Abstract

We demonstrate that an hydrogenated amorphous silicon (a:Si-H)-liquid crystals hybrid device could be used for the recording of high resolution (0.8-2 µm) dynamic holograms. A maximum diffraction efficiency of 3.3% was obtained at low power (1.5 mW) He-Ne laser. The nonlinear refractive index change at 0.6 W/cm2 is n2~1x10−2 cm2/W, although small compared to that obtained in dye-doped liquid crystal, is equal to the reported in pure liquid crystal although with much higher power density (~50 W/cm2). The device operates in the red to near-infrared part of the spectrum which makes it attractive due to its potential applications in telecommunications and military applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
    [CrossRef] [PubMed]
  2. P. Y. Chiou, “Massively parallel optical manipulation of single cells, micro- and nano-particles on optoelectronic devices,” PhD Dissertation (University of California at Berkeley, 2005).
  3. A. Brignon, I. Bongrand, B. Loiseaux, and J. P. Huignard, “Signal-beam amplification by two-wave mixing in a liquid-crystal light valve,” Opt. Lett.22(24), 1855–1857 (1997).
    [CrossRef] [PubMed]
  4. N. V. Tabiryan and C. Umeton, “Surface-activated photorefractivity and electro-optic phenomena in liquid crystals,” J. Opt. Soc. Am. B15(7), 1912–1917 (1998).
    [CrossRef]
  5. D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mater.16(03), 271–280 (2007).
    [CrossRef]
  6. R. Ramos-Garcia and C. Berrospe-Rodriguez, “Enhancement of the coupling gain in GaAs-liquid crystal hybrid devices,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)561(1), 68–73 (2012).
    [CrossRef]
  7. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991).
  8. J. H. Wei and S. C. Lee, “Electrical and optical properties of implanted amorphous silicon,” J. Appl. Phys.76(2), 1033–1040 (1994).
    [CrossRef]
  9. R. Schwarz, F. Wang, and M. Reissner, “Fermi-level dependence of the ambipolar diffusion length in amorphous-silicon thin-film transistors,” Appl. Phys. Lett.63(8), 1083–1085 (1993).
    [CrossRef]
  10. H. A. Pohl, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge University Press, 1978).
  11. I. C. Khoo, Liquid Crystals (Wiley, 1995).
  12. V. G. Bondar, O. D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Pis'ma Zh. Eksp. Teor. Fiz.101, 111–125 (1995).
  13. W. Beyer and B. Hoheisel, “Photoconductivity and dark conductivity of hydrogenated amorphous silicon,” Solid State Commun.47(7), 573–576 (1983).
    [CrossRef]
  14. A. T. Ohta, P.-Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H.-Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron.13(2), 235–243 (2007).
    [CrossRef]
  15. S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Opt. Express15(20), 12619–12626 (2007).
    [CrossRef] [PubMed]
  16. M. Herrington, K. Daly, O. Buchnev, G. D’Alessandro, and M. Kaczmarek, “AC-field–enhanced beam coupling in photorefractive hybrid liquid crystals,” EPL95(1), 14003–14009 (2011).
    [CrossRef]
  17. H. G. Kreul, S. Urban, and A. Würflinger, “Dielectric studies of liquid crystals under high pressure: Static permittivity and dielectric relaxation in the nematic phase of pentylcyanobiphenyl (5CB),” Phys. Rev. A45(12), 8624–8631 (1992).
    [CrossRef] [PubMed]
  18. M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(6), 061702 (2007).
    [CrossRef] [PubMed]
  19. F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett.22(8), 549–551 (1997).
    [CrossRef] [PubMed]
  20. I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities (SON) of methyl red- and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)358(1), 1–13 (2001).
    [CrossRef]
  21. B. Ya. Zel’dovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal (NLC),” Pis'ma Zh. Eksp. Teor. Fiz.31, 287–292 (1980).
  22. R. Porras Aguilar, J. C. Ramirez-San-Juan, O. Baldovino-Pantaleon, D. May-Arrioja, M. L. Arroyo Carrasco, M. D. Iturbe-Castillo, D. Sánchez-de-la-Llave, and R. Ramos-Garcia, “Polarization-controlled contrasted images using dye-doped nematic liquid crystals,” Opt. Express17(5), 3417–3423 (2009).
    [CrossRef] [PubMed]

2012

R. Ramos-Garcia and C. Berrospe-Rodriguez, “Enhancement of the coupling gain in GaAs-liquid crystal hybrid devices,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)561(1), 68–73 (2012).
[CrossRef]

2011

M. Herrington, K. Daly, O. Buchnev, G. D’Alessandro, and M. Kaczmarek, “AC-field–enhanced beam coupling in photorefractive hybrid liquid crystals,” EPL95(1), 14003–14009 (2011).
[CrossRef]

2009

2007

S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Opt. Express15(20), 12619–12626 (2007).
[CrossRef] [PubMed]

M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(6), 061702 (2007).
[CrossRef] [PubMed]

D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mater.16(03), 271–280 (2007).
[CrossRef]

A. T. Ohta, P.-Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H.-Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron.13(2), 235–243 (2007).
[CrossRef]

2005

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

2001

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities (SON) of methyl red- and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)358(1), 1–13 (2001).
[CrossRef]

1998

1997

1995

V. G. Bondar, O. D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Pis'ma Zh. Eksp. Teor. Fiz.101, 111–125 (1995).

1994

J. H. Wei and S. C. Lee, “Electrical and optical properties of implanted amorphous silicon,” J. Appl. Phys.76(2), 1033–1040 (1994).
[CrossRef]

1993

R. Schwarz, F. Wang, and M. Reissner, “Fermi-level dependence of the ambipolar diffusion length in amorphous-silicon thin-film transistors,” Appl. Phys. Lett.63(8), 1083–1085 (1993).
[CrossRef]

1992

H. G. Kreul, S. Urban, and A. Würflinger, “Dielectric studies of liquid crystals under high pressure: Static permittivity and dielectric relaxation in the nematic phase of pentylcyanobiphenyl (5CB),” Phys. Rev. A45(12), 8624–8631 (1992).
[CrossRef] [PubMed]

1983

W. Beyer and B. Hoheisel, “Photoconductivity and dark conductivity of hydrogenated amorphous silicon,” Solid State Commun.47(7), 573–576 (1983).
[CrossRef]

1980

B. Ya. Zel’dovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal (NLC),” Pis'ma Zh. Eksp. Teor. Fiz.31, 287–292 (1980).

Arroyo Carrasco, M. L.

Baldovino-Pantaleon, O.

Berrospe-Rodriguez, C.

R. Ramos-Garcia and C. Berrospe-Rodriguez, “Enhancement of the coupling gain in GaAs-liquid crystal hybrid devices,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)561(1), 68–73 (2012).
[CrossRef]

Beyer, W.

W. Beyer and B. Hoheisel, “Photoconductivity and dark conductivity of hydrogenated amorphous silicon,” Solid State Commun.47(7), 573–576 (1983).
[CrossRef]

Bondar, V. G.

V. G. Bondar, O. D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Pis'ma Zh. Eksp. Teor. Fiz.101, 111–125 (1995).

Bongrand, I.

Brignon, A.

Buchnev, O.

M. Herrington, K. Daly, O. Buchnev, G. D’Alessandro, and M. Kaczmarek, “AC-field–enhanced beam coupling in photorefractive hybrid liquid crystals,” EPL95(1), 14003–14009 (2011).
[CrossRef]

Chen, P. H.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities (SON) of methyl red- and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)358(1), 1–13 (2001).
[CrossRef]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Chiou, P.-Y.

A. T. Ohta, P.-Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H.-Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron.13(2), 235–243 (2007).
[CrossRef]

Cook, G.

D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mater.16(03), 271–280 (2007).
[CrossRef]

D’Alessandro, G.

M. Herrington, K. Daly, O. Buchnev, G. D’Alessandro, and M. Kaczmarek, “AC-field–enhanced beam coupling in photorefractive hybrid liquid crystals,” EPL95(1), 14003–14009 (2011).
[CrossRef]

Daly, K.

M. Herrington, K. Daly, O. Buchnev, G. D’Alessandro, and M. Kaczmarek, “AC-field–enhanced beam coupling in photorefractive hybrid liquid crystals,” EPL95(1), 14003–14009 (2011).
[CrossRef]

Dholakia, K.

Evans, D. R.

D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mater.16(03), 271–280 (2007).
[CrossRef]

Francescangeli, O.

Gu, M.

M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(6), 061702 (2007).
[CrossRef] [PubMed]

Herrington, M.

M. Herrington, K. Daly, O. Buchnev, G. D’Alessandro, and M. Kaczmarek, “AC-field–enhanced beam coupling in photorefractive hybrid liquid crystals,” EPL95(1), 14003–14009 (2011).
[CrossRef]

Hoheisel, B.

W. Beyer and B. Hoheisel, “Photoconductivity and dark conductivity of hydrogenated amorphous silicon,” Solid State Commun.47(7), 573–576 (1983).
[CrossRef]

Hsu, H.-Y.

A. T. Ohta, P.-Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H.-Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron.13(2), 235–243 (2007).
[CrossRef]

Huignard, J. P.

Iturbe-Castillo, M. D.

Jamshidi, A.

A. T. Ohta, P.-Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H.-Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron.13(2), 235–243 (2007).
[CrossRef]

Kaczmarek, M.

M. Herrington, K. Daly, O. Buchnev, G. D’Alessandro, and M. Kaczmarek, “AC-field–enhanced beam coupling in photorefractive hybrid liquid crystals,” EPL95(1), 14003–14009 (2011).
[CrossRef]

Khoo, I. C.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities (SON) of methyl red- and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)358(1), 1–13 (2001).
[CrossRef]

Krauss, T. F.

Kreul, H. G.

H. G. Kreul, S. Urban, and A. Würflinger, “Dielectric studies of liquid crystals under high pressure: Static permittivity and dielectric relaxation in the nematic phase of pentylcyanobiphenyl (5CB),” Phys. Rev. A45(12), 8624–8631 (1992).
[CrossRef] [PubMed]

Lau, A. N. K.

A. T. Ohta, P.-Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H.-Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron.13(2), 235–243 (2007).
[CrossRef]

Lavrentovich, O. D.

M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(6), 061702 (2007).
[CrossRef] [PubMed]

V. G. Bondar, O. D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Pis'ma Zh. Eksp. Teor. Fiz.101, 111–125 (1995).

Lee, S. C.

J. H. Wei and S. C. Lee, “Electrical and optical properties of implanted amorphous silicon,” J. Appl. Phys.76(2), 1033–1040 (1994).
[CrossRef]

Loiseaux, B.

May-Arrioja, D.

Mazilu, M.

Neale, S. L.

Ohta, A. T.

A. T. Ohta, P.-Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H.-Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron.13(2), 235–243 (2007).
[CrossRef]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Pergamenshchik, V. M.

V. G. Bondar, O. D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Pis'ma Zh. Eksp. Teor. Fiz.101, 111–125 (1995).

Phan, H. L.

A. T. Ohta, P.-Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H.-Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron.13(2), 235–243 (2007).
[CrossRef]

Pilipetskii, N. F.

B. Ya. Zel’dovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal (NLC),” Pis'ma Zh. Eksp. Teor. Fiz.31, 287–292 (1980).

Porras Aguilar, R.

Ramirez-San-Juan, J. C.

Ramos-Garcia, R.

Reissner, M.

R. Schwarz, F. Wang, and M. Reissner, “Fermi-level dependence of the ambipolar diffusion length in amorphous-silicon thin-film transistors,” Appl. Phys. Lett.63(8), 1083–1085 (1993).
[CrossRef]

Reznikov, Y.

Sánchez-de-la-Llave, D.

Schwarz, R.

R. Schwarz, F. Wang, and M. Reissner, “Fermi-level dependence of the ambipolar diffusion length in amorphous-silicon thin-film transistors,” Appl. Phys. Lett.63(8), 1083–1085 (1993).
[CrossRef]

Sherwood, S. W.

A. T. Ohta, P.-Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H.-Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron.13(2), 235–243 (2007).
[CrossRef]

Shih, M. Y.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities (SON) of methyl red- and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)358(1), 1–13 (2001).
[CrossRef]

Shishido, A.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities (SON) of methyl red- and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)358(1), 1–13 (2001).
[CrossRef]

Shiyanovskii, S. V.

M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(6), 061702 (2007).
[CrossRef] [PubMed]

Simoni, F.

Slussarenko, S.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities (SON) of methyl red- and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)358(1), 1–13 (2001).
[CrossRef]

F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett.22(8), 549–551 (1997).
[CrossRef] [PubMed]

Sukhov, A. V.

B. Ya. Zel’dovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal (NLC),” Pis'ma Zh. Eksp. Teor. Fiz.31, 287–292 (1980).

Tabiryan, N. V.

N. V. Tabiryan and C. Umeton, “Surface-activated photorefractivity and electro-optic phenomena in liquid crystals,” J. Opt. Soc. Am. B15(7), 1912–1917 (1998).
[CrossRef]

B. Ya. Zel’dovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal (NLC),” Pis'ma Zh. Eksp. Teor. Fiz.31, 287–292 (1980).

Umeton, C.

Urban, S.

H. G. Kreul, S. Urban, and A. Würflinger, “Dielectric studies of liquid crystals under high pressure: Static permittivity and dielectric relaxation in the nematic phase of pentylcyanobiphenyl (5CB),” Phys. Rev. A45(12), 8624–8631 (1992).
[CrossRef] [PubMed]

Wang, F.

R. Schwarz, F. Wang, and M. Reissner, “Fermi-level dependence of the ambipolar diffusion length in amorphous-silicon thin-film transistors,” Appl. Phys. Lett.63(8), 1083–1085 (1993).
[CrossRef]

Wei, J. H.

J. H. Wei and S. C. Lee, “Electrical and optical properties of implanted amorphous silicon,” J. Appl. Phys.76(2), 1033–1040 (1994).
[CrossRef]

Wilson, J. I. B.

Wood, M. V.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities (SON) of methyl red- and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)358(1), 1–13 (2001).
[CrossRef]

Wu, M. C.

A. T. Ohta, P.-Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H.-Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron.13(2), 235–243 (2007).
[CrossRef]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Würflinger, A.

H. G. Kreul, S. Urban, and A. Würflinger, “Dielectric studies of liquid crystals under high pressure: Static permittivity and dielectric relaxation in the nematic phase of pentylcyanobiphenyl (5CB),” Phys. Rev. A45(12), 8624–8631 (1992).
[CrossRef] [PubMed]

Yang, J. M.

A. T. Ohta, P.-Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H.-Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron.13(2), 235–243 (2007).
[CrossRef]

Yin, Y.

M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(6), 061702 (2007).
[CrossRef] [PubMed]

Zel’dovich, B. Ya.

B. Ya. Zel’dovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal (NLC),” Pis'ma Zh. Eksp. Teor. Fiz.31, 287–292 (1980).

Appl. Phys. Lett.

R. Schwarz, F. Wang, and M. Reissner, “Fermi-level dependence of the ambipolar diffusion length in amorphous-silicon thin-film transistors,” Appl. Phys. Lett.63(8), 1083–1085 (1993).
[CrossRef]

EPL

M. Herrington, K. Daly, O. Buchnev, G. D’Alessandro, and M. Kaczmarek, “AC-field–enhanced beam coupling in photorefractive hybrid liquid crystals,” EPL95(1), 14003–14009 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. T. Ohta, P.-Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H.-Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron.13(2), 235–243 (2007).
[CrossRef]

J. Appl. Phys.

J. H. Wei and S. C. Lee, “Electrical and optical properties of implanted amorphous silicon,” J. Appl. Phys.76(2), 1033–1040 (1994).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mater.16(03), 271–280 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities (SON) of methyl red- and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)358(1), 1–13 (2001).
[CrossRef]

R. Ramos-Garcia and C. Berrospe-Rodriguez, “Enhancement of the coupling gain in GaAs-liquid crystal hybrid devices,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)561(1), 68–73 (2012).
[CrossRef]

Nature

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

H. G. Kreul, S. Urban, and A. Würflinger, “Dielectric studies of liquid crystals under high pressure: Static permittivity and dielectric relaxation in the nematic phase of pentylcyanobiphenyl (5CB),” Phys. Rev. A45(12), 8624–8631 (1992).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(6), 061702 (2007).
[CrossRef] [PubMed]

Pis'ma Zh. Eksp. Teor. Fiz.

B. Ya. Zel’dovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal (NLC),” Pis'ma Zh. Eksp. Teor. Fiz.31, 287–292 (1980).

V. G. Bondar, O. D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Pis'ma Zh. Eksp. Teor. Fiz.101, 111–125 (1995).

Solid State Commun.

W. Beyer and B. Hoheisel, “Photoconductivity and dark conductivity of hydrogenated amorphous silicon,” Solid State Commun.47(7), 573–576 (1983).
[CrossRef]

Other

R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991).

H. A. Pohl, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge University Press, 1978).

I. C. Khoo, Liquid Crystals (Wiley, 1995).

P. Y. Chiou, “Massively parallel optical manipulation of single cells, micro- and nano-particles on optoelectronic devices,” PhD Dissertation (University of California at Berkeley, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) The red arrow represents the laser beam entering by the side of the photoconductor film. The photogenerated electric field reorients the liquid crystals molecules on the illuminated area, outside of which, the electric field is negligible. The liquid crystal molecules are aligned parallel to the substrate before illumination. b) Experimental set up for hologram recording in a:Si-liquid crystal hybrid device. Thick lines represent the transmitted beams (zero-order beams) while the weaker ones represent the first diffracted order beams.

Fig. 2
Fig. 2

a) Geometry of the model and distribution of the electric field (red zone) inside the liquid crystal. b) Electric field profiles along the lateral distance measure 1 µm above the amorphous silicon when an applied field of 10 V and a Gaussian beam waist of 17 µm were used. c) Electric field distribution along the propagation distance. The variable C is defined as σaSiLC, where σaSi represents the a:Si photoconductivity at the peak of the Gaussian beam and σLC the conductivity of the liquid crystal. The peak photoconductivity equals the liquid crystal conductivity when C = 1.

Fig. 3
Fig. 3

Electric field profiles produced by sinusoidal illumination. Left column shows the electric field spatial distribution inside the liquid crystal for several power values, equivalently C values. The left column is a profile of the electric field obtained 1 mm above the amorphous silicon layer. For comparison, the intensity spatial distribution is also shown. Notice that the electric field is quite similar to the electric field for C<1 but practically becomes constant for C>>1.

Fig. 4
Fig. 4

a) The diffraction efficiency was measured as a function of the modulation voltage at a modulation frequency of 500 KHz. b) Diffraction efficiency vs modulation frequency at 8V.

Fig. 5
Fig. 5

Impedance of the liquid crystal film (Zlc) and the amorphous silicon (ZaSi) as function of modulation frequency. For ω<30kHz, most of the field drops on the amorphous silicon and no reorientation of the liquid crystal occurs. For ω>30kHz, the liquid crystal impedance dominates and the device is activated. In the inset, the difference between impedances is shown.

Fig. 6
Fig. 6

The maximum diffraction efficiency of ~3.3% is achieved around 8V and a frequency of 500 kHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F DEP (t) =2π r 3 ε m Re[K*(ω)] | E(t) | 2 ,
K* (ω)= ε p * ε m * ε p * +2 ε m * ,    ε p * = ε p i σ p ω ,   ε m * = ε m i σ m ω ,
η 1  = I 1 I 1 + I 0 = J 1 2 (2π n 2 Id/λ) (π n 2 Id/λ) 2 ,
Z n = R n 1+iω R n C n ,

Metrics