Abstract

We reported the ~2 μm amplified spontaneous emission (ASE) performance of highly Tm3+-doped (3.76 × 1020 ions/cm3) tungsten tellurite single-mode fibers. The double-cladding fiber was pumped by a commercial 792 nm laser diode without any reflectors. Broadband ASE spectra with the bandwidth (FWHM) varying from ~45 nm to ~140 nm were achieved in a fiber length of 34 cm. The maximum output power was ~34 mW, with a slope efficiency of 4.8%. The ASE beam quality factor (M2) was 1.8. The dependence of output power, ASE mean wavelength, and bandwidth on the launched pump power and fiber length were discussed in detail.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. N. Duling, W. K. Burns, and L. Goldberg, “High-power superfluorescent fiber source,” Opt. Lett.15(1), 33–35 (1990).
    [CrossRef] [PubMed]
  2. P. Wang, J. K. Sahu, and W. A. Clarkson, “110 W double-ended ytterbium-doped fiber superfluorescent source with M2 = 1.6,” Opt. Lett.31(21), 3116–3118 (2006).
    [CrossRef] [PubMed]
  3. L. Kong, Q. Lou, J. Zhou, D. Xue, J. Dong, and Y. Wei, “2 W Yb-doped double-clad fiber superfluorescent source with 42 nm 3 dB bandwidth,” Opt. Laser Technol.37(8), 597–600 (2005).
    [CrossRef]
  4. W. T. Chen, D. Y. Shen, T. Zhao, and X. F. Yang, “High power Er,Yb-doped superfluorescent fiber source with over 16 W output near 1.55 μm,” Opt. Express20(13), 14542–14546 (2012).
    [CrossRef] [PubMed]
  5. D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express16(15), 11021–11026 (2008).
    [CrossRef] [PubMed]
  6. R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perin, S. T. Davey, and M. Louka, “A 1.6-μm pumped 1.9-μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron.31(3), 489–493 (1995).
    [CrossRef]
  7. K. Oh, U. C. Paek, and T. F. Morse, “Fiber optic absorption spectroscopic gas sensor using an amplified spontaneous emission light source from a Tm+3/Ho+3 co-doped silica fiber,” in Conference on Optical Fiber Sensors, Technical Digest (Optical Society of America, 1997), paper OThC7.
  8. B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
    [CrossRef] [PubMed]
  9. H. C. Yeh, M. J. Shelton, Y. H. Tsang, and T. A. King, “Fabrication and characterization of fiber Bragg gratings for near 2 μm operation,” Meas. Sci. Technol.14(10), 1747–1752 (2003).
    [CrossRef]
  10. Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt.53(7), 991–1001 (2006).
    [CrossRef]
  11. K. Oh, A. Kilian, L. Reinhart, Q. Zhang, T. F. Morse, and P. M. Weber, “Broadband superfluorescent emission of the 3H4 → 3H6 transition in a Tm-doped multicomponent silicate fiber,” Opt. Lett.19(15), 1131–1133 (1994).
    [CrossRef] [PubMed]
  12. Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett.34(23), 3616–3618 (2009).
    [CrossRef] [PubMed]
  13. F. Fusari, A. A. Lagatsky, B. Richards, A. Jha, W. Sibbett, and C. T. A. Brown, “Spectroscopic and lasing performance of Tm3+-doped bulk TZN and TZNG tellurite glasses operating around 1.9 µm,” Opt. Express16(23), 19146–19151 (2008).
    [CrossRef] [PubMed]
  14. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser,” Opt. Express16(14), 10690–10695 (2008).
    [CrossRef] [PubMed]
  15. K. Li, G. Zhang, X. Wang, L. Hu, P. Kuan, D. Chen, and M. Wang, “Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser,” Opt. Express20(9), 10115–10121 (2012).
    [CrossRef] [PubMed]
  16. M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
    [CrossRef] [PubMed]
  17. A. E. Siegman, Lasers (University Science Books, 1986), Chap. 7.
  18. L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron.8(2), 80–85 (1972).
    [CrossRef]
  19. A. E. Siegman, Lasers (University Science Books, 1986), Chap. 13.
  20. D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
    [CrossRef]
  21. B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express15(11), 6546–6551 (2007).
    [CrossRef] [PubMed]
  22. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett.27(6), 406–408 (2002).
    [CrossRef] [PubMed]

2012 (2)

2011 (1)

2009 (1)

2008 (3)

2007 (1)

2006 (2)

P. Wang, J. K. Sahu, and W. A. Clarkson, “110 W double-ended ytterbium-doped fiber superfluorescent source with M2 = 1.6,” Opt. Lett.31(21), 3116–3118 (2006).
[CrossRef] [PubMed]

Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt.53(7), 991–1001 (2006).
[CrossRef]

2005 (1)

L. Kong, Q. Lou, J. Zhou, D. Xue, J. Dong, and Y. Wei, “2 W Yb-doped double-clad fiber superfluorescent source with 42 nm 3 dB bandwidth,” Opt. Laser Technol.37(8), 597–600 (2005).
[CrossRef]

2004 (1)

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

2003 (1)

H. C. Yeh, M. J. Shelton, Y. H. Tsang, and T. A. King, “Fabrication and characterization of fiber Bragg gratings for near 2 μm operation,” Meas. Sci. Technol.14(10), 1747–1752 (2003).
[CrossRef]

2002 (1)

1998 (1)

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

1995 (1)

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perin, S. T. Davey, and M. Louka, “A 1.6-μm pumped 1.9-μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron.31(3), 489–493 (1995).
[CrossRef]

1994 (1)

1990 (1)

1972 (1)

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron.8(2), 80–85 (1972).
[CrossRef]

Baek, S.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Binks, D.

Bouma, B. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Brezinski, M. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Brown, C. T. A.

Burns, W. K.

Casperson, L. W.

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron.8(2), 80–85 (1972).
[CrossRef]

Chen, D.

Chen, W. T.

Clarkson, W. A.

Codemard, C.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Davey, S. T.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perin, S. T. Davey, and M. Louka, “A 1.6-μm pumped 1.9-μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron.31(3), 489–493 (1995).
[CrossRef]

de Boer, J. F.

Dong, J.

L. Kong, Q. Lou, J. Zhou, D. Xue, J. Dong, and Y. Wei, “2 W Yb-doped double-clad fiber superfluorescent source with 42 nm 3 dB bandwidth,” Opt. Laser Technol.37(8), 597–600 (2005).
[CrossRef]

Duan, Z.

Duling, I. N.

Dupriez, P.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Fujimoto, J. G.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Fusari, F.

Gao, W.

Geng, J.

Goldberg, L.

Hu, L.

Jeong, Y.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Jha, A.

Jiang, S.

Jones, D. J.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Kilian, A.

Kim, J.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

King, T. A.

Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt.53(7), 991–1001 (2006).
[CrossRef]

H. C. Yeh, M. J. Shelton, Y. H. Tsang, and T. A. King, “Fabrication and characterization of fiber Bragg gratings for near 2 μm operation,” Meas. Sci. Technol.14(10), 1747–1752 (2003).
[CrossRef]

Ko, D. K.

Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt.53(7), 991–1001 (2006).
[CrossRef]

Kong, L.

L. Kong, Q. Lou, J. Zhou, D. Xue, J. Dong, and Y. Wei, “2 W Yb-doped double-clad fiber superfluorescent source with 42 nm 3 dB bandwidth,” Opt. Laser Technol.37(8), 597–600 (2005).
[CrossRef]

Kuan, P.

Lagatsky, A. A.

Lee, J.

Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt.53(7), 991–1001 (2006).
[CrossRef]

Li, K.

Liao, M.

Lou, Q.

L. Kong, Q. Lou, J. Zhou, D. Xue, J. Dong, and Y. Wei, “2 W Yb-doped double-clad fiber superfluorescent source with 42 nm 3 dB bandwidth,” Opt. Laser Technol.37(8), 597–600 (2005).
[CrossRef]

Louka, M.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perin, S. T. Davey, and M. Louka, “A 1.6-μm pumped 1.9-μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron.31(3), 489–493 (1995).
[CrossRef]

Lousteau, J.

Luo, T.

Morse, T. F.

Nassif, N.

Nelson, J. S.

Nelson, L. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Nilsson, J.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Oh, K.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

K. Oh, A. Kilian, L. Reinhart, Q. Zhang, T. F. Morse, and P. M. Weber, “Broadband superfluorescent emission of the 3H4 → 3H6 transition in a Tm-doped multicomponent silicate fiber,” Opt. Lett.19(15), 1131–1133 (1994).
[CrossRef] [PubMed]

Ohishi, Y.

Park, B. H.

Pearson, L.

Percival, R. M.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perin, S. T. Davey, and M. Louka, “A 1.6-μm pumped 1.9-μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron.31(3), 489–493 (1995).
[CrossRef]

Perin, S. D.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perin, S. T. Davey, and M. Louka, “A 1.6-μm pumped 1.9-μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron.31(3), 489–493 (1995).
[CrossRef]

Philippov, V.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Qin, G.

Reinhart, L.

Richards, B.

Sahu, J. K.

D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express16(15), 11021–11026 (2008).
[CrossRef] [PubMed]

P. Wang, J. K. Sahu, and W. A. Clarkson, “110 W double-ended ytterbium-doped fiber superfluorescent source with M2 = 1.6,” Opt. Lett.31(21), 3116–3118 (2006).
[CrossRef] [PubMed]

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Seltzer, C. P.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perin, S. T. Davey, and M. Louka, “A 1.6-μm pumped 1.9-μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron.31(3), 489–493 (1995).
[CrossRef]

Shelton, M. J.

H. C. Yeh, M. J. Shelton, Y. H. Tsang, and T. A. King, “Fabrication and characterization of fiber Bragg gratings for near 2 μm operation,” Meas. Sci. Technol.14(10), 1747–1752 (2003).
[CrossRef]

Shen, D. Y.

Shen, S.

Sibbett, W.

Soh, D. B. S.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Suzuki, T.

Szebesta, D.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perin, S. T. Davey, and M. Louka, “A 1.6-μm pumped 1.9-μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron.31(3), 489–493 (1995).
[CrossRef]

Tearney, G. J.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Tripathi, R.

Tsang, Y.

Tsang, Y. H.

Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt.53(7), 991–1001 (2006).
[CrossRef]

H. C. Yeh, M. J. Shelton, Y. H. Tsang, and T. A. King, “Fabrication and characterization of fiber Bragg gratings for near 2 μm operation,” Meas. Sci. Technol.14(10), 1747–1752 (2003).
[CrossRef]

Wang, M.

Wang, P.

Wang, Q.

Wang, X.

Weber, P. M.

Wei, Y.

L. Kong, Q. Lou, J. Zhou, D. Xue, J. Dong, and Y. Wei, “2 W Yb-doped double-clad fiber superfluorescent source with 42 nm 3 dB bandwidth,” Opt. Laser Technol.37(8), 597–600 (2005).
[CrossRef]

Xue, D.

L. Kong, Q. Lou, J. Zhou, D. Xue, J. Dong, and Y. Wei, “2 W Yb-doped double-clad fiber superfluorescent source with 42 nm 3 dB bandwidth,” Opt. Laser Technol.37(8), 597–600 (2005).
[CrossRef]

Yan, X.

Yang, X. F.

Yariv, A.

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron.8(2), 80–85 (1972).
[CrossRef]

Yeh, H. C.

H. C. Yeh, M. J. Shelton, Y. H. Tsang, and T. A. King, “Fabrication and characterization of fiber Bragg gratings for near 2 μm operation,” Meas. Sci. Technol.14(10), 1747–1752 (2003).
[CrossRef]

Yoo, S.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Zhang, G.

Zhang, Q.

Zhao, T.

Zhou, J.

L. Kong, Q. Lou, J. Zhou, D. Xue, J. Dong, and Y. Wei, “2 W Yb-doped double-clad fiber superfluorescent source with 42 nm 3 dB bandwidth,” Opt. Laser Technol.37(8), 597–600 (2005).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perin, S. T. Davey, and M. Louka, “A 1.6-μm pumped 1.9-μm thulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron.31(3), 489–493 (1995).
[CrossRef]

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron.8(2), 80–85 (1972).
[CrossRef]

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength region,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

J. Biomed. Opt. (1)

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

Y. H. Tsang, T. A. King, D. K. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt.53(7), 991–1001 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

H. C. Yeh, M. J. Shelton, Y. H. Tsang, and T. A. King, “Fabrication and characterization of fiber Bragg gratings for near 2 μm operation,” Meas. Sci. Technol.14(10), 1747–1752 (2003).
[CrossRef]

Opt. Express (7)

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express15(11), 6546–6551 (2007).
[CrossRef] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser,” Opt. Express16(14), 10690–10695 (2008).
[CrossRef] [PubMed]

D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express16(15), 11021–11026 (2008).
[CrossRef] [PubMed]

F. Fusari, A. A. Lagatsky, B. Richards, A. Jha, W. Sibbett, and C. T. A. Brown, “Spectroscopic and lasing performance of Tm3+-doped bulk TZN and TZNG tellurite glasses operating around 1.9 µm,” Opt. Express16(23), 19146–19151 (2008).
[CrossRef] [PubMed]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

K. Li, G. Zhang, X. Wang, L. Hu, P. Kuan, D. Chen, and M. Wang, “Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser,” Opt. Express20(9), 10115–10121 (2012).
[CrossRef] [PubMed]

W. T. Chen, D. Y. Shen, T. Zhao, and X. F. Yang, “High power Er,Yb-doped superfluorescent fiber source with over 16 W output near 1.55 μm,” Opt. Express20(13), 14542–14546 (2012).
[CrossRef] [PubMed]

Opt. Laser Technol. (1)

L. Kong, Q. Lou, J. Zhou, D. Xue, J. Dong, and Y. Wei, “2 W Yb-doped double-clad fiber superfluorescent source with 42 nm 3 dB bandwidth,” Opt. Laser Technol.37(8), 597–600 (2005).
[CrossRef]

Opt. Lett. (5)

Other (3)

K. Oh, U. C. Paek, and T. F. Morse, “Fiber optic absorption spectroscopic gas sensor using an amplified spontaneous emission light source from a Tm+3/Ho+3 co-doped silica fiber,” in Conference on Optical Fiber Sensors, Technical Digest (Optical Society of America, 1997), paper OThC7.

A. E. Siegman, Lasers (University Science Books, 1986), Chap. 7.

A. E. Siegman, Lasers (University Science Books, 1986), Chap. 13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the Tm3+-doped tungsten tellurite fiber ASE source using the pump excitation at 792 nm. (b) The side view of angle-cleaved tungsten tellurite fiber end with a cleaved angle of ~8°. LD: laser diode.

Fig. 2
Fig. 2

(a) The normalized fluorescence, ASE (power at 5 and 26 mW), and laser spectra of Tm3+-doped tungsten tellurite fiber with fiber length of 34 cm pumped by a 792 nm diode laser. (b) The beam quality measurement of ASE output beam; the inset is the beam profile.

Fig. 3
Fig. 3

(a) ASE output power versus absorbed pump power and (b) FWHM of ASE spectra with various output power for fiber lengths of 55, 34, 15, 10 cm, respectively.

Fig. 4
Fig. 4

Spectra of the ASE with various active fiber lengths when excited with a 792 nm laser source.

Metrics