Abstract

We investigated how partial fluorination of a phenyl group affects the CH stretching vibrational absorptions of plastic optical fiber (POF) core materials based on poly-(phenyl methacrylate) and poly-styrene. We measured their attenuation spectra and evaluated the effects of fluorination on the CH vibrational potential curve. From the results, we confirmed that in partially fluorinated poly-styrene-based materials, the fluorination can decrease not only the number density of CH bonds but also the amount of CH absorption per bond. This suggests that the absorption reduction efficiency depends on the substituted position in the benzene ring and the chemical structure itself.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Koike, “High-bandwidth graded index polymer optical fibre,” Polymer (Guildf.)32(10), 1737–1745 (1991).
    [CrossRef]
  2. Y. Koike and T. Ishigure, “High-bandwidth plastic optical fiber for Fiber to the Display,” J. Lightwave Technol.24(12), 4541–4553 (2006).
    [CrossRef]
  3. Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Plastic optical fibers with fluoroalkyl methacrylate copolymer as their core,” J. Appl. Polym. Sci.42(12), 3195–3203 (1991).
    [CrossRef]
  4. Y. Koike and M. Naritomi, JP Patent 3719733, US Patent 5783636, EU Patent 0710855, KR Patent 375581, CN Patent ZL951903152, TW Patent 090942 (1994).
  5. K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.)51(6), 1377–1385 (2010).
    [CrossRef]
  6. K. M. Gough and B. R. Henry, “Overtone spectral investigation of substituent-induced bond-length changes in gas-phase fluorinated benzenes and their correlation with ab initio STO-3G and 4-21G calculations,” J. Am. Chem. Soc.106(10), 2781–2787 (1984).
    [CrossRef]
  7. C.-T. Yen and W.-C. Chen, “Effects of molecular structures on the near-infrared optical properties of polyimide derivatives and their corresponding optical waveguides,” Macromolecules36(9), 3315–3319 (2003).
    [CrossRef]
  8. J. Ghim, D.-S. Lee, B. G. Shin, D. Vak, D. K. Yi, M.-J. Kim, H.-S. Shim, J.-J. Kim, and D.-Y. Kim, “Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices,” Macromolecules37(15), 5724–5731 (2004).
    [CrossRef]
  9. T. Kaino, “Preparation of plastic optical fibers for near-IR region transmission,” J. Polym. Sci. A Polym. Chem.25(1), 37–46 (1987).
    [CrossRef]
  10. P. M. Morse, “Diatomic molecules according to the wave mechanics. II. vibrational levels,” Phys. Rev.34(1), 57–64 (1929).
    [CrossRef]
  11. H. Oberhammer, “On the structural effects of CF3 groups,” J. Fluor. Chem.23(2), 147–162 (1983).
    [CrossRef]
  12. H. Teng, L. Lou, K. Koike, Y. Koike, and Y. Okamoto, “Synthesis and characterization of trifluoromethyl substituted styrene polymers and copolymers with methacrylates: Effects of trifluoromethyl substituent on styrene,” Polymer (Guildf.)52(4), 949–953 (2011).
    [CrossRef]
  13. W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem.189(12), 2861–2874 (1988).
    [CrossRef]
  14. W. Groh, J. E. Kuder, and J. Theis, “Prospects for the development and application of plastic optical fibers,” Proc. SPIE1592, 20–30 (1991).
    [CrossRef]
  15. J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transf.17(2), 233–236 (1977).
    [CrossRef]
  16. Y. Liu, J. Lin, G. Huang, Y. Guo, and C. Duan, “Simple empirical analytical approximation to the Voigt profile,” J. Opt. Soc. Am. B18(5), 666–672 (2001).
    [CrossRef]

2011 (1)

H. Teng, L. Lou, K. Koike, Y. Koike, and Y. Okamoto, “Synthesis and characterization of trifluoromethyl substituted styrene polymers and copolymers with methacrylates: Effects of trifluoromethyl substituent on styrene,” Polymer (Guildf.)52(4), 949–953 (2011).
[CrossRef]

2010 (1)

K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.)51(6), 1377–1385 (2010).
[CrossRef]

2006 (1)

2004 (1)

J. Ghim, D.-S. Lee, B. G. Shin, D. Vak, D. K. Yi, M.-J. Kim, H.-S. Shim, J.-J. Kim, and D.-Y. Kim, “Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices,” Macromolecules37(15), 5724–5731 (2004).
[CrossRef]

2003 (1)

C.-T. Yen and W.-C. Chen, “Effects of molecular structures on the near-infrared optical properties of polyimide derivatives and their corresponding optical waveguides,” Macromolecules36(9), 3315–3319 (2003).
[CrossRef]

2001 (1)

1991 (3)

W. Groh, J. E. Kuder, and J. Theis, “Prospects for the development and application of plastic optical fibers,” Proc. SPIE1592, 20–30 (1991).
[CrossRef]

Y. Koike, “High-bandwidth graded index polymer optical fibre,” Polymer (Guildf.)32(10), 1737–1745 (1991).
[CrossRef]

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Plastic optical fibers with fluoroalkyl methacrylate copolymer as their core,” J. Appl. Polym. Sci.42(12), 3195–3203 (1991).
[CrossRef]

1988 (1)

W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem.189(12), 2861–2874 (1988).
[CrossRef]

1987 (1)

T. Kaino, “Preparation of plastic optical fibers for near-IR region transmission,” J. Polym. Sci. A Polym. Chem.25(1), 37–46 (1987).
[CrossRef]

1984 (1)

K. M. Gough and B. R. Henry, “Overtone spectral investigation of substituent-induced bond-length changes in gas-phase fluorinated benzenes and their correlation with ab initio STO-3G and 4-21G calculations,” J. Am. Chem. Soc.106(10), 2781–2787 (1984).
[CrossRef]

1983 (1)

H. Oberhammer, “On the structural effects of CF3 groups,” J. Fluor. Chem.23(2), 147–162 (1983).
[CrossRef]

1977 (1)

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transf.17(2), 233–236 (1977).
[CrossRef]

1929 (1)

P. M. Morse, “Diatomic molecules according to the wave mechanics. II. vibrational levels,” Phys. Rev.34(1), 57–64 (1929).
[CrossRef]

Asano, H.

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Plastic optical fibers with fluoroalkyl methacrylate copolymer as their core,” J. Appl. Polym. Sci.42(12), 3195–3203 (1991).
[CrossRef]

Chen, W.-C.

C.-T. Yen and W.-C. Chen, “Effects of molecular structures on the near-infrared optical properties of polyimide derivatives and their corresponding optical waveguides,” Macromolecules36(9), 3315–3319 (2003).
[CrossRef]

Duan, C.

Ghim, J.

J. Ghim, D.-S. Lee, B. G. Shin, D. Vak, D. K. Yi, M.-J. Kim, H.-S. Shim, J.-J. Kim, and D.-Y. Kim, “Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices,” Macromolecules37(15), 5724–5731 (2004).
[CrossRef]

Gough, K. M.

K. M. Gough and B. R. Henry, “Overtone spectral investigation of substituent-induced bond-length changes in gas-phase fluorinated benzenes and their correlation with ab initio STO-3G and 4-21G calculations,” J. Am. Chem. Soc.106(10), 2781–2787 (1984).
[CrossRef]

Groh, W.

W. Groh, J. E. Kuder, and J. Theis, “Prospects for the development and application of plastic optical fibers,” Proc. SPIE1592, 20–30 (1991).
[CrossRef]

W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem.189(12), 2861–2874 (1988).
[CrossRef]

Guo, Y.

Henry, B. R.

K. M. Gough and B. R. Henry, “Overtone spectral investigation of substituent-induced bond-length changes in gas-phase fluorinated benzenes and their correlation with ab initio STO-3G and 4-21G calculations,” J. Am. Chem. Soc.106(10), 2781–2787 (1984).
[CrossRef]

Huang, G.

Ishigure, T.

Kado, T.

K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.)51(6), 1377–1385 (2010).
[CrossRef]

Kaino, T.

T. Kaino, “Preparation of plastic optical fibers for near-IR region transmission,” J. Polym. Sci. A Polym. Chem.25(1), 37–46 (1987).
[CrossRef]

Kim, D.-Y.

J. Ghim, D.-S. Lee, B. G. Shin, D. Vak, D. K. Yi, M.-J. Kim, H.-S. Shim, J.-J. Kim, and D.-Y. Kim, “Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices,” Macromolecules37(15), 5724–5731 (2004).
[CrossRef]

Kim, J.-J.

J. Ghim, D.-S. Lee, B. G. Shin, D. Vak, D. K. Yi, M.-J. Kim, H.-S. Shim, J.-J. Kim, and D.-Y. Kim, “Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices,” Macromolecules37(15), 5724–5731 (2004).
[CrossRef]

Kim, M.-J.

J. Ghim, D.-S. Lee, B. G. Shin, D. Vak, D. K. Yi, M.-J. Kim, H.-S. Shim, J.-J. Kim, and D.-Y. Kim, “Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices,” Macromolecules37(15), 5724–5731 (2004).
[CrossRef]

Koike, K.

H. Teng, L. Lou, K. Koike, Y. Koike, and Y. Okamoto, “Synthesis and characterization of trifluoromethyl substituted styrene polymers and copolymers with methacrylates: Effects of trifluoromethyl substituent on styrene,” Polymer (Guildf.)52(4), 949–953 (2011).
[CrossRef]

K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.)51(6), 1377–1385 (2010).
[CrossRef]

Koike, Y.

H. Teng, L. Lou, K. Koike, Y. Koike, and Y. Okamoto, “Synthesis and characterization of trifluoromethyl substituted styrene polymers and copolymers with methacrylates: Effects of trifluoromethyl substituent on styrene,” Polymer (Guildf.)52(4), 949–953 (2011).
[CrossRef]

K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.)51(6), 1377–1385 (2010).
[CrossRef]

Y. Koike and T. Ishigure, “High-bandwidth plastic optical fiber for Fiber to the Display,” J. Lightwave Technol.24(12), 4541–4553 (2006).
[CrossRef]

Y. Koike, “High-bandwidth graded index polymer optical fibre,” Polymer (Guildf.)32(10), 1737–1745 (1991).
[CrossRef]

Kuder, J. E.

W. Groh, J. E. Kuder, and J. Theis, “Prospects for the development and application of plastic optical fibers,” Proc. SPIE1592, 20–30 (1991).
[CrossRef]

Lee, D.-S.

J. Ghim, D.-S. Lee, B. G. Shin, D. Vak, D. K. Yi, M.-J. Kim, H.-S. Shim, J.-J. Kim, and D.-Y. Kim, “Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices,” Macromolecules37(15), 5724–5731 (2004).
[CrossRef]

Lin, J.

Liu, Y.

Longbothum, R. L.

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transf.17(2), 233–236 (1977).
[CrossRef]

Lou, L.

H. Teng, L. Lou, K. Koike, Y. Koike, and Y. Okamoto, “Synthesis and characterization of trifluoromethyl substituted styrene polymers and copolymers with methacrylates: Effects of trifluoromethyl substituent on styrene,” Polymer (Guildf.)52(4), 949–953 (2011).
[CrossRef]

Morse, P. M.

P. M. Morse, “Diatomic molecules according to the wave mechanics. II. vibrational levels,” Phys. Rev.34(1), 57–64 (1929).
[CrossRef]

Oberhammer, H.

H. Oberhammer, “On the structural effects of CF3 groups,” J. Fluor. Chem.23(2), 147–162 (1983).
[CrossRef]

Ohara, S.

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Plastic optical fibers with fluoroalkyl methacrylate copolymer as their core,” J. Appl. Polym. Sci.42(12), 3195–3203 (1991).
[CrossRef]

Okamoto, Y.

H. Teng, L. Lou, K. Koike, Y. Koike, and Y. Okamoto, “Synthesis and characterization of trifluoromethyl substituted styrene polymers and copolymers with methacrylates: Effects of trifluoromethyl substituent on styrene,” Polymer (Guildf.)52(4), 949–953 (2011).
[CrossRef]

K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.)51(6), 1377–1385 (2010).
[CrossRef]

Olivero, J. J.

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transf.17(2), 233–236 (1977).
[CrossRef]

Satoh, Z.

K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.)51(6), 1377–1385 (2010).
[CrossRef]

Shim, H.-S.

J. Ghim, D.-S. Lee, B. G. Shin, D. Vak, D. K. Yi, M.-J. Kim, H.-S. Shim, J.-J. Kim, and D.-Y. Kim, “Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices,” Macromolecules37(15), 5724–5731 (2004).
[CrossRef]

Shin, B. G.

J. Ghim, D.-S. Lee, B. G. Shin, D. Vak, D. K. Yi, M.-J. Kim, H.-S. Shim, J.-J. Kim, and D.-Y. Kim, “Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices,” Macromolecules37(15), 5724–5731 (2004).
[CrossRef]

Taketani, N.

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Plastic optical fibers with fluoroalkyl methacrylate copolymer as their core,” J. Appl. Polym. Sci.42(12), 3195–3203 (1991).
[CrossRef]

Takezawa, Y.

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Plastic optical fibers with fluoroalkyl methacrylate copolymer as their core,” J. Appl. Polym. Sci.42(12), 3195–3203 (1991).
[CrossRef]

Tanno, S.

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Plastic optical fibers with fluoroalkyl methacrylate copolymer as their core,” J. Appl. Polym. Sci.42(12), 3195–3203 (1991).
[CrossRef]

Teng, H.

H. Teng, L. Lou, K. Koike, Y. Koike, and Y. Okamoto, “Synthesis and characterization of trifluoromethyl substituted styrene polymers and copolymers with methacrylates: Effects of trifluoromethyl substituent on styrene,” Polymer (Guildf.)52(4), 949–953 (2011).
[CrossRef]

Theis, J.

W. Groh, J. E. Kuder, and J. Theis, “Prospects for the development and application of plastic optical fibers,” Proc. SPIE1592, 20–30 (1991).
[CrossRef]

Vak, D.

J. Ghim, D.-S. Lee, B. G. Shin, D. Vak, D. K. Yi, M.-J. Kim, H.-S. Shim, J.-J. Kim, and D.-Y. Kim, “Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices,” Macromolecules37(15), 5724–5731 (2004).
[CrossRef]

Yen, C.-T.

C.-T. Yen and W.-C. Chen, “Effects of molecular structures on the near-infrared optical properties of polyimide derivatives and their corresponding optical waveguides,” Macromolecules36(9), 3315–3319 (2003).
[CrossRef]

Yi, D. K.

J. Ghim, D.-S. Lee, B. G. Shin, D. Vak, D. K. Yi, M.-J. Kim, H.-S. Shim, J.-J. Kim, and D.-Y. Kim, “Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices,” Macromolecules37(15), 5724–5731 (2004).
[CrossRef]

J. Am. Chem. Soc. (1)

K. M. Gough and B. R. Henry, “Overtone spectral investigation of substituent-induced bond-length changes in gas-phase fluorinated benzenes and their correlation with ab initio STO-3G and 4-21G calculations,” J. Am. Chem. Soc.106(10), 2781–2787 (1984).
[CrossRef]

J. Appl. Polym. Sci. (1)

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, and H. Asano, “Plastic optical fibers with fluoroalkyl methacrylate copolymer as their core,” J. Appl. Polym. Sci.42(12), 3195–3203 (1991).
[CrossRef]

J. Fluor. Chem. (1)

H. Oberhammer, “On the structural effects of CF3 groups,” J. Fluor. Chem.23(2), 147–162 (1983).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Polym. Sci. A Polym. Chem. (1)

T. Kaino, “Preparation of plastic optical fibers for near-IR region transmission,” J. Polym. Sci. A Polym. Chem.25(1), 37–46 (1987).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transf.17(2), 233–236 (1977).
[CrossRef]

Macromolecules (2)

C.-T. Yen and W.-C. Chen, “Effects of molecular structures on the near-infrared optical properties of polyimide derivatives and their corresponding optical waveguides,” Macromolecules36(9), 3315–3319 (2003).
[CrossRef]

J. Ghim, D.-S. Lee, B. G. Shin, D. Vak, D. K. Yi, M.-J. Kim, H.-S. Shim, J.-J. Kim, and D.-Y. Kim, “Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices,” Macromolecules37(15), 5724–5731 (2004).
[CrossRef]

Makromol. Chem. (1)

W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem.189(12), 2861–2874 (1988).
[CrossRef]

Phys. Rev. (1)

P. M. Morse, “Diatomic molecules according to the wave mechanics. II. vibrational levels,” Phys. Rev.34(1), 57–64 (1929).
[CrossRef]

Polymer (Guildf.) (3)

Y. Koike, “High-bandwidth graded index polymer optical fibre,” Polymer (Guildf.)32(10), 1737–1745 (1991).
[CrossRef]

H. Teng, L. Lou, K. Koike, Y. Koike, and Y. Okamoto, “Synthesis and characterization of trifluoromethyl substituted styrene polymers and copolymers with methacrylates: Effects of trifluoromethyl substituent on styrene,” Polymer (Guildf.)52(4), 949–953 (2011).
[CrossRef]

K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibers for gigabit in-home communications,” Polymer (Guildf.)51(6), 1377–1385 (2010).
[CrossRef]

Proc. SPIE (1)

W. Groh, J. E. Kuder, and J. Theis, “Prospects for the development and application of plastic optical fibers,” Proc. SPIE1592, 20–30 (1991).
[CrossRef]

Other (1)

Y. Koike and M. Naritomi, JP Patent 3719733, US Patent 5783636, EU Patent 0710855, KR Patent 375581, CN Patent ZL951903152, TW Patent 090942 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Chemical structures of PhMA and styrene materials.

Fig. 2
Fig. 2

Attenuation spectra of PPhMA, PTFPhMA, and PPFPhMA in the wavelength ranges of (a) 650–780 nm, (b) 850–950 nm and (c) 1050–1250 nm. Plots show experimental data, and solid lines are fitted curves. The νx (ν’x) regions show xth overtone vibration of the aliphatic (aromatic) CH bond, whose absorption bands were observed in the dark (light) gray wavelengths.

Fig. 3
Fig. 3

Attenuation spectra of PSt, PpFSt, PPFSt, and P2TFMSt in the wavelength ranges of (a) 650–780 nm, (b) 850–950 nm, and (c) 1050–1250 nm. Plots show experimental data, and solid lines are fitted curves. The νx (ν’x) regions show the xth overtone vibrations of the aliphatic (aromatic) CH bonds, whose absorption bands were observed in the dark (light) gray wavelength ranges.

Fig. 4
Fig. 4

Average integral band strengths of CH absorptions of PPhMA, PTFPhMA, and PPFhPMA versus the CH bond number per monomer unit for (a) aromatic and (b) aliphatic CH stretching vibrations.

Fig. 5
Fig. 5

Average integral band strengths of CH absorptions of PSt, PpFSt, PPFSt and P2TFMSt versus the CH bond number per monomer unit for (a) aromatic and (b) aliphatic CH stretching vibration.

Tables (1)

Tables Icon

Table 1 Anharmonicity Constants of the Polymer Materials Evaluated in this Study

Metrics