Abstract

Optical straight waveguides are inscribed in GeGaS and GeGaSSb glasses using a high repetition-rate sub-picosecond laser. The mechanical properties of the glasses in the inscribed regions, which have undergone photo induced changes, have been evaluated by using the nano-indentation technique. Results show that the hardness and elastic modulus of the photo-modified glasses are significantly lower as compared to the other locations in the waveguide, which tend to be similar to those of the unexposed areas. The observed mechanical effects are found to correlate well with the optical properties of the waveguides. Further, based on the results, the minimum threshold values of hardness and elastic modulus for the particular propagation mode of the waveguide (single or multi), has been established.

© 2013 OSA

Full Article  |  PDF Article
Related Articles
Spectral broadening in femtosecond laser written waveguides in chalcogenide glass

Mark A. Hughes, Weijia Yang, and Daniel W. Hewak
J. Opt. Soc. Am. B 26(7) 1370-1378 (2009)

Nanoindentation study on germania-doped silica glass preforms: evidence for the compaction-densification model of photosensitivity

R. Aashia, K. V. Madhav, U. Ramamurty, and S. Asokan
Opt. Lett. 34(16) 2414-2416 (2009)

Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm

Thomas Allsop, Mykhaylo Dubov, Vladimir Mezentsev, and Ian Bennion
Appl. Opt. 49(10) 1938-1950 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [Crossref]
  2. B. J. Eggleton, B. L. Davis, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  3. D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” J. Optoelectron. Adv. Mater. 6, 133–137 (2004).
  4. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
    [Crossref]
  5. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
    [Crossref]
  6. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
    [Crossref]
  7. S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97(11), 111114 (2010).
    [Crossref]
  8. S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
    [Crossref]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref]
  10. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37(3), 392–394 (2012).
    [Crossref]
  11. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses [Invited],” Opt. Mater. Express 1(5), 845–855 (2011).
    [Crossref]
  12. T. Sabapathy, A. Ayiriveetil, A. K. Kar, S. Asokan, and S. J. Beecher, “Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass,” Opt. Mater. Express 2(11), 1556–1561 (2012).
    [Crossref]
  13. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  14. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [Crossref]
  15. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
    [Crossref]
  16. O. Caulier, D. Le Coq, L. Calvez, E. Bychkov, and P. Masselin, “Free carrier accumulation during direct laser writing in chalcogenide glass by light filamentation,” Opt. Express 19(21), 20088–20096 (2011).
    [Crossref]
  17. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
    [Crossref]
  18. A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85(19), 4112–4115 (2000).
    [Crossref]
  19. H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270(5238), 974–975 (1995).
    [Crossref]
  20. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
    [Crossref]
  21. J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express 20(2), 1545–1551 (2012).
    [Crossref]
  22. A. Rodenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36(17), 3395–3397 (2011).
    [Crossref]
  23. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7(06), 1564–1583 (1992).
    [Crossref]
  24. M. S. R. N. Kiran, S. Varughese, U. Ramamurty, and G. R. Desiraju, “Effect of dehydration on the mechanical properties of sodium saccharin dihydrate probed with nanoindentation,” CrystEngComm 14(7), 2489–2493 (2012).
    [Crossref]
  25. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
    [Crossref]
  26. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
    [Crossref]
  27. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003).
    [Crossref]
  28. M. L. Trunov, S. N. Dub, and R. S. Shmegera, “Photo-induced transition from elastic to plastic behaviour in amorphous As-Se films studied by nanoindentation,” J. Optoelectron. Adv. Mater. 7, 619–624 (2005).
  29. I. Manika and J. Teteris, “Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films,” J. Non-Cryst. Solids 90(1-3), 505–508 (1987).
    [Crossref]

2012 (4)

2011 (4)

2010 (2)

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97(11), 111114 (2010).
[Crossref]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

2008 (2)

2007 (1)

2006 (1)

2005 (2)

M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
[Crossref]

M. L. Trunov, S. N. Dub, and R. S. Shmegera, “Photo-induced transition from elastic to plastic behaviour in amorphous As-Se films studied by nanoindentation,” J. Optoelectron. Adv. Mater. 7, 619–624 (2005).

2004 (1)

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” J. Optoelectron. Adv. Mater. 6, 133–137 (2004).

2003 (3)

2001 (1)

2000 (1)

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85(19), 4112–4115 (2000).
[Crossref]

1999 (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
[Crossref]

1996 (1)

1995 (2)

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270(5238), 974–975 (1995).
[Crossref]

1992 (1)

W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7(06), 1564–1583 (1992).
[Crossref]

1987 (1)

I. Manika and J. Teteris, “Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films,” J. Non-Cryst. Solids 90(1-3), 505–508 (1987).
[Crossref]

1968 (1)

S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[Crossref]

Aggarwal, I. D.

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
[Crossref]

Ams, M.

Arezki, B.

Asokan, S.

Ayiriveetil, A.

Beecher, S. J.

T. Sabapathy, A. Ayiriveetil, A. K. Kar, S. Asokan, and S. J. Beecher, “Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass,” Opt. Mater. Express 2(11), 1556–1561 (2012).
[Crossref]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97(11), 111114 (2010).
[Crossref]

Benayas, A.

Bookey, H. T.

Brodeur, A.

Brow, R. K.

Bychkov, E.

Calvez, L.

Caulier, O.

Cerullo, G.

Chen, W. J.

Cheng, Y.

Chiodo, N.

Davis, B. L.

B. J. Eggleton, B. L. Davis, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Davis, K. M.

De Silvestri, S.

Desiraju, G. R.

M. S. R. N. Kiran, S. Varughese, U. Ramamurty, and G. R. Desiraju, “Effect of dehydration on the mechanical properties of sodium saccharin dihydrate probed with nanoindentation,” CrystEngComm 14(7), 2489–2493 (2012).
[Crossref]

Dub, S. N.

M. L. Trunov, S. N. Dub, and R. S. Shmegera, “Photo-induced transition from elastic to plastic behaviour in amorphous As-Se films studied by nanoindentation,” J. Optoelectron. Adv. Mater. 7, 619–624 (2005).

Eaton, S. M.

Eggleton, B. J.

B. J. Eggleton, B. L. Davis, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Ferrari, A. C.

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97(11), 111114 (2010).
[Crossref]

Fletcher, L. B.

Frantz, J. A.

Galstian, T. V.

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85(19), 4112–4115 (2000).
[Crossref]

Garcia, J. F.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Hasan, T.

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97(11), 111114 (2010).
[Crossref]

Herman, P. R.

Hirao, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref]

Hisakuni, H.

H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270(5238), 974–975 (1995).
[Crossref]

Ho, S.

Jaque, D.

Jha, A.

Jose, G.

Kar, A. K.

Kawachi, M.

Kern, P.

Kiran, M. S. R. N.

M. S. R. N. Kiran, S. Varughese, U. Ramamurty, and G. R. Desiraju, “Effect of dehydration on the mechanical properties of sodium saccharin dihydrate probed with nanoindentation,” CrystEngComm 14(7), 2489–2493 (2012).
[Crossref]

Krol, D. M.

Labadie, L.

Laporta, P.

Le Coq, D.

Lezal, D.

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” J. Optoelectron. Adv. Mater. 6, 133–137 (2004).

Li, J.

Macdonald, J. R.

Manika, I.

I. Manika and J. Teteris, “Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films,” J. Non-Cryst. Solids 90(1-3), 505–508 (1987).
[Crossref]

Marangoni, M.

Marshall, G. D.

Martin, G.

Masselin, P.

Masuda, M.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[Crossref]

McCarthy, J. E.

Midorikawa, K.

Miura, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref]

Nakaya, T.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Ng, M. L.

Ohnishi, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Oliver, W. C.

W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7(06), 1564–1583 (1992).
[Crossref]

Osellame, R.

Ovshinsky, S. R.

S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[Crossref]

Pedlikova, J.

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” J. Optoelectron. Adv. Mater. 6, 133–137 (2004).

Pharr, G. M.

W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7(06), 1564–1583 (1992).
[Crossref]

Polli, D.

Psaila, N.

Psaila, N. D.

Ramamurty, U.

M. S. R. N. Kiran, S. Varughese, U. Ramamurty, and G. R. Desiraju, “Effect of dehydration on the mechanical properties of sodium saccharin dihydrate probed with nanoindentation,” CrystEngComm 14(7), 2489–2493 (2012).
[Crossref]

Ramponi, R.

Reis, S. T.

Richardson, K.

B. J. Eggleton, B. L. Davis, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Rodenas, A.

Ródenas, A.

Rozhin, A. G.

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97(11), 111114 (2010).
[Crossref]

Sabapathy, T.

Sakakura, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Saliminia, A.

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85(19), 4112–4115 (2000).
[Crossref]

Sanghera, J. S.

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
[Crossref]

Schaffer, C. B.

Seddon, A. B.

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

Shaw, L. B.

Shen, S.

Shihoyama, K.

Shimizu, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Shimotsuma, Y.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Shmegera, R. S.

M. L. Trunov, S. N. Dub, and R. S. Shmegera, “Photo-induced transition from elastic to plastic behaviour in amorphous As-Se films studied by nanoindentation,” J. Optoelectron. Adv. Mater. 7, 619–624 (2005).

Spence, D. J.

Sugimoto, N.

Sugioka, K.

Sun, Z.

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97(11), 111114 (2010).
[Crossref]

Taccheo, S.

Tanaka, K.

H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270(5238), 974–975 (1995).
[Crossref]

Tang, D. Y.

Teteris, J.

I. Manika and J. Teteris, “Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films,” J. Non-Cryst. Solids 90(1-3), 505–508 (1987).
[Crossref]

Thomson, R. R.

Toyoda, K.

Troy, N.

Trunov, M. L.

M. L. Trunov, S. N. Dub, and R. S. Shmegera, “Photo-induced transition from elastic to plastic behaviour in amorphous As-Se films studied by nanoindentation,” J. Optoelectron. Adv. Mater. 7, 619–624 (2005).

Varughese, S.

M. S. R. N. Kiran, S. Varughese, U. Ramamurty, and G. R. Desiraju, “Effect of dehydration on the mechanical properties of sodium saccharin dihydrate probed with nanoindentation,” CrystEngComm 14(7), 2489–2493 (2012).
[Crossref]

Vazquez, R. M.

Villeneuve, A.

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85(19), 4112–4115 (2000).
[Crossref]

Witcher, J. J.

Withford, M. J.

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Zavadil, J.

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” J. Optoelectron. Adv. Mater. 6, 133–137 (2004).

Zhang, H.

Zhang, J.

Appl. Phys. Lett. (1)

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett. 97(11), 111114 (2010).
[Crossref]

CrystEngComm (1)

M. S. R. N. Kiran, S. Varughese, U. Ramamurty, and G. R. Desiraju, “Effect of dehydration on the mechanical properties of sodium saccharin dihydrate probed with nanoindentation,” CrystEngComm 14(7), 2489–2493 (2012).
[Crossref]

J. Appl. Phys. (1)

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

J. Mater. Res. (1)

W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7(06), 1564–1583 (1992).
[Crossref]

J. Non-Cryst. Solids (4)

I. Manika and J. Teteris, “Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films,” J. Non-Cryst. Solids 90(1-3), 505–508 (1987).
[Crossref]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (2)

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” J. Optoelectron. Adv. Mater. 6, 133–137 (2004).

M. L. Trunov, S. N. Dub, and R. S. Shmegera, “Photo-induced transition from elastic to plastic behaviour in amorphous As-Se films studied by nanoindentation,” J. Optoelectron. Adv. Mater. 7, 619–624 (2005).

Nat. Photonics (2)

B. J. Eggleton, B. L. Davis, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Opt. Mater. Express (2)

Phys. Rev. Lett. (2)

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85(19), 4112–4115 (2000).
[Crossref]

S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[Crossref]

Science (1)

H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270(5238), 974–975 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) An optical micrograph of the single mode waveguide structure with 50X magnification under white light illumination and (b) its near field image at1550 nm wavelength.

Fig. 2
Fig. 2

(a) Geometry of the waveguide. (b) Representative load, P, vs. displacement, h, curves at different locations of the waveguide on GeGaS glass (c) Variation of E and H with the positions in the waveguide and (d) Representative load, P, vs. displacement, h, curves at different locations of the waveguide on GeGaSSb glass.

Fig. 3
Fig. 3

Variation of (a) ΔE and (b) ΔH with varying the laser translation speeds at position zero.

Metrics