Abstract

A particulate counter electrode with photo scattering and redox catalytic properties is applied to dye sensitized solar cells (DSSCs) in order to improve photo conversion efficiency and simplify the assembly process. Our particulate counter electrode acts as both a photo reflecting layer and a catalyst for reduction of electrolyte. The reflective and catalytic properties of the electrode are investigated through optical and electrochemical analysis, respectively. A short circuit current density enhancement is observed in the DSSCs without the need to add an additional reflecting layer to the electrode. This leads to a simplified assembly process.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature353(6346), 737–740 (1991).
    [CrossRef]
  2. A. Burke, L. Schmidt-Mende, S. Ito, and M. Grätzel, “A novel blue dye for near-IR ‘dye-sensitized’ solar cell applications,” Chem. Commun. (Camb.)3, 234–236 (2006).
    [CrossRef] [PubMed]
  3. T. Yamaguchi, Y. Uchida, S. Agatsuma, and H. Arakawa, “Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10%,” Sol. Energy Mater. Sol. Cells93(6–7), 733–736 (2009).
    [CrossRef]
  4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl.21(1), 1–11 (2013).
    [CrossRef]
  5. S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunligh to electricity,” Opt. Express18(S1), A73–A78 (2010).
    [CrossRef]
  6. M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE8108, 810804 (2011).
  7. D. W. Liu, I. C. Cheng, J. Z. Chen, H. W. Chen, K. C. Ho, and C. C. Chiang, “Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes,” Opt. Express20(Suppl 2), A168–A176 (2012).
    [CrossRef] [PubMed]
  8. A. K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C. Yi, M. K. Nazeeruddin, and M. Grätzel, “Subnanometer Ga2O3 tunneling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells,” Nano Lett.12(8), 3941–3947 (2012).
    [CrossRef] [PubMed]
  9. Y. Jhang, Y. Tsai, C. Tsai, S. Hsu, T. Huang, C. Lu, M. Chen, Y. Chen, and C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron.13(10), 1865–1872 (2012).
    [CrossRef]
  10. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science334(6056), 629–634 (2011).
    [CrossRef] [PubMed]
  11. Q. Xu, F. Liu, W. Meng, and Y. Huang, “Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells,” Opt. Express20(S6), A898–A907 (2012).
    [CrossRef]
  12. J. Y. Lee, S. Lee, J. K. Park, Y. Jun, Y. G. Lee, K. M. Kim, J. H. Yun, and K. Y. Cho, “Simple approach for enhancement of light harvesting efficiency of dye-sensitized solar cells by polymeric mirror,” Opt. Express18(Suppl 4), A522–A527 (2010).
    [CrossRef] [PubMed]
  13. K. Lee, J. Yun, Y. Han, J. Yim, N. Park, K. Cho, and J. Park, “Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes,” J. Mater. Chem.21(39), 15193–15196 (2011).
    [CrossRef]
  14. M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, and M. Grätzel, “Tuning spectral properties of phenothiazine based donor–p–acceptor dyes for efficient dye-sensitized solar cells,” J. Mater. Chem.22(3), 889–894 (2011).
    [CrossRef]
  15. A. Mihi, M. E. Calvo, J. A. Anta, and H. Míguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
    [CrossRef]
  16. Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett.13(1), 14–20 (2013).
    [CrossRef] [PubMed]
  17. Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light-emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
    [CrossRef]
  18. P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
    [CrossRef] [PubMed]
  19. W. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
    [CrossRef]
  20. M. A. Tsai, H. W. Han, Y. L. Tsai, P. C. Tseng, P. Yu, H. C. Kuo, C. H. Shen, J. M. Shieh, and S. H. Lin, “Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells,” Opt. Express19(Suppl 4), A757–A762 (2011).
    [CrossRef] [PubMed]
  21. J. Zhao, B. Sun, L. Qiu, H. Caocen, Q. Li, X. Chen, and F. Yan, “Efficient light-scattering functionalized TiO2 photoanodes modified with cyanobiphenyl-based benzimidazole for dye-sensitized solar cells with additive-free electrolytes,” J. Mater. Chem.22(35), 18380–18386 (2012).
    [CrossRef]
  22. Y. Park, Y. Chang, B. Kum, E. Kong, J. Son, Y. Kwon, T. Park, and H. Jang, “Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells,” J. Mater. Chem.21(26), 9582–9586 (2011).
    [CrossRef]
  23. F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater.20(8), 1301–1305 (2010).
    [CrossRef]
  24. D. Wu, F. Zhu, J. Li, H. Dong, Q. Li, K. Jiang, and D. Xu, “Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells,” J. Mater. Chem.22(23), 11665–11671 (2012).
    [CrossRef]
  25. W. Jiang, L. Yin, H. Liu, and Y. Ding, “Nanograss-structured counter electrode for dye-sensitized solar cells,” J. Power Sources218, 405–411 (2012).
    [CrossRef]
  26. W. S. Chi, J. W. Han, S. Yang, D. K. Roh, H. Lee, and J. H. Kim, “Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes,” Chem. Commun. (Camb.)48(76), 9501–9503 (2012).
    [CrossRef] [PubMed]
  27. T. Zhang, H. Chen, C. Su, and D. Kuang, “A novel TCO- and Pt-free counter electrode for high efficiency dye-sensitized solar cells,” J. Mater. Chem.1(5), 1724–1730 (2013).
    [CrossRef]
  28. E. Ramasamy and J. Lee, “Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells,” Carbon48(13), 3715–3720 (2010).
    [CrossRef]
  29. J. Kim and S. Rhee, “Counter electrode system of Pt on stainless steel (SS) for electron injection into iodide redox couple,” J. Electrochem. Soc.159(1), B6–B11 (2012).
    [CrossRef]
  30. K. Sim, S. Sung, and D. Kim, “Light harvest properties of dye-sensitized solar cells with different spatial configurations of reflecting layer,” J. Nanosci. Nanotechnol. (to be published).
  31. K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim, and G. Y. Jung, “Fabrication of an efficient light-scattering functionalized photoanode using periodically aligned ZnO hemisphere crystals for dye-sensitized solar cells,” Adv. Mater.24(6), 792–798 (2012).
    [CrossRef] [PubMed]

2013

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl.21(1), 1–11 (2013).
[CrossRef]

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett.13(1), 14–20 (2013).
[CrossRef] [PubMed]

T. Zhang, H. Chen, C. Su, and D. Kuang, “A novel TCO- and Pt-free counter electrode for high efficiency dye-sensitized solar cells,” J. Mater. Chem.1(5), 1724–1730 (2013).
[CrossRef]

2012

D. Wu, F. Zhu, J. Li, H. Dong, Q. Li, K. Jiang, and D. Xu, “Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells,” J. Mater. Chem.22(23), 11665–11671 (2012).
[CrossRef]

W. Jiang, L. Yin, H. Liu, and Y. Ding, “Nanograss-structured counter electrode for dye-sensitized solar cells,” J. Power Sources218, 405–411 (2012).
[CrossRef]

W. S. Chi, J. W. Han, S. Yang, D. K. Roh, H. Lee, and J. H. Kim, “Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes,” Chem. Commun. (Camb.)48(76), 9501–9503 (2012).
[CrossRef] [PubMed]

W. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

J. Zhao, B. Sun, L. Qiu, H. Caocen, Q. Li, X. Chen, and F. Yan, “Efficient light-scattering functionalized TiO2 photoanodes modified with cyanobiphenyl-based benzimidazole for dye-sensitized solar cells with additive-free electrolytes,” J. Mater. Chem.22(35), 18380–18386 (2012).
[CrossRef]

J. Kim and S. Rhee, “Counter electrode system of Pt on stainless steel (SS) for electron injection into iodide redox couple,” J. Electrochem. Soc.159(1), B6–B11 (2012).
[CrossRef]

K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim, and G. Y. Jung, “Fabrication of an efficient light-scattering functionalized photoanode using periodically aligned ZnO hemisphere crystals for dye-sensitized solar cells,” Adv. Mater.24(6), 792–798 (2012).
[CrossRef] [PubMed]

Q. Xu, F. Liu, W. Meng, and Y. Huang, “Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells,” Opt. Express20(S6), A898–A907 (2012).
[CrossRef]

D. W. Liu, I. C. Cheng, J. Z. Chen, H. W. Chen, K. C. Ho, and C. C. Chiang, “Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes,” Opt. Express20(Suppl 2), A168–A176 (2012).
[CrossRef] [PubMed]

A. K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C. Yi, M. K. Nazeeruddin, and M. Grätzel, “Subnanometer Ga2O3 tunneling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells,” Nano Lett.12(8), 3941–3947 (2012).
[CrossRef] [PubMed]

Y. Jhang, Y. Tsai, C. Tsai, S. Hsu, T. Huang, C. Lu, M. Chen, Y. Chen, and C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron.13(10), 1865–1872 (2012).
[CrossRef]

2011

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science334(6056), 629–634 (2011).
[CrossRef] [PubMed]

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE8108, 810804 (2011).

K. Lee, J. Yun, Y. Han, J. Yim, N. Park, K. Cho, and J. Park, “Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes,” J. Mater. Chem.21(39), 15193–15196 (2011).
[CrossRef]

M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, and M. Grätzel, “Tuning spectral properties of phenothiazine based donor–p–acceptor dyes for efficient dye-sensitized solar cells,” J. Mater. Chem.22(3), 889–894 (2011).
[CrossRef]

Y. Park, Y. Chang, B. Kum, E. Kong, J. Son, Y. Kwon, T. Park, and H. Jang, “Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells,” J. Mater. Chem.21(26), 9582–9586 (2011).
[CrossRef]

M. A. Tsai, H. W. Han, Y. L. Tsai, P. C. Tseng, P. Yu, H. C. Kuo, C. H. Shen, J. M. Shieh, and S. H. Lin, “Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells,” Opt. Express19(Suppl 4), A757–A762 (2011).
[CrossRef] [PubMed]

2010

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater.20(8), 1301–1305 (2010).
[CrossRef]

E. Ramasamy and J. Lee, “Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells,” Carbon48(13), 3715–3720 (2010).
[CrossRef]

J. Y. Lee, S. Lee, J. K. Park, Y. Jun, Y. G. Lee, K. M. Kim, J. H. Yun, and K. Y. Cho, “Simple approach for enhancement of light harvesting efficiency of dye-sensitized solar cells by polymeric mirror,” Opt. Express18(Suppl 4), A522–A527 (2010).
[CrossRef] [PubMed]

S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunligh to electricity,” Opt. Express18(S1), A73–A78 (2010).
[CrossRef]

2009

T. Yamaguchi, Y. Uchida, S. Agatsuma, and H. Arakawa, “Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10%,” Sol. Energy Mater. Sol. Cells93(6–7), 733–736 (2009).
[CrossRef]

2008

A. Mihi, M. E. Calvo, J. A. Anta, and H. Míguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
[CrossRef]

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

2007

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light-emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

2006

A. Burke, L. Schmidt-Mende, S. Ito, and M. Grätzel, “A novel blue dye for near-IR ‘dye-sensitized’ solar cell applications,” Chem. Commun. (Camb.)3, 234–236 (2006).
[CrossRef] [PubMed]

1991

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature353(6346), 737–740 (1991).
[CrossRef]

Agatsuma, S.

T. Yamaguchi, Y. Uchida, S. Agatsuma, and H. Arakawa, “Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10%,” Sol. Energy Mater. Sol. Cells93(6–7), 733–736 (2009).
[CrossRef]

Anta, J. A.

A. Mihi, M. E. Calvo, J. A. Anta, and H. Míguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
[CrossRef]

Arakawa, H.

T. Yamaguchi, Y. Uchida, S. Agatsuma, and H. Arakawa, “Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10%,” Sol. Energy Mater. Sol. Cells93(6–7), 733–736 (2009).
[CrossRef]

Arif, R. A.

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light-emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Baranoff, E.

A. K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C. Yi, M. K. Nazeeruddin, and M. Grätzel, “Subnanometer Ga2O3 tunneling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells,” Nano Lett.12(8), 3941–3947 (2012).
[CrossRef] [PubMed]

Burke, A.

A. Burke, L. Schmidt-Mende, S. Ito, and M. Grätzel, “A novel blue dye for near-IR ‘dye-sensitized’ solar cell applications,” Chem. Commun. (Camb.)3, 234–236 (2006).
[CrossRef] [PubMed]

Calvo, M. E.

A. Mihi, M. E. Calvo, J. A. Anta, and H. Míguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
[CrossRef]

Caocen, H.

J. Zhao, B. Sun, L. Qiu, H. Caocen, Q. Li, X. Chen, and F. Yan, “Efficient light-scattering functionalized TiO2 photoanodes modified with cyanobiphenyl-based benzimidazole for dye-sensitized solar cells with additive-free electrolytes,” J. Mater. Chem.22(35), 18380–18386 (2012).
[CrossRef]

Caruso, R. A.

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater.20(8), 1301–1305 (2010).
[CrossRef]

Chandiran, A. K.

A. K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C. Yi, M. K. Nazeeruddin, and M. Grätzel, “Subnanometer Ga2O3 tunneling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells,” Nano Lett.12(8), 3941–3947 (2012).
[CrossRef] [PubMed]

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science334(6056), 629–634 (2011).
[CrossRef] [PubMed]

Chang, Y.

Y. Park, Y. Chang, B. Kum, E. Kong, J. Son, Y. Kwon, T. Park, and H. Jang, “Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells,” J. Mater. Chem.21(26), 9582–9586 (2011).
[CrossRef]

Chen, D.

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater.20(8), 1301–1305 (2010).
[CrossRef]

Chen, H.

T. Zhang, H. Chen, C. Su, and D. Kuang, “A novel TCO- and Pt-free counter electrode for high efficiency dye-sensitized solar cells,” J. Mater. Chem.1(5), 1724–1730 (2013).
[CrossRef]

Chen, H. W.

Chen, J. Z.

Chen, M.

Y. Jhang, Y. Tsai, C. Tsai, S. Hsu, T. Huang, C. Lu, M. Chen, Y. Chen, and C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron.13(10), 1865–1872 (2012).
[CrossRef]

Chen, X.

J. Zhao, B. Sun, L. Qiu, H. Caocen, Q. Li, X. Chen, and F. Yan, “Efficient light-scattering functionalized TiO2 photoanodes modified with cyanobiphenyl-based benzimidazole for dye-sensitized solar cells with additive-free electrolytes,” J. Mater. Chem.22(35), 18380–18386 (2012).
[CrossRef]

Chen, Y.

Y. Jhang, Y. Tsai, C. Tsai, S. Hsu, T. Huang, C. Lu, M. Chen, Y. Chen, and C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron.13(10), 1865–1872 (2012).
[CrossRef]

Cheng, I. C.

Cheng, Y.

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater.20(8), 1301–1305 (2010).
[CrossRef]

Chi, W. S.

W. S. Chi, J. W. Han, S. Yang, D. K. Roh, H. Lee, and J. H. Kim, “Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes,” Chem. Commun. (Camb.)48(76), 9501–9503 (2012).
[CrossRef] [PubMed]

Chiang, C. C.

Cho, K.

K. Lee, J. Yun, Y. Han, J. Yim, N. Park, K. Cho, and J. Park, “Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes,” J. Mater. Chem.21(39), 15193–15196 (2011).
[CrossRef]

Cho, K. Y.

Diau, E. W.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science334(6056), 629–634 (2011).
[CrossRef] [PubMed]

Ding, Y.

W. Jiang, L. Yin, H. Liu, and Y. Ding, “Nanograss-structured counter electrode for dye-sensitized solar cells,” J. Power Sources218, 405–411 (2012).
[CrossRef]

Dong, H.

D. Wu, F. Zhu, J. Li, H. Dong, Q. Li, K. Jiang, and D. Xu, “Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells,” J. Mater. Chem.22(23), 11665–11671 (2012).
[CrossRef]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl.21(1), 1–11 (2013).
[CrossRef]

Ee, Y.

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light-emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Ee, Y. K.

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl.21(1), 1–11 (2013).
[CrossRef]

Geisz, J.

Gilchrist, J. F.

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light-emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Grätzel, M.

A. K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C. Yi, M. K. Nazeeruddin, and M. Grätzel, “Subnanometer Ga2O3 tunneling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells,” Nano Lett.12(8), 3941–3947 (2012).
[CrossRef] [PubMed]

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science334(6056), 629–634 (2011).
[CrossRef] [PubMed]

M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, and M. Grätzel, “Tuning spectral properties of phenothiazine based donor–p–acceptor dyes for efficient dye-sensitized solar cells,” J. Mater. Chem.22(3), 889–894 (2011).
[CrossRef]

A. Burke, L. Schmidt-Mende, S. Ito, and M. Grätzel, “A novel blue dye for near-IR ‘dye-sensitized’ solar cell applications,” Chem. Commun. (Camb.)3, 234–236 (2006).
[CrossRef] [PubMed]

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature353(6346), 737–740 (1991).
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl.21(1), 1–11 (2013).
[CrossRef]

Han, H. W.

Han, J. W.

W. S. Chi, J. W. Han, S. Yang, D. K. Roh, H. Lee, and J. H. Kim, “Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes,” Chem. Commun. (Camb.)48(76), 9501–9503 (2012).
[CrossRef] [PubMed]

Han, Y.

K. Lee, J. Yun, Y. Han, J. Yim, N. Park, K. Cho, and J. Park, “Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes,” J. Mater. Chem.21(39), 15193–15196 (2011).
[CrossRef]

Hedhili, M. N.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett.13(1), 14–20 (2013).
[CrossRef] [PubMed]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl.21(1), 1–11 (2013).
[CrossRef]

Ho, K. C.

Hsu, S.

Y. Jhang, Y. Tsai, C. Tsai, S. Hsu, T. Huang, C. Lu, M. Chen, Y. Chen, and C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron.13(10), 1865–1872 (2012).
[CrossRef]

Huang, F.

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater.20(8), 1301–1305 (2010).
[CrossRef]

Huang, T.

Y. Jhang, Y. Tsai, C. Tsai, S. Hsu, T. Huang, C. Lu, M. Chen, Y. Chen, and C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron.13(10), 1865–1872 (2012).
[CrossRef]

Huang, Y.

Humphry-Baker, R.

A. K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C. Yi, M. K. Nazeeruddin, and M. Grätzel, “Subnanometer Ga2O3 tunneling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells,” Nano Lett.12(8), 3941–3947 (2012).
[CrossRef] [PubMed]

M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, and M. Grätzel, “Tuning spectral properties of phenothiazine based donor–p–acceptor dyes for efficient dye-sensitized solar cells,” J. Mater. Chem.22(3), 889–894 (2011).
[CrossRef]

Ichake, A.

M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, and M. Grätzel, “Tuning spectral properties of phenothiazine based donor–p–acceptor dyes for efficient dye-sensitized solar cells,” J. Mater. Chem.22(3), 889–894 (2011).
[CrossRef]

Ito, S.

A. Burke, L. Schmidt-Mende, S. Ito, and M. Grätzel, “A novel blue dye for near-IR ‘dye-sensitized’ solar cell applications,” Chem. Commun. (Camb.)3, 234–236 (2006).
[CrossRef] [PubMed]

Jang, H.

Y. Park, Y. Chang, B. Kum, E. Kong, J. Son, Y. Kwon, T. Park, and H. Jang, “Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells,” J. Mater. Chem.21(26), 9582–9586 (2011).
[CrossRef]

Jeong, H.

K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim, and G. Y. Jung, “Fabrication of an efficient light-scattering functionalized photoanode using periodically aligned ZnO hemisphere crystals for dye-sensitized solar cells,” Adv. Mater.24(6), 792–798 (2012).
[CrossRef] [PubMed]

Jhang, Y.

Y. Jhang, Y. Tsai, C. Tsai, S. Hsu, T. Huang, C. Lu, M. Chen, Y. Chen, and C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron.13(10), 1865–1872 (2012).
[CrossRef]

Jiang, K.

D. Wu, F. Zhu, J. Li, H. Dong, Q. Li, K. Jiang, and D. Xu, “Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells,” J. Mater. Chem.22(23), 11665–11671 (2012).
[CrossRef]

Jiang, W.

W. Jiang, L. Yin, H. Liu, and Y. Ding, “Nanograss-structured counter electrode for dye-sensitized solar cells,” J. Power Sources218, 405–411 (2012).
[CrossRef]

Jun, Y.

Jung, G. Y.

K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim, and G. Y. Jung, “Fabrication of an efficient light-scattering functionalized photoanode using periodically aligned ZnO hemisphere crystals for dye-sensitized solar cells,” Adv. Mater.24(6), 792–798 (2012).
[CrossRef] [PubMed]

Kessler, F.

A. K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C. Yi, M. K. Nazeeruddin, and M. Grätzel, “Subnanometer Ga2O3 tunneling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells,” Nano Lett.12(8), 3941–3947 (2012).
[CrossRef] [PubMed]

Kim, D.

K. Sim, S. Sung, and D. Kim, “Light harvest properties of dye-sensitized solar cells with different spatial configurations of reflecting layer,” J. Nanosci. Nanotechnol. (to be published).

Kim, J.

J. Kim and S. Rhee, “Counter electrode system of Pt on stainless steel (SS) for electron injection into iodide redox couple,” J. Electrochem. Soc.159(1), B6–B11 (2012).
[CrossRef]

Kim, J. H.

W. S. Chi, J. W. Han, S. Yang, D. K. Roh, H. Lee, and J. H. Kim, “Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes,” Chem. Commun. (Camb.)48(76), 9501–9503 (2012).
[CrossRef] [PubMed]

Kim, K. M.

Kim, K. S.

K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim, and G. Y. Jung, “Fabrication of an efficient light-scattering functionalized photoanode using periodically aligned ZnO hemisphere crystals for dye-sensitized solar cells,” Adv. Mater.24(6), 792–798 (2012).
[CrossRef] [PubMed]

Kim, S. M.

K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim, and G. Y. Jung, “Fabrication of an efficient light-scattering functionalized photoanode using periodically aligned ZnO hemisphere crystals for dye-sensitized solar cells,” Adv. Mater.24(6), 792–798 (2012).
[CrossRef] [PubMed]

Kim, W. B.

K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim, and G. Y. Jung, “Fabrication of an efficient light-scattering functionalized photoanode using periodically aligned ZnO hemisphere crystals for dye-sensitized solar cells,” Adv. Mater.24(6), 792–798 (2012).
[CrossRef] [PubMed]

Kong, E.

Y. Park, Y. Chang, B. Kum, E. Kong, J. Son, Y. Kwon, T. Park, and H. Jang, “Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells,” J. Mater. Chem.21(26), 9582–9586 (2011).
[CrossRef]

Koo, W.

W. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Kuang, D.

T. Zhang, H. Chen, C. Su, and D. Kuang, “A novel TCO- and Pt-free counter electrode for high efficiency dye-sensitized solar cells,” J. Mater. Chem.1(5), 1724–1730 (2013).
[CrossRef]

Kum, B.

Y. Park, Y. Chang, B. Kum, E. Kong, J. Son, Y. Kwon, T. Park, and H. Jang, “Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells,” J. Mater. Chem.21(26), 9582–9586 (2011).
[CrossRef]

Kumnorkaew, P.

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light-emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Kuo, H. C.

Kurtz, S.

Kwon, Y.

Y. Park, Y. Chang, B. Kum, E. Kong, J. Son, Y. Kwon, T. Park, and H. Jang, “Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells,” J. Mater. Chem.21(26), 9582–9586 (2011).
[CrossRef]

Lee, H.

W. S. Chi, J. W. Han, S. Yang, D. K. Roh, H. Lee, and J. H. Kim, “Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes,” Chem. Commun. (Camb.)48(76), 9501–9503 (2012).
[CrossRef] [PubMed]

Lee, H. W.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science334(6056), 629–634 (2011).
[CrossRef] [PubMed]

Lee, J.

E. Ramasamy and J. Lee, “Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells,” Carbon48(13), 3715–3720 (2010).
[CrossRef]

Lee, J. Y.

Lee, K.

K. Lee, J. Yun, Y. Han, J. Yim, N. Park, K. Cho, and J. Park, “Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes,” J. Mater. Chem.21(39), 15193–15196 (2011).
[CrossRef]

Lee, S.

Lee, Y. G.

Li, J.

D. Wu, F. Zhu, J. Li, H. Dong, Q. Li, K. Jiang, and D. Xu, “Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells,” J. Mater. Chem.22(23), 11665–11671 (2012).
[CrossRef]

Li, Q.

D. Wu, F. Zhu, J. Li, H. Dong, Q. Li, K. Jiang, and D. Xu, “Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells,” J. Mater. Chem.22(23), 11665–11671 (2012).
[CrossRef]

J. Zhao, B. Sun, L. Qiu, H. Caocen, Q. Li, X. Chen, and F. Yan, “Efficient light-scattering functionalized TiO2 photoanodes modified with cyanobiphenyl-based benzimidazole for dye-sensitized solar cells with additive-free electrolytes,” J. Mater. Chem.22(35), 18380–18386 (2012).
[CrossRef]

Li, X.

W. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Lin, S. H.

Liu, D. W.

Liu, F.

Liu, H.

W. Jiang, L. Yin, H. Liu, and Y. Ding, “Nanograss-structured counter electrode for dye-sensitized solar cells,” J. Power Sources218, 405–411 (2012).
[CrossRef]

Lu, C.

Y. Jhang, Y. Tsai, C. Tsai, S. Hsu, T. Huang, C. Lu, M. Chen, Y. Chen, and C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron.13(10), 1865–1872 (2012).
[CrossRef]

Marszalek, M.

M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, and M. Grätzel, “Tuning spectral properties of phenothiazine based donor–p–acceptor dyes for efficient dye-sensitized solar cells,” J. Mater. Chem.22(3), 889–894 (2011).
[CrossRef]

Meng, W.

Míguez, H.

A. Mihi, M. E. Calvo, J. A. Anta, and H. Míguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
[CrossRef]

Mihi, A.

A. Mihi, M. E. Calvo, J. A. Anta, and H. Míguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
[CrossRef]

Nagane, S.

M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, and M. Grätzel, “Tuning spectral properties of phenothiazine based donor–p–acceptor dyes for efficient dye-sensitized solar cells,” J. Mater. Chem.22(3), 889–894 (2011).
[CrossRef]

Nam, S. H.

K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim, and G. Y. Jung, “Fabrication of an efficient light-scattering functionalized photoanode using periodically aligned ZnO hemisphere crystals for dye-sensitized solar cells,” Adv. Mater.24(6), 792–798 (2012).
[CrossRef] [PubMed]

Nazeeruddin, M. K.

A. K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C. Yi, M. K. Nazeeruddin, and M. Grätzel, “Subnanometer Ga2O3 tunneling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells,” Nano Lett.12(8), 3941–3947 (2012).
[CrossRef] [PubMed]

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science334(6056), 629–634 (2011).
[CrossRef] [PubMed]

O’Regan, B.

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature353(6346), 737–740 (1991).
[CrossRef]

Park, J.

K. Lee, J. Yun, Y. Han, J. Yim, N. Park, K. Cho, and J. Park, “Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes,” J. Mater. Chem.21(39), 15193–15196 (2011).
[CrossRef]

Park, J. K.

Park, N.

K. Lee, J. Yun, Y. Han, J. Yim, N. Park, K. Cho, and J. Park, “Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes,” J. Mater. Chem.21(39), 15193–15196 (2011).
[CrossRef]

Park, T.

Y. Park, Y. Chang, B. Kum, E. Kong, J. Son, Y. Kwon, T. Park, and H. Jang, “Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells,” J. Mater. Chem.21(26), 9582–9586 (2011).
[CrossRef]

Park, Y.

Y. Park, Y. Chang, B. Kum, E. Kong, J. Son, Y. Kwon, T. Park, and H. Jang, “Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells,” J. Mater. Chem.21(26), 9582–9586 (2011).
[CrossRef]

Paul, V.

M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, and M. Grätzel, “Tuning spectral properties of phenothiazine based donor–p–acceptor dyes for efficient dye-sensitized solar cells,” J. Mater. Chem.22(3), 889–894 (2011).
[CrossRef]

Qiu, L.

J. Zhao, B. Sun, L. Qiu, H. Caocen, Q. Li, X. Chen, and F. Yan, “Efficient light-scattering functionalized TiO2 photoanodes modified with cyanobiphenyl-based benzimidazole for dye-sensitized solar cells with additive-free electrolytes,” J. Mater. Chem.22(35), 18380–18386 (2012).
[CrossRef]

Ramasamy, E.

E. Ramasamy and J. Lee, “Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells,” Carbon48(13), 3715–3720 (2010).
[CrossRef]

Rhee, S.

J. Kim and S. Rhee, “Counter electrode system of Pt on stainless steel (SS) for electron injection into iodide redox couple,” J. Electrochem. Soc.159(1), B6–B11 (2012).
[CrossRef]

Roh, D. K.

W. S. Chi, J. W. Han, S. Yang, D. K. Roh, H. Lee, and J. H. Kim, “Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes,” Chem. Commun. (Camb.)48(76), 9501–9503 (2012).
[CrossRef] [PubMed]

Sabnis, V.

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE8108, 810804 (2011).

Schmidt-Mende, L.

A. Burke, L. Schmidt-Mende, S. Ito, and M. Grätzel, “A novel blue dye for near-IR ‘dye-sensitized’ solar cell applications,” Chem. Commun. (Camb.)3, 234–236 (2006).
[CrossRef] [PubMed]

Shen, C. H.

Shieh, J. M.

Sim, K.

K. Sim, S. Sung, and D. Kim, “Light harvest properties of dye-sensitized solar cells with different spatial configurations of reflecting layer,” J. Nanosci. Nanotechnol. (to be published).

So, F.

W. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Son, J.

Y. Park, Y. Chang, B. Kum, E. Kong, J. Son, Y. Kwon, T. Park, and H. Jang, “Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells,” J. Mater. Chem.21(26), 9582–9586 (2011).
[CrossRef]

Song, H.

K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim, and G. Y. Jung, “Fabrication of an efficient light-scattering functionalized photoanode using periodically aligned ZnO hemisphere crystals for dye-sensitized solar cells,” Adv. Mater.24(6), 792–798 (2012).
[CrossRef] [PubMed]

Su, C.

T. Zhang, H. Chen, C. Su, and D. Kuang, “A novel TCO- and Pt-free counter electrode for high efficiency dye-sensitized solar cells,” J. Mater. Chem.1(5), 1724–1730 (2013).
[CrossRef]

Sun, B.

J. Zhao, B. Sun, L. Qiu, H. Caocen, Q. Li, X. Chen, and F. Yan, “Efficient light-scattering functionalized TiO2 photoanodes modified with cyanobiphenyl-based benzimidazole for dye-sensitized solar cells with additive-free electrolytes,” J. Mater. Chem.22(35), 18380–18386 (2012).
[CrossRef]

Sung, S.

K. Sim, S. Sung, and D. Kim, “Light harvest properties of dye-sensitized solar cells with different spatial configurations of reflecting layer,” J. Nanosci. Nanotechnol. (to be published).

Tansu, N.

W. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light-emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Tetreault, N.

A. K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C. Yi, M. K. Nazeeruddin, and M. Grätzel, “Subnanometer Ga2O3 tunneling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells,” Nano Lett.12(8), 3941–3947 (2012).
[CrossRef] [PubMed]

Tsai, C.

Y. Jhang, Y. Tsai, C. Tsai, S. Hsu, T. Huang, C. Lu, M. Chen, Y. Chen, and C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron.13(10), 1865–1872 (2012).
[CrossRef]

Tsai, M. A.

Tsai, Y.

Y. Jhang, Y. Tsai, C. Tsai, S. Hsu, T. Huang, C. Lu, M. Chen, Y. Chen, and C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron.13(10), 1865–1872 (2012).
[CrossRef]

Tsai, Y. L.

Tsao, H. N.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science334(6056), 629–634 (2011).
[CrossRef] [PubMed]

Tseng, P. C.

Uchida, Y.

T. Yamaguchi, Y. Uchida, S. Agatsuma, and H. Arakawa, “Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10%,” Sol. Energy Mater. Sol. Cells93(6–7), 733–736 (2009).
[CrossRef]

Wang, P.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett.13(1), 14–20 (2013).
[CrossRef] [PubMed]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl.21(1), 1–11 (2013).
[CrossRef]

Wiemer, M.

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE8108, 810804 (2011).

Wu, C.

Y. Jhang, Y. Tsai, C. Tsai, S. Hsu, T. Huang, C. Lu, M. Chen, Y. Chen, and C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron.13(10), 1865–1872 (2012).
[CrossRef]

Wu, D.

D. Wu, F. Zhu, J. Li, H. Dong, Q. Li, K. Jiang, and D. Xu, “Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells,” J. Mater. Chem.22(23), 11665–11671 (2012).
[CrossRef]

Xu, D.

D. Wu, F. Zhu, J. Li, H. Dong, Q. Li, K. Jiang, and D. Xu, “Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells,” J. Mater. Chem.22(23), 11665–11671 (2012).
[CrossRef]

Xu, Q.

Yamaguchi, T.

T. Yamaguchi, Y. Uchida, S. Agatsuma, and H. Arakawa, “Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10%,” Sol. Energy Mater. Sol. Cells93(6–7), 733–736 (2009).
[CrossRef]

Yan, F.

J. Zhao, B. Sun, L. Qiu, H. Caocen, Q. Li, X. Chen, and F. Yan, “Efficient light-scattering functionalized TiO2 photoanodes modified with cyanobiphenyl-based benzimidazole for dye-sensitized solar cells with additive-free electrolytes,” J. Mater. Chem.22(35), 18380–18386 (2012).
[CrossRef]

Yang, S.

W. S. Chi, J. W. Han, S. Yang, D. K. Roh, H. Lee, and J. H. Kim, “Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes,” Chem. Commun. (Camb.)48(76), 9501–9503 (2012).
[CrossRef] [PubMed]

Yeh, C. Y.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science334(6056), 629–634 (2011).
[CrossRef] [PubMed]

Yella, A.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science334(6056), 629–634 (2011).
[CrossRef] [PubMed]

Yi, C.

A. K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C. Yi, M. K. Nazeeruddin, and M. Grätzel, “Subnanometer Ga2O3 tunneling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells,” Nano Lett.12(8), 3941–3947 (2012).
[CrossRef] [PubMed]

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science334(6056), 629–634 (2011).
[CrossRef] [PubMed]

Yim, J.

K. Lee, J. Yun, Y. Han, J. Yim, N. Park, K. Cho, and J. Park, “Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes,” J. Mater. Chem.21(39), 15193–15196 (2011).
[CrossRef]

Yin, L.

W. Jiang, L. Yin, H. Liu, and Y. Ding, “Nanograss-structured counter electrode for dye-sensitized solar cells,” J. Power Sources218, 405–411 (2012).
[CrossRef]

Youn, W.

W. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Yu, P.

Yuen, H.

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE8108, 810804 (2011).

Yun, J.

K. Lee, J. Yun, Y. Han, J. Yim, N. Park, K. Cho, and J. Park, “Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes,” J. Mater. Chem.21(39), 15193–15196 (2011).
[CrossRef]

Yun, J. H.

Zakeeruddin, S. M.

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science334(6056), 629–634 (2011).
[CrossRef] [PubMed]

M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, and M. Grätzel, “Tuning spectral properties of phenothiazine based donor–p–acceptor dyes for efficient dye-sensitized solar cells,” J. Mater. Chem.22(3), 889–894 (2011).
[CrossRef]

Zhang, H.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett.13(1), 14–20 (2013).
[CrossRef] [PubMed]

Zhang, L.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett.13(1), 14–20 (2013).
[CrossRef] [PubMed]

Zhang, T.

T. Zhang, H. Chen, C. Su, and D. Kuang, “A novel TCO- and Pt-free counter electrode for high efficiency dye-sensitized solar cells,” J. Mater. Chem.1(5), 1724–1730 (2013).
[CrossRef]

Zhang, X. L.

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater.20(8), 1301–1305 (2010).
[CrossRef]

Zhang, Z.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett.13(1), 14–20 (2013).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao, B. Sun, L. Qiu, H. Caocen, Q. Li, X. Chen, and F. Yan, “Efficient light-scattering functionalized TiO2 photoanodes modified with cyanobiphenyl-based benzimidazole for dye-sensitized solar cells with additive-free electrolytes,” J. Mater. Chem.22(35), 18380–18386 (2012).
[CrossRef]

Zhu, F.

D. Wu, F. Zhu, J. Li, H. Dong, Q. Li, K. Jiang, and D. Xu, “Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells,” J. Mater. Chem.22(23), 11665–11671 (2012).
[CrossRef]

Zhu, P.

W. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Adv. Funct. Mater.

W. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y. Cheng, “Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells,” Adv. Funct. Mater.20(8), 1301–1305 (2010).
[CrossRef]

Adv. Mater.

K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim, and G. Y. Jung, “Fabrication of an efficient light-scattering functionalized photoanode using periodically aligned ZnO hemisphere crystals for dye-sensitized solar cells,” Adv. Mater.24(6), 792–798 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light-emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Carbon

E. Ramasamy and J. Lee, “Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells,” Carbon48(13), 3715–3720 (2010).
[CrossRef]

Chem. Commun. (Camb.)

W. S. Chi, J. W. Han, S. Yang, D. K. Roh, H. Lee, and J. H. Kim, “Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes,” Chem. Commun. (Camb.)48(76), 9501–9503 (2012).
[CrossRef] [PubMed]

A. Burke, L. Schmidt-Mende, S. Ito, and M. Grätzel, “A novel blue dye for near-IR ‘dye-sensitized’ solar cell applications,” Chem. Commun. (Camb.)3, 234–236 (2006).
[CrossRef] [PubMed]

J. Electrochem. Soc.

J. Kim and S. Rhee, “Counter electrode system of Pt on stainless steel (SS) for electron injection into iodide redox couple,” J. Electrochem. Soc.159(1), B6–B11 (2012).
[CrossRef]

J. Mater. Chem.

T. Zhang, H. Chen, C. Su, and D. Kuang, “A novel TCO- and Pt-free counter electrode for high efficiency dye-sensitized solar cells,” J. Mater. Chem.1(5), 1724–1730 (2013).
[CrossRef]

K. Lee, J. Yun, Y. Han, J. Yim, N. Park, K. Cho, and J. Park, “Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes,” J. Mater. Chem.21(39), 15193–15196 (2011).
[CrossRef]

M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, and M. Grätzel, “Tuning spectral properties of phenothiazine based donor–p–acceptor dyes for efficient dye-sensitized solar cells,” J. Mater. Chem.22(3), 889–894 (2011).
[CrossRef]

D. Wu, F. Zhu, J. Li, H. Dong, Q. Li, K. Jiang, and D. Xu, “Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells,” J. Mater. Chem.22(23), 11665–11671 (2012).
[CrossRef]

J. Zhao, B. Sun, L. Qiu, H. Caocen, Q. Li, X. Chen, and F. Yan, “Efficient light-scattering functionalized TiO2 photoanodes modified with cyanobiphenyl-based benzimidazole for dye-sensitized solar cells with additive-free electrolytes,” J. Mater. Chem.22(35), 18380–18386 (2012).
[CrossRef]

Y. Park, Y. Chang, B. Kum, E. Kong, J. Son, Y. Kwon, T. Park, and H. Jang, “Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells,” J. Mater. Chem.21(26), 9582–9586 (2011).
[CrossRef]

J. Nanosci. Nanotechnol.

K. Sim, S. Sung, and D. Kim, “Light harvest properties of dye-sensitized solar cells with different spatial configurations of reflecting layer,” J. Nanosci. Nanotechnol. (to be published).

J. Phys. Chem. C

A. Mihi, M. E. Calvo, J. A. Anta, and H. Míguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008).
[CrossRef]

J. Power Sources

W. Jiang, L. Yin, H. Liu, and Y. Ding, “Nanograss-structured counter electrode for dye-sensitized solar cells,” J. Power Sources218, 405–411 (2012).
[CrossRef]

Langmuir

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Nano Lett.

A. K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C. Yi, M. K. Nazeeruddin, and M. Grätzel, “Subnanometer Ga2O3 tunneling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells,” Nano Lett.12(8), 3941–3947 (2012).
[CrossRef] [PubMed]

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett.13(1), 14–20 (2013).
[CrossRef] [PubMed]

Nature

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature353(6346), 737–740 (1991).
[CrossRef]

Opt. Express

Org. Electron.

Y. Jhang, Y. Tsai, C. Tsai, S. Hsu, T. Huang, C. Lu, M. Chen, Y. Chen, and C. Wu, “Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells,” Org. Electron.13(10), 1865–1872 (2012).
[CrossRef]

Proc. SPIE

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE8108, 810804 (2011).

Prog. Photovolt. Res. Appl.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl.21(1), 1–11 (2013).
[CrossRef]

Science

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science334(6056), 629–634 (2011).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

T. Yamaguchi, Y. Uchida, S. Agatsuma, and H. Arakawa, “Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10%,” Sol. Energy Mater. Sol. Cells93(6–7), 733–736 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagrams of the DSSCs with (a) conventional counter electrode and (b) particulate counter electrode. The path of incident photons is shown by the arrows for each solar cell. (c) Cross-section SEM image of particulate counter electrode.

Fig. 2
Fig. 2

(a) Photograph showing the particulate counter electrodes prepared from the mixture of TiO2 R/SP paste and H2PtCl6 solution. The mixture of TiO2 R/SP paste and H2PtCl6 solution with different concentration (Electrode A: 0.001M, Electrode B: 0.01M, Electrode C: 0.1M, Electrode D: 1.0M) was deposited on FTO by doctor blading and sintered at 450 °C for 60 min. (b) UV-vis reflectance spectra of the various particulate counter electrodes (electrode A to electrode D) and R/SP film.

Fig. 3
Fig. 3

(a) Cyclic voltammograms for the four particulate counter electrodes. (b) Electrochemical impedance spectra of the dummy cells. The scan rate in (a) is 50 mV/s. The insets in (b) show the same EIS data at different magnifications.

Fig. 4
Fig. 4

FE-SEM images of the particulate counter electrodes (a) electrode A, (b) electrode B, (c) electrode C, and (d) electrode D, and the underlying FTO substrates (e) electrode A, (f) electrode B, (g) electrode C, and (h) electrode D. The scale bar is 100 nm.

Fig. 5
Fig. 5

(a) Graph showing the current density as a function of voltage for devices B, C, D, and reference. (b) Graph showing the IPCE spectra as a function of wavelength for devices B, C, D, and reference.

Fig. 6
Fig. 6

Nyquist plots of devices B, C D, and reference under 1 sun illumination. The inset shows a magnification of the data.

Tables (1)

Tables Icon

Table 1 Electrical Properties of the DSSC Devices

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I 3 +  2e 3I ,
3I 2 +  2e  2I 3 .

Metrics