Abstract

We demonstrate the use of laser-induced forward transfer (LIFT) in combination with a novel donor replenishment scheme to print continuous copper wires. Wires of mm length, a few microns wide and sub-micron in height have been printed using a 800 nm, 1 kHz repetition rate, 150 fs pulsed laser. A 120 nm thick copper donor was used along with laser pulse energy densities of 0.16-0.21 J cm−2 to print overlapping few-micron sized pads to form the millimeter long wires. The wires have a measured resistivity of 17 ± 4 times that of bulk copper.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Jung and A. Westphal, “Zirconia thin film deposition on silicon by reactive gas flow sputtering: the influence of low energy particle bombardment,” Mater. Sci. Eng. A140, 528–533 (1991).
    [CrossRef]
  2. R. C. Jaeger, Introduction to Microelectronic Fabrication: Volume 5 of Modular Series on Solid State Devices (Prentice Hall 2002), Chap. 6.
  3. J. Käshammer, P. Wohlfart, J. Weiß, C. Winter, R. Fischer, and S. Mittler-Neher, “Selective gold deposition via CVD onto self-assembled organic monolayers,” Opt. Mater.9(1-4), 406–410 (1998).
    [CrossRef]
  4. J. A. M. Sondag-Huethorst, H. R. J. van Helleputte, and L. G. J. Fokkink, “Generation of electrochemically deposited metal patterns by means of electron beam (nano) lithography of self-assembled monolayer resists,” Appl. Phys. Lett.64(3), 285–287 (1994).
    [CrossRef]
  5. S. A. Boden, Z. Moktadir, D. M. Bagnall, H. Mizuta, and H. N. Rutt, “Focused helium ion beam milling and deposition,” Microelectron. Eng.88(8), 2452–2455 (2011).
    [CrossRef]
  6. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60(4), 1538–1539 (1986).
    [CrossRef]
  7. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
    [CrossRef]
  8. E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457–459 (1989).
    [CrossRef]
  9. H. Kim, G. P. Kushto, C. B. Arnold, Z. H. Kafafi, and A. Pique, “Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells,” Appl. Phys. Lett.85(3), 464–466 (2004).
    [CrossRef]
  10. P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci.151(3-4), 159–170 (1999).
    [CrossRef]
  11. D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86(24), 244103 (2005).
    [CrossRef]
  12. I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
    [CrossRef]
  13. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010).
    [CrossRef] [PubMed]
  14. M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
    [CrossRef] [PubMed]
  15. A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
    [CrossRef]
  16. M. Kandyla, S. Chatzandroulis, and I. Zergioti, “Laser induced forward transfer of conducting polymers,” Opto-Electron. Rev.18(4), 345–351 (2010).
    [CrossRef]
  17. P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett.85(9), 1639–1641 (2004).
    [CrossRef]
  18. P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process.79(4-6), 949–952 (2004).
    [CrossRef]
  19. D. A. Willis and V. Grosu, “Evaporation and phase explosion during laser-induced forward transfer of aluminium,” Proc. SPIE5339, 304–312 (2004).
    [CrossRef]
  20. M. Feinaeugle, A. P. Alloncle, Ph. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
    [CrossRef]
  21. C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
    [CrossRef]
  22. B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys.96(6), 3478–3481 (2004).
    [CrossRef]
  23. G. Oosterhuis, B. H. in't Veld, G. Ebberink, D. A. del Cerro, E. van den Eijnden, P. Chall, and B. van der Zon, “Additive interconnect fabrication by picosecond Laser Induced Forward Transfer,” in 3D Systems Integration Conference (3DIC), 2010 IEEE International (Institute of Electrical and Electronics Engineers, New York, 2010) pp. 1–5.
  24. B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films515(19), 7706–7711 (2007).
    [CrossRef]
  25. L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express19(22), 21563–21574 (2011).
    [CrossRef] [PubMed]
  26. R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng.2(1), 21–25 (2007).
    [CrossRef]

2012 (3)

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

M. Feinaeugle, A. P. Alloncle, Ph. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
[CrossRef]

2011 (2)

L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express19(22), 21563–21574 (2011).
[CrossRef] [PubMed]

S. A. Boden, Z. Moktadir, D. M. Bagnall, H. Mizuta, and H. N. Rutt, “Focused helium ion beam milling and deposition,” Microelectron. Eng.88(8), 2452–2455 (2011).
[CrossRef]

2010 (3)

M. Kandyla, S. Chatzandroulis, and I. Zergioti, “Laser induced forward transfer of conducting polymers,” Opto-Electron. Rev.18(4), 345–351 (2010).
[CrossRef]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

2007 (2)

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng.2(1), 21–25 (2007).
[CrossRef]

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films515(19), 7706–7711 (2007).
[CrossRef]

2006 (1)

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

2005 (1)

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86(24), 244103 (2005).
[CrossRef]

2004 (5)

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett.85(9), 1639–1641 (2004).
[CrossRef]

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process.79(4-6), 949–952 (2004).
[CrossRef]

D. A. Willis and V. Grosu, “Evaporation and phase explosion during laser-induced forward transfer of aluminium,” Proc. SPIE5339, 304–312 (2004).
[CrossRef]

H. Kim, G. P. Kushto, C. B. Arnold, Z. H. Kafafi, and A. Pique, “Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells,” Appl. Phys. Lett.85(3), 464–466 (2004).
[CrossRef]

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys.96(6), 3478–3481 (2004).
[CrossRef]

1999 (1)

P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci.151(3-4), 159–170 (1999).
[CrossRef]

1998 (2)

J. Käshammer, P. Wohlfart, J. Weiß, C. Winter, R. Fischer, and S. Mittler-Neher, “Selective gold deposition via CVD onto self-assembled organic monolayers,” Opt. Mater.9(1-4), 406–410 (1998).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

1994 (1)

J. A. M. Sondag-Huethorst, H. R. J. van Helleputte, and L. G. J. Fokkink, “Generation of electrochemically deposited metal patterns by means of electron beam (nano) lithography of self-assembled monolayer resists,” Appl. Phys. Lett.64(3), 285–287 (1994).
[CrossRef]

1991 (1)

T. Jung and A. Westphal, “Zirconia thin film deposition on silicon by reactive gas flow sputtering: the influence of low energy particle bombardment,” Mater. Sci. Eng. A140, 528–533 (1991).
[CrossRef]

1989 (1)

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457–459 (1989).
[CrossRef]

1986 (1)

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60(4), 1538–1539 (1986).
[CrossRef]

Adrian, F. J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60(4), 1538–1539 (1986).
[CrossRef]

Ailuno, J.

Alloncle, A. P.

M. Feinaeugle, A. P. Alloncle, Ph. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
[CrossRef]

L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express19(22), 21563–21574 (2011).
[CrossRef] [PubMed]

Antal, Z.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys.96(6), 3478–3481 (2004).
[CrossRef]

Arnold, C. B.

H. Kim, G. P. Kushto, C. B. Arnold, Z. H. Kafafi, and A. Pique, “Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells,” Appl. Phys. Lett.85(3), 464–466 (2004).
[CrossRef]

Auyeung, R. C. Y.

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng.2(1), 21–25 (2007).
[CrossRef]

Bagnall, D. M.

S. A. Boden, Z. Moktadir, D. M. Bagnall, H. Mizuta, and H. N. Rutt, “Focused helium ion beam milling and deposition,” Microelectron. Eng.88(8), 2452–2455 (2011).
[CrossRef]

Banks, D. P.

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

Berthet, F. X.

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process.79(4-6), 949–952 (2004).
[CrossRef]

Boden, S. A.

S. A. Boden, Z. Moktadir, D. M. Bagnall, H. Mizuta, and H. N. Rutt, “Focused helium ion beam milling and deposition,” Microelectron. Eng.88(8), 2452–2455 (2011).
[CrossRef]

Bohandy, J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60(4), 1538–1539 (1986).
[CrossRef]

Bor, Z.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys.96(6), 3478–3481 (2004).
[CrossRef]

Chang, C. M.

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Chatzandroulis, S.

M. Kandyla, S. Chatzandroulis, and I. Zergioti, “Laser induced forward transfer of conducting polymers,” Opto-Electron. Rev.18(4), 345–351 (2010).
[CrossRef]

Chen, B. H.

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Chiang, H. P.

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Chichkov, B. N.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

Chrisey, D.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys.96(6), 3478–3481 (2004).
[CrossRef]

Chu, C. H.

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Chu, N. N.

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Chung, K. S.

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Colina, M.

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process.79(4-6), 949–952 (2004).
[CrossRef]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett.85(9), 1639–1641 (2004).
[CrossRef]

Delaporte, P.

Delaporte, Ph.

M. Feinaeugle, A. P. Alloncle, Ph. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
[CrossRef]

Eason, R. W.

M. Feinaeugle, A. P. Alloncle, Ph. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
[CrossRef]

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

Elvira, J.

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process.79(4-6), 949–952 (2004).
[CrossRef]

Feinaeugle, M.

M. Feinaeugle, A. P. Alloncle, Ph. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
[CrossRef]

Fernández-Pradas, J. M.

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process.79(4-6), 949–952 (2004).
[CrossRef]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett.85(9), 1639–1641 (2004).
[CrossRef]

Fischer, R.

J. Käshammer, P. Wohlfart, J. Weiß, C. Winter, R. Fischer, and S. Mittler-Neher, “Selective gold deposition via CVD onto self-assembled organic monolayers,” Opt. Mater.9(1-4), 406–410 (1998).
[CrossRef]

Fogarassy, E.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457–459 (1989).
[CrossRef]

Fokkink, L. G. J.

J. A. M. Sondag-Huethorst, H. R. J. van Helleputte, and L. G. J. Fokkink, “Generation of electrochemically deposited metal patterns by means of electron beam (nano) lithography of self-assembled monolayer resists,” Appl. Phys. Lett.64(3), 285–287 (1994).
[CrossRef]

Fotakis, C.

P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci.151(3-4), 159–170 (1999).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

Fuchs, C.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457–459 (1989).
[CrossRef]

Ganguly, P.

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

Grigoropoulos, C. P.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

Grivas, C.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

Grosu, V.

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86(24), 244103 (2005).
[CrossRef]

D. A. Willis and V. Grosu, “Evaporation and phase explosion during laser-induced forward transfer of aluminium,” Proc. SPIE5339, 304–312 (2004).
[CrossRef]

Hauchecorne, G.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457–459 (1989).
[CrossRef]

Hopp, B.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys.96(6), 3478–3481 (2004).
[CrossRef]

Huang, D. W.

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Huang, Y. W.

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Jeong, S.

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films515(19), 7706–7711 (2007).
[CrossRef]

Jung, T.

T. Jung and A. Westphal, “Zirconia thin film deposition on silicon by reactive gas flow sputtering: the influence of low energy particle bombardment,” Mater. Sci. Eng. A140, 528–533 (1991).
[CrossRef]

Kafafi, Z. H.

H. Kim, G. P. Kushto, C. B. Arnold, Z. H. Kafafi, and A. Pique, “Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells,” Appl. Phys. Lett.85(3), 464–466 (2004).
[CrossRef]

Kalpouzos, C.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

Kandyla, M.

M. Kandyla, S. Chatzandroulis, and I. Zergioti, “Laser induced forward transfer of conducting polymers,” Opto-Electron. Rev.18(4), 345–351 (2010).
[CrossRef]

Käshammer, J.

J. Käshammer, P. Wohlfart, J. Weiß, C. Winter, R. Fischer, and S. Mittler-Neher, “Selective gold deposition via CVD onto self-assembled organic monolayers,” Opt. Mater.9(1-4), 406–410 (1998).
[CrossRef]

Kaur, K. S.

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

Kerherve, F.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457–459 (1989).
[CrossRef]

Kim, B. F.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60(4), 1538–1539 (1986).
[CrossRef]

Kim, D.

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films515(19), 7706–7711 (2007).
[CrossRef]

Kim, H.

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng.2(1), 21–25 (2007).
[CrossRef]

H. Kim, G. P. Kushto, C. B. Arnold, Z. H. Kafafi, and A. Pique, “Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells,” Appl. Phys. Lett.85(3), 464–466 (2004).
[CrossRef]

Kim, J. S.

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films515(19), 7706–7711 (2007).
[CrossRef]

Kiyan, R.

Koch, J.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

Kresz, N.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys.96(6), 3478–3481 (2004).
[CrossRef]

Kushto, G. P.

H. Kim, G. P. Kushto, C. B. Arnold, Z. H. Kafafi, and A. Pique, “Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells,” Appl. Phys. Lett.85(3), 464–466 (2004).
[CrossRef]

Kuznetsov, A. I.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

Liu, Y. J.

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Mailis, S.

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

Mathews, S. A.

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng.2(1), 21–25 (2007).
[CrossRef]

Mills, J. D.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

Mittler-Neher, S.

J. Käshammer, P. Wohlfart, J. Weiß, C. Winter, R. Fischer, and S. Mittler-Neher, “Selective gold deposition via CVD onto self-assembled organic monolayers,” Opt. Mater.9(1-4), 406–410 (1998).
[CrossRef]

Mizuta, H.

S. A. Boden, Z. Moktadir, D. M. Bagnall, H. Mizuta, and H. N. Rutt, “Focused helium ion beam milling and deposition,” Microelectron. Eng.88(8), 2452–2455 (2011).
[CrossRef]

Moktadir, Z.

S. A. Boden, Z. Moktadir, D. M. Bagnall, H. Mizuta, and H. N. Rutt, “Focused helium ion beam milling and deposition,” Microelectron. Eng.88(8), 2452–2455 (2011).
[CrossRef]

Moon, J.

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films515(19), 7706–7711 (2007).
[CrossRef]

Morenza, J. L.

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett.85(9), 1639–1641 (2004).
[CrossRef]

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process.79(4-6), 949–952 (2004).
[CrossRef]

Papakonstantinou, P.

P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci.151(3-4), 159–170 (1999).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

Park, B. K.

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films515(19), 7706–7711 (2007).
[CrossRef]

Perriere, J.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457–459 (1989).
[CrossRef]

Pique, A.

H. Kim, G. P. Kushto, C. B. Arnold, Z. H. Kafafi, and A. Pique, “Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells,” Appl. Phys. Lett.85(3), 464–466 (2004).
[CrossRef]

Piqué, A.

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng.2(1), 21–25 (2007).
[CrossRef]

Rapp, L.

Rutt, H. N.

S. A. Boden, Z. Moktadir, D. M. Bagnall, H. Mizuta, and H. N. Rutt, “Focused helium ion beam milling and deposition,” Microelectron. Eng.88(8), 2452–2455 (2011).
[CrossRef]

Serra, P.

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process.79(4-6), 949–952 (2004).
[CrossRef]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett.85(9), 1639–1641 (2004).
[CrossRef]

Sevilla, L.

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett.85(9), 1639–1641 (2004).
[CrossRef]

Smausz, T.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys.96(6), 3478–3481 (2004).
[CrossRef]

Sondag-Huethorst, J. A. M.

J. A. M. Sondag-Huethorst, H. R. J. van Helleputte, and L. G. J. Fokkink, “Generation of electrochemically deposited metal patterns by means of electron beam (nano) lithography of self-assembled monolayer resists,” Appl. Phys. Lett.64(3), 285–287 (1994).
[CrossRef]

Sones, C. L.

M. Feinaeugle, A. P. Alloncle, Ph. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
[CrossRef]

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

Tsai, D. P.

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Tsai, H. G.

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Tseng, M. L.

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Unger, C.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

Vainos, N. A.

P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci.151(3-4), 159–170 (1999).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

van Helleputte, H. R. J.

J. A. M. Sondag-Huethorst, H. R. J. van Helleputte, and L. G. J. Fokkink, “Generation of electrochemically deposited metal patterns by means of electron beam (nano) lithography of self-assembled monolayer resists,” Appl. Phys. Lett.64(3), 285–287 (1994).
[CrossRef]

Weiß, J.

J. Käshammer, P. Wohlfart, J. Weiß, C. Winter, R. Fischer, and S. Mittler-Neher, “Selective gold deposition via CVD onto self-assembled organic monolayers,” Opt. Mater.9(1-4), 406–410 (1998).
[CrossRef]

Westphal, A.

T. Jung and A. Westphal, “Zirconia thin film deposition on silicon by reactive gas flow sputtering: the influence of low energy particle bombardment,” Mater. Sci. Eng. A140, 528–533 (1991).
[CrossRef]

Willis, D. A.

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86(24), 244103 (2005).
[CrossRef]

D. A. Willis and V. Grosu, “Evaporation and phase explosion during laser-induced forward transfer of aluminium,” Proc. SPIE5339, 304–312 (2004).
[CrossRef]

Winter, C.

J. Käshammer, P. Wohlfart, J. Weiß, C. Winter, R. Fischer, and S. Mittler-Neher, “Selective gold deposition via CVD onto self-assembled organic monolayers,” Opt. Mater.9(1-4), 406–410 (1998).
[CrossRef]

Wohlfart, P.

J. Käshammer, P. Wohlfart, J. Weiß, C. Winter, R. Fischer, and S. Mittler-Neher, “Selective gold deposition via CVD onto self-assembled organic monolayers,” Opt. Mater.9(1-4), 406–410 (1998).
[CrossRef]

Ying, Y. J.

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

Zergioti, I.

M. Kandyla, S. Chatzandroulis, and I. Zergioti, “Laser induced forward transfer of conducting polymers,” Opto-Electron. Rev.18(4), 345–351 (2010).
[CrossRef]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

Appl. Phys. Lett. (5)

J. A. M. Sondag-Huethorst, H. R. J. van Helleputte, and L. G. J. Fokkink, “Generation of electrochemically deposited metal patterns by means of electron beam (nano) lithography of self-assembled monolayer resists,” Appl. Phys. Lett.64(3), 285–287 (1994).
[CrossRef]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006).
[CrossRef]

H. Kim, G. P. Kushto, C. B. Arnold, Z. H. Kafafi, and A. Pique, “Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells,” Appl. Phys. Lett.85(3), 464–466 (2004).
[CrossRef]

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86(24), 244103 (2005).
[CrossRef]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett.85(9), 1639–1641 (2004).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (4)

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process.79(4-6), 949–952 (2004).
[CrossRef]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998).
[CrossRef]

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010).
[CrossRef]

Appl. Surf. Sci. (2)

M. Feinaeugle, A. P. Alloncle, Ph. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
[CrossRef]

P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci.151(3-4), 159–170 (1999).
[CrossRef]

J. Appl. Phys. (3)

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457–459 (1989).
[CrossRef]

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60(4), 1538–1539 (1986).
[CrossRef]

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys.96(6), 3478–3481 (2004).
[CrossRef]

J. Laser Micro/Nanoeng. (1)

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng.2(1), 21–25 (2007).
[CrossRef]

Mater. Sci. Eng. A (1)

T. Jung and A. Westphal, “Zirconia thin film deposition on silicon by reactive gas flow sputtering: the influence of low energy particle bombardment,” Mater. Sci. Eng. A140, 528–533 (1991).
[CrossRef]

Microelectron. Eng. (1)

S. A. Boden, Z. Moktadir, D. M. Bagnall, H. Mizuta, and H. N. Rutt, “Focused helium ion beam milling and deposition,” Microelectron. Eng.88(8), 2452–2455 (2011).
[CrossRef]

Nanotechnology (1)

M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Mater. (1)

J. Käshammer, P. Wohlfart, J. Weiß, C. Winter, R. Fischer, and S. Mittler-Neher, “Selective gold deposition via CVD onto self-assembled organic monolayers,” Opt. Mater.9(1-4), 406–410 (1998).
[CrossRef]

Opto-Electron. Rev. (1)

M. Kandyla, S. Chatzandroulis, and I. Zergioti, “Laser induced forward transfer of conducting polymers,” Opto-Electron. Rev.18(4), 345–351 (2010).
[CrossRef]

Proc. SPIE (1)

D. A. Willis and V. Grosu, “Evaporation and phase explosion during laser-induced forward transfer of aluminium,” Proc. SPIE5339, 304–312 (2004).
[CrossRef]

Thin Solid Films (1)

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films515(19), 7706–7711 (2007).
[CrossRef]

Other (2)

G. Oosterhuis, B. H. in't Veld, G. Ebberink, D. A. del Cerro, E. van den Eijnden, P. Chall, and B. van der Zon, “Additive interconnect fabrication by picosecond Laser Induced Forward Transfer,” in 3D Systems Integration Conference (3DIC), 2010 IEEE International (Institute of Electrical and Electronics Engineers, New York, 2010) pp. 1–5.

R. C. Jaeger, Introduction to Microelectronic Fabrication: Volume 5 of Modular Series on Solid State Devices (Prentice Hall 2002), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a non-donor-replenishment LIFT process, with parameters used in this work. (a) A laser pulse melts region of copper, (b) melted copper drop attaches to receiver and (c) donor and receiver are translated beneath laser so that a fresh region of copper is available for the next laser pulse.

Fig. 2
Fig. 2

Schematic of the printing overlapping process, for a 0.5 µm center-to-center pad overlap (assuming 1 µm diameter pads in the figure).

Fig. 3
Fig. 3

SEM images of (a) a smooth pad and (b) a broken pad. The SEM images were taken at 45°. Inset: microscope images of the donor after LIFT of a pad.

Fig. 4
Fig. 4

SEM images of sections of continuous wires of copper printed using a laser pulse energy density of (a) 0.16 J cm−2 with 1 µm center-to-center pad separation, (b) 0.16 J cm−2 with 0.5 µm center-to-center pad separation, (c) 0.21 J cm−2 with 1 µm center-to-center pad separation and (d) 0.21 J cm−2 with with 0.5 µm center-to-center pad separation. The SEM images were taken at 45°.

Fig. 5
Fig. 5

SEM image of a continuous 1 mm long copper wire for laser pulse energy density of 0.16 J cm−2, produced using a 0.5 µm center-to-center pad separation.

Metrics