy,” Geochim. Cosmochim. Acta58(17), 3653–3664 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron.4(5), 840–848 (1998).
[CrossRef]

J. Chem. Phys. (2)

S. A. Brawer and W. B. White, “Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates,” J. Chem. Phys.63(6), 2421–2432 (1975).
[CrossRef]

P. McMillan, B. Piriou, and R. Couty, “A Raman study of pressure-densified vitreous silica,” J. Chem. Phys.81(10), 4234–4236 (1984).
[CrossRef]

J. Non-Cryst. Solids (5)

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

D. W. Matson, S. K. Sharma, and J. A. Philpotts, “The structure of high silica alkali silicate glasses—a Raman spectroscopic investigation,” J. Non-Cryst. Solids58(2-3), 323–352 (1983).
[CrossRef]

N. Kitamura, K. Fukumi, H. Mizoguchi, M. Makihara, A. Higuchi, N. Ohno, and T. Fukunaga, “High pressure densification of lithium silicate glasses,” J. Non-Cryst. Solids274(1-3), 244–248 (2000).
[CrossRef]

T. Maehara, T. Yano, and S. Shibata, “Structural rules of phase separation in alkali silicate melts analyzed by high temperature Raman spectroscopy,” J. Non-Cryst. Solids351(49-51), 3685–3692 (2005).
[CrossRef]

T. Deschamps, C. Martinet, D. R. Neuville, D. de Ligny, C. Coussa-Simon, and B. Champagnon, “Silica under hydrostatic pressure: a non continous medium behavior,” J. Non-Cryst. Solids355(48-49), 2422–2424 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Condens. Matter (1)

B. Hehlen, “Inter-tetrahedra bond angle of permanently densified silicas extracted from their Raman spectra,” J. Phys. Condens. Matter22(2), 025401 (2010).
[CrossRef] [PubMed]

J. Raman Spectrosc. (2)

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

L. Robinet, C. Coupry, K. Eremin, and C. Hall, “The use of Raman spectrometry to predict the stability of historic glasses,” J. Raman Spectrosc.37(7), 789–797 (2006).
[CrossRef]

J. Soc. Ind. Appl. Math. (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math.11(2), 431–441 (1963).
[CrossRef]

Mater. Sci. Eng. B (1)

J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B106(3), 295–299 (2004).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Nature (1)

S. K. Sharma, J. F. Mammone, and M. F. Nicol, “Raman investigation of ring configurations in vitreous silica,” Nature292(5819), 140–141 (1981).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater.17(3), 379–386 (2001).
[CrossRef]

Opt. Mater. Express (1)

Phys. Chem. Miner. (1)

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, “A Raman spectroscopic study of shock-wave densification of vitreous silica,” Phys. Chem. Miner.26(4), 304–311 (1999).
[CrossRef]

Phys. Rev. B (1)

J. C. Phillips, “Structure and selectively enhanced Raman spectra of high-silica alkali ailicate glasses,” Phys. Rev. B32(8), 5350–5355 (1985).
[CrossRef]

Phys. Rev. Lett. (1)

R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett.57(6), 747–750 (1986).
[CrossRef] [PubMed]

Other (1)

H. Scholze, Glass—Nature, Structure and Properties (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normalized and baseline-corrected Raman spectra of three silicate glasses (non-irradiated) containing various amounts of lithium in the wavenumber range between 200 cm−1 and 1400 cm−1. For comparison, the reference spectrum of Fused Silica is shown. For improved visibility the individual curves are vertically shifted by 0.3.

Fig. 2
Fig. 2

Deconvoluted Raman spectra of the non-irradiated LiSi60 [(a) - green], LiSi66 [(b) - blue], LiSi75 [(c) - red], and fused silica [(d) - grey] glasses. In all graphs the black lines represent the normalized and baseline-corrected raw data. The investigated bands referred in this paper are band B (solid orange line) and band M (solid cyan line).

Fig. 3
Fig. 3

Fraction F of Qn units after fs-laser pulse irradiation of the glasses LiSi60 (a), LiSi66 (b), and LiSi75 (c). A comparison of the different glass compositions is given in (d).

Fig. 4
Fig. 4

Changes of peak center positions of Raman band B (Q4 bending) of fs-laser irradiated LiSi60 [(a) - green], LiSi66 [(b) - blue], LiSi75 [(c) - red] glasses and fused silica [(d) - black] and Raman band M (Q3 stretching) of fs-laser irradiated LiSi60 [(e) - green], LiSi66 [(f) - blue], and LiSi75 [(g) - red] glasses as a function of the laser fluence. A reference value for the non-irradiated material and its standard deviation is given at 0 J/cm2. The grey vertical lines indicate the ablation threshold fluence according to [13]. The dashed black lines guide the eye.

Fig. 5
Fig. 5

Changes of half width at half maximum (HWHM) of Raman band B (Q4 bending) of fs-laser irradiated LiSi60 [(a) - green], LiSi66 [(b) - blue], LiSi75 [(c) - red] glasses and fused silica [(d) - black] and Raman band M (Q3 stretching) of fs-laser irradiated LiSi60 [(e) - green], LiSi66 [(f) - blue], and LiSi75 [(g) - red] glasses as a function of the laser fluence. A reference value for the non-irradiated material and its standard deviation is given at 0 J/cm2. The grey vertical lines indicate the ablation threshold fluence according to [13]. The dashed black lines guide the eye.

Tables (2)

Tables Icon

Table 1 Composition of the investigated glasses as determined by chemical analysis by X-ray fluorescence and inductively coupled plasma analysis and properties (glass transformation temperature (Tg), thermal expansion coefficient (α) and mass density (ρ)) of the investigated glasses determined by dilatometric measurement and Archimedes’ principle

Tables Icon

Table 2 Assignment and origin of the peaks used for deconvolution of the Raman spectra

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2 Q 3 Q 2 + Q 4 .
F Q n = S( Q n ) n=0 n=4 S( Q n ) .

Metrics