Abstract

Second-order optical properties of thermally poled arsenic-germanium sulfide glasses have been investigated. Parallel studies of glass structure changes upon poling and/or visible cw-laser irradiation and complete SHG quantitative analysis have been performed. Key parameters and poling mechanisms influencing largely SHG stability and efficiency have been pointed out.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  2. Y. Sasaki and Y. Ohmori, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett.39(6), 466–468 (1981).
    [CrossRef]
  3. U. Österberg and W. Margulis, “Experimental studies on efficient frequency doubling in glass optical fibers,” Opt. Lett.12(1), 57–59 (1987).
    [CrossRef] [PubMed]
  4. M. Guignard, V. Nazabal, F. Smektala, H. Zeghlache, A. Kudlinski, Y. Quiquempois, and G. Martinelli, “High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling,” Opt. Express14(4), 1524–1532 (2006).
    [CrossRef] [PubMed]
  5. M. Dussauze, X. L. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express2(1), 45–54 (2012).
    [CrossRef]
  6. H. Guo, X. Zheng, M. Lu, K. Zou, B. Peng, S. Gu, H. Liu, and X. Zhao, “Large second-order nonlinearity in thermally poled Ge-Sb-Cd-S chalcogenide glass,” Opt. Mater.31(6), 865–869 (2009).
    [CrossRef]
  7. M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010).
    [CrossRef]
  8. P. Thamboon and D. M. Krol, “Second-order optical nonlinearities in thermally poled phosphate glasses,” J. Appl. Phys.93(1), 32–37 (2003).
    [CrossRef]
  9. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett.16(22), 1732–1734 (1991).
    [CrossRef] [PubMed]
  10. M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007).
    [CrossRef]
  11. M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal poling of optical glasses: mechanisms and second-order optical properties,” Int. J. Appl. Glass Sci.3(4), 309–320 (2012).
    [CrossRef]
  12. R. Jing, Y. Guang, Z. Huidan, C. Guorong, K. Tanaka, K. Fujita, S. Murai, and Y. Tsujiie, “Second-harmonic generation in thermally poled chalcohalide glass,” Opt. Lett.31(23), 3492–3494 (2006).
    [CrossRef] [PubMed]
  13. N. Carlie, “A solution-based approach to the fabrication of novel chalcogenide glass materials and structures,” in Materials Science and Engineering (Clemson University, Clemson, SC, 2010), p. 163.
  14. C. Lopez, “Evaluation of the photo-induced structural mechanisms in chalcogenide glass,” in College of Optics and Photonics (University of Central Florida, Orlando, FL, 2004).
  15. V. Rodriguez, “Quantitative determination of linear and second-harmonic generation optical effective responses of achiral or chiral materials in planar structures: theory and materials,” J. Chem. Phys.128(6), 064707–064710 (2008).
    [CrossRef] [PubMed]
  16. C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem.181(10), 2869–2876 (2008).
    [CrossRef]
  17. A. T. Ward, “Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures,” J. Phys. Chem.72(12), 4133–4139 (1968).
    [CrossRef]
  18. G. Lucovsky, “Optic modes in amorphous As2S3 and As2Se3,” Phys. Rev. B6(4), 1480–1489 (1972).
    [CrossRef]
  19. G. Lucovsky and R. M. Martin, “A molecular model for the vibrational modes in chalcogenide glasses,” J. Non-Cryst. Solids8–10, 185–190 (1972).
    [CrossRef]
  20. M. Muniz-Miranda, G. Sbrana, P. Bonazzi, S. Menchetti, and G. Pratesi, “Spectroscopic investigation and normal mode analysis of As4S4 polymorphs,” Spectrochim. Acta A Mol. Biomol. Spectrosc.52(11), 1391–1401 (1996).
    [CrossRef]
  21. K. Tanaka, “Photo-induced phenomena in chalcogenide glass: comparison with those in oxide glass and polymer,” J. Non-Cryst. Solids352(23-25), 2580–2584 (2006).
    [CrossRef]
  22. L. Calvez, Z. Yang, and P. Lucas, “Composition dependence and reversibility of photoinduced refractive index changes in chalcogenide glass,” J. Phys. D Appl. Phys.43(44), 445401 (2010).
    [CrossRef]
  23. H. Fritzsche, “The origin of reversible and irreversible photostructural changes in chalcogenide glasses,” Philos. Mag. B68, 561–572 (1993).
  24. D. L. Douglass, C. C. Shing, and G. Wang, “The light-induced alteration of realgar to pararealgar,” Am. Mineral.77, 1266–1274 (1992).
  25. K. Trentelman, L. Stodulski, and M. Pavlosky, “Characterization of pararealgar and other light-induced transformation products from realgar by Raman micro spectroscopy,” Anal. Chem.68(10), 1755–1761 (1996).
    [CrossRef]
  26. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
    [CrossRef]
  27. R. H. Stolen and H. W. K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,” Opt. Lett.12(8), 585–587 (1987).
    [CrossRef] [PubMed]
  28. T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys.86(12), 6634–6640 (1999).
    [CrossRef]
  29. T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids242(2-3), 165–176 (1998).
    [CrossRef]
  30. D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett.79(17), 2687–2689 (2001).
    [CrossRef]
  31. M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express13(11), 4064–4069 (2005).
    [CrossRef] [PubMed]
  32. M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium−niobium borophosphate glasses,” J. Phys. Chem. C111(39), 14560–14566 (2007).
    [CrossRef]
  33. K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter42(18), 11857–11861 (1990).
    [CrossRef] [PubMed]

2012 (2)

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal poling of optical glasses: mechanisms and second-order optical properties,” Int. J. Appl. Glass Sci.3(4), 309–320 (2012).
[CrossRef]

M. Dussauze, X. L. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express2(1), 45–54 (2012).
[CrossRef]

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

2010 (2)

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010).
[CrossRef]

L. Calvez, Z. Yang, and P. Lucas, “Composition dependence and reversibility of photoinduced refractive index changes in chalcogenide glass,” J. Phys. D Appl. Phys.43(44), 445401 (2010).
[CrossRef]

2009 (1)

H. Guo, X. Zheng, M. Lu, K. Zou, B. Peng, S. Gu, H. Liu, and X. Zhao, “Large second-order nonlinearity in thermally poled Ge-Sb-Cd-S chalcogenide glass,” Opt. Mater.31(6), 865–869 (2009).
[CrossRef]

2008 (2)

V. Rodriguez, “Quantitative determination of linear and second-harmonic generation optical effective responses of achiral or chiral materials in planar structures: theory and materials,” J. Chem. Phys.128(6), 064707–064710 (2008).
[CrossRef] [PubMed]

C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem.181(10), 2869–2876 (2008).
[CrossRef]

2007 (2)

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007).
[CrossRef]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium−niobium borophosphate glasses,” J. Phys. Chem. C111(39), 14560–14566 (2007).
[CrossRef]

2006 (3)

2005 (1)

2003 (1)

P. Thamboon and D. M. Krol, “Second-order optical nonlinearities in thermally poled phosphate glasses,” J. Appl. Phys.93(1), 32–37 (2003).
[CrossRef]

2001 (1)

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett.79(17), 2687–2689 (2001).
[CrossRef]

1999 (1)

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys.86(12), 6634–6640 (1999).
[CrossRef]

1998 (1)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids242(2-3), 165–176 (1998).
[CrossRef]

1996 (2)

K. Trentelman, L. Stodulski, and M. Pavlosky, “Characterization of pararealgar and other light-induced transformation products from realgar by Raman micro spectroscopy,” Anal. Chem.68(10), 1755–1761 (1996).
[CrossRef]

M. Muniz-Miranda, G. Sbrana, P. Bonazzi, S. Menchetti, and G. Pratesi, “Spectroscopic investigation and normal mode analysis of As4S4 polymorphs,” Spectrochim. Acta A Mol. Biomol. Spectrosc.52(11), 1391–1401 (1996).
[CrossRef]

1993 (2)

H. Fritzsche, “The origin of reversible and irreversible photostructural changes in chalcogenide glasses,” Philos. Mag. B68, 561–572 (1993).

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
[CrossRef]

1992 (1)

D. L. Douglass, C. C. Shing, and G. Wang, “The light-induced alteration of realgar to pararealgar,” Am. Mineral.77, 1266–1274 (1992).

1991 (1)

1990 (1)

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter42(18), 11857–11861 (1990).
[CrossRef] [PubMed]

1987 (2)

1981 (1)

Y. Sasaki and Y. Ohmori, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett.39(6), 466–468 (1981).
[CrossRef]

1972 (2)

G. Lucovsky, “Optic modes in amorphous As2S3 and As2Se3,” Phys. Rev. B6(4), 1480–1489 (1972).
[CrossRef]

G. Lucovsky and R. M. Martin, “A molecular model for the vibrational modes in chalcogenide glasses,” J. Non-Cryst. Solids8–10, 185–190 (1972).
[CrossRef]

1968 (1)

A. T. Ward, “Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures,” J. Phys. Chem.72(12), 4133–4139 (1968).
[CrossRef]

Adam, J. L.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007).
[CrossRef]

Adamietz, F.

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal poling of optical glasses: mechanisms and second-order optical properties,” Int. J. Appl. Glass Sci.3(4), 309–320 (2012).
[CrossRef]

M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express13(11), 4064–4069 (2005).
[CrossRef] [PubMed]

Alley, T. G.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys.86(12), 6634–6640 (1999).
[CrossRef]

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids242(2-3), 165–176 (1998).
[CrossRef]

Bohnke, O.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007).
[CrossRef]

Bonazzi, P.

M. Muniz-Miranda, G. Sbrana, P. Bonazzi, S. Menchetti, and G. Pratesi, “Spectroscopic investigation and normal mode analysis of As4S4 polymorphs,” Spectrochim. Acta A Mol. Biomol. Spectrosc.52(11), 1391–1401 (1996).
[CrossRef]

Brueck, S. R. J.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys.86(12), 6634–6640 (1999).
[CrossRef]

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids242(2-3), 165–176 (1998).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett.16(22), 1732–1734 (1991).
[CrossRef] [PubMed]

Calvez, L.

L. Calvez, Z. Yang, and P. Lucas, “Composition dependence and reversibility of photoinduced refractive index changes in chalcogenide glass,” J. Phys. D Appl. Phys.43(44), 445401 (2010).
[CrossRef]

Cardinal, T.

M. Dussauze, X. L. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express2(1), 45–54 (2012).
[CrossRef]

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal poling of optical glasses: mechanisms and second-order optical properties,” Int. J. Appl. Glass Sci.3(4), 309–320 (2012).
[CrossRef]

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010).
[CrossRef]

C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem.181(10), 2869–2876 (2008).
[CrossRef]

Couzi, M.

C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem.181(10), 2869–2876 (2008).
[CrossRef]

Cremoux, T.

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal poling of optical glasses: mechanisms and second-order optical properties,” Int. J. Appl. Glass Sci.3(4), 309–320 (2012).
[CrossRef]

Douglass, D. L.

D. L. Douglass, C. C. Shing, and G. Wang, “The light-induced alteration of realgar to pararealgar,” Am. Mineral.77, 1266–1274 (1992).

Dussauze, M.

M. Dussauze, X. L. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express2(1), 45–54 (2012).
[CrossRef]

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal poling of optical glasses: mechanisms and second-order optical properties,” Int. J. Appl. Glass Sci.3(4), 309–320 (2012).
[CrossRef]

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010).
[CrossRef]

C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem.181(10), 2869–2876 (2008).
[CrossRef]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium−niobium borophosphate glasses,” J. Phys. Chem. C111(39), 14560–14566 (2007).
[CrossRef]

M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express13(11), 4064–4069 (2005).
[CrossRef] [PubMed]

Duverger, C.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Elliott, S. R.

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter42(18), 11857–11861 (1990).
[CrossRef] [PubMed]

Faccio, D.

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett.79(17), 2687–2689 (2001).
[CrossRef]

Fargin, E.

M. Dussauze, X. L. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express2(1), 45–54 (2012).
[CrossRef]

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal poling of optical glasses: mechanisms and second-order optical properties,” Int. J. Appl. Glass Sci.3(4), 309–320 (2012).
[CrossRef]

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010).
[CrossRef]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium−niobium borophosphate glasses,” J. Phys. Chem. C111(39), 14560–14566 (2007).
[CrossRef]

M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express13(11), 4064–4069 (2005).
[CrossRef] [PubMed]

Fritzsche, H.

H. Fritzsche, “The origin of reversible and irreversible photostructural changes in chalcogenide glasses,” Philos. Mag. B68, 561–572 (1993).

Fujita, K.

Gu, S.

H. Guo, X. Zheng, M. Lu, K. Zou, B. Peng, S. Gu, H. Liu, and X. Zhao, “Large second-order nonlinearity in thermally poled Ge-Sb-Cd-S chalcogenide glass,” Opt. Mater.31(6), 865–869 (2009).
[CrossRef]

Guang, Y.

Guignard, M.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007).
[CrossRef]

M. Guignard, V. Nazabal, F. Smektala, H. Zeghlache, A. Kudlinski, Y. Quiquempois, and G. Martinelli, “High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling,” Opt. Express14(4), 1524–1532 (2006).
[CrossRef] [PubMed]

Guo, H.

H. Guo, X. Zheng, M. Lu, K. Zou, B. Peng, S. Gu, H. Liu, and X. Zhao, “Large second-order nonlinearity in thermally poled Ge-Sb-Cd-S chalcogenide glass,” Opt. Mater.31(6), 865–869 (2009).
[CrossRef]

Guorong, C.

Huidan, Z.

Inami, S.

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter42(18), 11857–11861 (1990).
[CrossRef] [PubMed]

Jain, H.

C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem.181(10), 2869–2876 (2008).
[CrossRef]

Jing, R.

Kamitsos, E. I.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010).
[CrossRef]

C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem.181(10), 2869–2876 (2008).
[CrossRef]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium−niobium borophosphate glasses,” J. Phys. Chem. C111(39), 14560–14566 (2007).
[CrossRef]

Kanbara, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
[CrossRef]

Kazansky, P. G.

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett.79(17), 2687–2689 (2001).
[CrossRef]

Kobayashi, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
[CrossRef]

Koga, M.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
[CrossRef]

Krol, D. M.

P. Thamboon and D. M. Krol, “Second-order optical nonlinearities in thermally poled phosphate glasses,” J. Appl. Phys.93(1), 32–37 (2003).
[CrossRef]

Kubodera, K.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
[CrossRef]

Kudlinski, A.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007).
[CrossRef]

M. Guignard, V. Nazabal, F. Smektala, H. Zeghlache, A. Kudlinski, Y. Quiquempois, and G. Martinelli, “High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling,” Opt. Express14(4), 1524–1532 (2006).
[CrossRef] [PubMed]

Lahaye, M.

Lipovskii, A.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010).
[CrossRef]

Liu, H.

H. Guo, X. Zheng, M. Lu, K. Zou, B. Peng, S. Gu, H. Liu, and X. Zhao, “Large second-order nonlinearity in thermally poled Ge-Sb-Cd-S chalcogenide glass,” Opt. Mater.31(6), 865–869 (2009).
[CrossRef]

Lu, M.

H. Guo, X. Zheng, M. Lu, K. Zou, B. Peng, S. Gu, H. Liu, and X. Zhao, “Large second-order nonlinearity in thermally poled Ge-Sb-Cd-S chalcogenide glass,” Opt. Mater.31(6), 865–869 (2009).
[CrossRef]

Lucas, P.

L. Calvez, Z. Yang, and P. Lucas, “Composition dependence and reversibility of photoinduced refractive index changes in chalcogenide glass,” J. Phys. D Appl. Phys.43(44), 445401 (2010).
[CrossRef]

Lucovsky, G.

G. Lucovsky, “Optic modes in amorphous As2S3 and As2Se3,” Phys. Rev. B6(4), 1480–1489 (1972).
[CrossRef]

G. Lucovsky and R. M. Martin, “A molecular model for the vibrational modes in chalcogenide glasses,” J. Non-Cryst. Solids8–10, 185–190 (1972).
[CrossRef]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Margulis, W.

Martin, R. M.

G. Lucovsky and R. M. Martin, “A molecular model for the vibrational modes in chalcogenide glasses,” J. Non-Cryst. Solids8–10, 185–190 (1972).
[CrossRef]

Martinelli, G.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007).
[CrossRef]

M. Guignard, V. Nazabal, F. Smektala, H. Zeghlache, A. Kudlinski, Y. Quiquempois, and G. Martinelli, “High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling,” Opt. Express14(4), 1524–1532 (2006).
[CrossRef] [PubMed]

Maurel, C.

C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem.181(10), 2869–2876 (2008).
[CrossRef]

Menchetti, S.

M. Muniz-Miranda, G. Sbrana, P. Bonazzi, S. Menchetti, and G. Pratesi, “Spectroscopic investigation and normal mode analysis of As4S4 polymorphs,” Spectrochim. Acta A Mol. Biomol. Spectrosc.52(11), 1391–1401 (1996).
[CrossRef]

Miller, A. C.

C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem.181(10), 2869–2876 (2008).
[CrossRef]

Moréac, A.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007).
[CrossRef]

Mukherjee, N.

Muniz-Miranda, M.

M. Muniz-Miranda, G. Sbrana, P. Bonazzi, S. Menchetti, and G. Pratesi, “Spectroscopic investigation and normal mode analysis of As4S4 polymorphs,” Spectrochim. Acta A Mol. Biomol. Spectrosc.52(11), 1391–1401 (1996).
[CrossRef]

Murai, S.

Myers, R. A.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids242(2-3), 165–176 (1998).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett.16(22), 1732–1734 (1991).
[CrossRef] [PubMed]

Nazabal, V.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007).
[CrossRef]

M. Guignard, V. Nazabal, F. Smektala, H. Zeghlache, A. Kudlinski, Y. Quiquempois, and G. Martinelli, “High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling,” Opt. Express14(4), 1524–1532 (2006).
[CrossRef] [PubMed]

Ohmori, Y.

Y. Sasaki and Y. Ohmori, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett.39(6), 466–468 (1981).
[CrossRef]

Österberg, U.

Pavlosky, M.

K. Trentelman, L. Stodulski, and M. Pavlosky, “Characterization of pararealgar and other light-induced transformation products from realgar by Raman micro spectroscopy,” Anal. Chem.68(10), 1755–1761 (1996).
[CrossRef]

Peng, B.

H. Guo, X. Zheng, M. Lu, K. Zou, B. Peng, S. Gu, H. Liu, and X. Zhao, “Large second-order nonlinearity in thermally poled Ge-Sb-Cd-S chalcogenide glass,” Opt. Mater.31(6), 865–869 (2009).
[CrossRef]

Petit, L.

C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem.181(10), 2869–2876 (2008).
[CrossRef]

Petrov, M.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010).
[CrossRef]

Pratesi, G.

M. Muniz-Miranda, G. Sbrana, P. Bonazzi, S. Menchetti, and G. Pratesi, “Spectroscopic investigation and normal mode analysis of As4S4 polymorphs,” Spectrochim. Acta A Mol. Biomol. Spectrosc.52(11), 1391–1401 (1996).
[CrossRef]

Pruneri, V.

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett.79(17), 2687–2689 (2001).
[CrossRef]

Quiquempois, Y.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007).
[CrossRef]

M. Guignard, V. Nazabal, F. Smektala, H. Zeghlache, A. Kudlinski, Y. Quiquempois, and G. Martinelli, “High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling,” Opt. Express14(4), 1524–1532 (2006).
[CrossRef] [PubMed]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010).
[CrossRef]

C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem.181(10), 2869–2876 (2008).
[CrossRef]

Rodriguez, V.

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal poling of optical glasses: mechanisms and second-order optical properties,” Int. J. Appl. Glass Sci.3(4), 309–320 (2012).
[CrossRef]

M. Dussauze, X. L. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express2(1), 45–54 (2012).
[CrossRef]

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010).
[CrossRef]

V. Rodriguez, “Quantitative determination of linear and second-harmonic generation optical effective responses of achiral or chiral materials in planar structures: theory and materials,” J. Chem. Phys.128(6), 064707–064710 (2008).
[CrossRef] [PubMed]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium−niobium borophosphate glasses,” J. Phys. Chem. C111(39), 14560–14566 (2007).
[CrossRef]

M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express13(11), 4064–4069 (2005).
[CrossRef] [PubMed]

Sasaki, Y.

Y. Sasaki and Y. Ohmori, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett.39(6), 466–468 (1981).
[CrossRef]

Sbrana, G.

M. Muniz-Miranda, G. Sbrana, P. Bonazzi, S. Menchetti, and G. Pratesi, “Spectroscopic investigation and normal mode analysis of As4S4 polymorphs,” Spectrochim. Acta A Mol. Biomol. Spectrosc.52(11), 1391–1401 (1996).
[CrossRef]

Shimakawa, K.

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter42(18), 11857–11861 (1990).
[CrossRef] [PubMed]

Shing, C. C.

D. L. Douglass, C. C. Shing, and G. Wang, “The light-induced alteration of realgar to pararealgar,” Am. Mineral.77, 1266–1274 (1992).

Smektala, F.

Smith, C.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010).
[CrossRef]

Stodulski, L.

K. Trentelman, L. Stodulski, and M. Pavlosky, “Characterization of pararealgar and other light-induced transformation products from realgar by Raman micro spectroscopy,” Anal. Chem.68(10), 1755–1761 (1996).
[CrossRef]

Stolen, R. H.

Tanaka, K.

R. Jing, Y. Guang, Z. Huidan, C. Guorong, K. Tanaka, K. Fujita, S. Murai, and Y. Tsujiie, “Second-harmonic generation in thermally poled chalcohalide glass,” Opt. Lett.31(23), 3492–3494 (2006).
[CrossRef] [PubMed]

K. Tanaka, “Photo-induced phenomena in chalcogenide glass: comparison with those in oxide glass and polymer,” J. Non-Cryst. Solids352(23-25), 2580–2584 (2006).
[CrossRef]

Thamboon, P.

P. Thamboon and D. M. Krol, “Second-order optical nonlinearities in thermally poled phosphate glasses,” J. Appl. Phys.93(1), 32–37 (2003).
[CrossRef]

Tom, H. W. K.

Trentelman, K.

K. Trentelman, L. Stodulski, and M. Pavlosky, “Characterization of pararealgar and other light-induced transformation products from realgar by Raman micro spectroscopy,” Anal. Chem.68(10), 1755–1761 (1996).
[CrossRef]

Tsujiie, Y.

Wang, G.

D. L. Douglass, C. C. Shing, and G. Wang, “The light-induced alteration of realgar to pararealgar,” Am. Mineral.77, 1266–1274 (1992).

Ward, A. T.

A. T. Ward, “Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures,” J. Phys. Chem.72(12), 4133–4139 (1968).
[CrossRef]

Wiedenbeck, M.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys.86(12), 6634–6640 (1999).
[CrossRef]

Yang, G.

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal poling of optical glasses: mechanisms and second-order optical properties,” Int. J. Appl. Glass Sci.3(4), 309–320 (2012).
[CrossRef]

Yang, Z.

L. Calvez, Z. Yang, and P. Lucas, “Composition dependence and reversibility of photoinduced refractive index changes in chalcogenide glass,” J. Phys. D Appl. Phys.43(44), 445401 (2010).
[CrossRef]

Zeghlache, H.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007).
[CrossRef]

M. Guignard, V. Nazabal, F. Smektala, H. Zeghlache, A. Kudlinski, Y. Quiquempois, and G. Martinelli, “High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling,” Opt. Express14(4), 1524–1532 (2006).
[CrossRef] [PubMed]

Zhao, X.

H. Guo, X. Zheng, M. Lu, K. Zou, B. Peng, S. Gu, H. Liu, and X. Zhao, “Large second-order nonlinearity in thermally poled Ge-Sb-Cd-S chalcogenide glass,” Opt. Mater.31(6), 865–869 (2009).
[CrossRef]

Zheng, X.

H. Guo, X. Zheng, M. Lu, K. Zou, B. Peng, S. Gu, H. Liu, and X. Zhao, “Large second-order nonlinearity in thermally poled Ge-Sb-Cd-S chalcogenide glass,” Opt. Mater.31(6), 865–869 (2009).
[CrossRef]

Zheng, X. L.

Zou, K.

H. Guo, X. Zheng, M. Lu, K. Zou, B. Peng, S. Gu, H. Liu, and X. Zhao, “Large second-order nonlinearity in thermally poled Ge-Sb-Cd-S chalcogenide glass,” Opt. Mater.31(6), 865–869 (2009).
[CrossRef]

Adv. Funct. Mater. (1)

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007).
[CrossRef]

Am. Mineral. (1)

D. L. Douglass, C. C. Shing, and G. Wang, “The light-induced alteration of realgar to pararealgar,” Am. Mineral.77, 1266–1274 (1992).

Anal. Chem. (1)

K. Trentelman, L. Stodulski, and M. Pavlosky, “Characterization of pararealgar and other light-induced transformation products from realgar by Raman micro spectroscopy,” Anal. Chem.68(10), 1755–1761 (1996).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Sasaki and Y. Ohmori, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett.39(6), 466–468 (1981).
[CrossRef]

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett.79(17), 2687–2689 (2001).
[CrossRef]

Int. J. Appl. Glass Sci. (1)

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal poling of optical glasses: mechanisms and second-order optical properties,” Int. J. Appl. Glass Sci.3(4), 309–320 (2012).
[CrossRef]

J. Appl. Phys. (3)

P. Thamboon and D. M. Krol, “Second-order optical nonlinearities in thermally poled phosphate glasses,” J. Appl. Phys.93(1), 32–37 (2003).
[CrossRef]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
[CrossRef]

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys.86(12), 6634–6640 (1999).
[CrossRef]

J. Chem. Phys. (1)

V. Rodriguez, “Quantitative determination of linear and second-harmonic generation optical effective responses of achiral or chiral materials in planar structures: theory and materials,” J. Chem. Phys.128(6), 064707–064710 (2008).
[CrossRef] [PubMed]

J. Non-Cryst. Solids (3)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids242(2-3), 165–176 (1998).
[CrossRef]

G. Lucovsky and R. M. Martin, “A molecular model for the vibrational modes in chalcogenide glasses,” J. Non-Cryst. Solids8–10, 185–190 (1972).
[CrossRef]

K. Tanaka, “Photo-induced phenomena in chalcogenide glass: comparison with those in oxide glass and polymer,” J. Non-Cryst. Solids352(23-25), 2580–2584 (2006).
[CrossRef]

J. Phys. Chem. (1)

A. T. Ward, “Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures,” J. Phys. Chem.72(12), 4133–4139 (1968).
[CrossRef]

J. Phys. Chem. C (2)

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010).
[CrossRef]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium−niobium borophosphate glasses,” J. Phys. Chem. C111(39), 14560–14566 (2007).
[CrossRef]

J. Phys. D Appl. Phys. (1)

L. Calvez, Z. Yang, and P. Lucas, “Composition dependence and reversibility of photoinduced refractive index changes in chalcogenide glass,” J. Phys. D Appl. Phys.43(44), 445401 (2010).
[CrossRef]

J. Solid State Chem. (1)

C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem.181(10), 2869–2876 (2008).
[CrossRef]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Opt. Express (2)

Opt. Lett. (4)

Opt. Mater. (1)

H. Guo, X. Zheng, M. Lu, K. Zou, B. Peng, S. Gu, H. Liu, and X. Zhao, “Large second-order nonlinearity in thermally poled Ge-Sb-Cd-S chalcogenide glass,” Opt. Mater.31(6), 865–869 (2009).
[CrossRef]

Opt. Mater. Express (1)

Philos. Mag. B (1)

H. Fritzsche, “The origin of reversible and irreversible photostructural changes in chalcogenide glasses,” Philos. Mag. B68, 561–572 (1993).

Phys. Rev. B (1)

G. Lucovsky, “Optic modes in amorphous As2S3 and As2Se3,” Phys. Rev. B6(4), 1480–1489 (1972).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter42(18), 11857–11861 (1990).
[CrossRef] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

M. Muniz-Miranda, G. Sbrana, P. Bonazzi, S. Menchetti, and G. Pratesi, “Spectroscopic investigation and normal mode analysis of As4S4 polymorphs,” Spectrochim. Acta A Mol. Biomol. Spectrosc.52(11), 1391–1401 (1996).
[CrossRef]

Other (2)

N. Carlie, “A solution-based approach to the fabrication of novel chalcogenide glass materials and structures,” in Materials Science and Engineering (Clemson University, Clemson, SC, 2010), p. 163.

C. Lopez, “Evaluation of the photo-induced structural mechanisms in chalcogenide glass,” in College of Optics and Photonics (University of Central Florida, Orlando, FL, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SHG signal kinetics of As36Ge6S58 (up) and As34Ge6Na2S58 (down) poled samples.

Fig. 2
Fig. 2

Raman spectrum of an annealed As34Ge6Na2S58 sample overlaid with a Raman spectrum collected following sub-bandgap irradiation (752 nm, 10 mW).

Fig. 3
Fig. 3

(a) Raman spectra collected on the cross section of the As34Ge6Na2S58 poled sample. (b) Raman map of the anode cross section showing the evolution of the intensity ratio: I@233 cm−1/ I@222 cm−1.

Fig. 4
Fig. 4

(a) Raman intensity ratio (I222 cm-1/I233 cm-1) measured during the irradiation process at different positions on the As34Ge6Na2S58 poled sample cross section. (b) Raman spectra of the initial As34Ge6Na2S58 glass sample, after poling 1.5 µm under the anode surface and the same position after an irradiation at 752 nm with 10 mW.

Fig. 5
Fig. 5

Experimental (black) and calculated (red) profiles for transmitted P-P (S-P) Maker fringes pattern (a) and continuous polarization scan patterns ψ-P (ψ-S) obtained at an angle of 55° (b) of a As34Ge6Na2S58 poled glass.

Metrics