Abstract

Surface texturing of silicon substrates is performed by femtosecond laser irradiation at high repetition rates. Various fabrication parameters are optimized, in order to achieve very high absorptance in the visible region from the micro-structured silicon wafers as compared to the unstructured ones. A 35-fold reduction of the processing time is demonstrated by increasing the laser repetition rate from 1 kHz to 200 kHz. Further scaling up to 1 MHz is proved with potential reduction of the processing time by a factor of 65. A figure of merit ξ is introduced for a quantitative guidance in the choice of fabrication parameters.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process.79(7), 1635–1641 (2004).
    [CrossRef]
  2. M. S. Kang, S. J. Joo, W. Bahng, J. H. Lee, N. K. Kim, and S. M. Koo, “Anti-reflective nano- and micro-structures on 4H-SiC for photodiodes,” Nanoscale Res. Lett.6(1), 236 (2011).
    [CrossRef] [PubMed]
  3. J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012).
    [CrossRef] [PubMed]
  4. Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. Zhou, M. C. Gupta, and J. C. Campbell, “Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt.50(17), 2508–2511 (2011).
    [CrossRef] [PubMed]
  5. http://sionyx.com/2011/10/sionyx-solar-achieves-record-results-for-black-silicon-solar-cells-2/
  6. H. Hauser, B. Michl, V. Kübler, S. Schwarzkopf, C. Müller, M. Hermle, and B. Bläsi, “Nanoimprint lithography for honeycomb texturing of multicrystalline silicon,” Energy Procedia8, 648–653 (2011).
    [CrossRef]
  7. P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells90(15), 2319–2328 (2006).
    [CrossRef]
  8. K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, “Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication,” Sol. Energy Mater. Sol. Cells92(8), 960–968 (2008).
    [CrossRef]
  9. D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells74(1-4), 133–137 (2002).
    [CrossRef]
  10. C. Zechner, G. Hahn, W. Jooss, M. Wibral, B. Bitnar, S. Keller, M. Spiegel, P. Fath, G. Willeke, and E. Bucher, “Systematic study towards high efficiency multicrystalline silicon solar cells with mechanical surface texturization,” Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference (1997), pp. 243–246.
    [CrossRef]
  11. E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, and V. Moagar Poladian, “Optimization of front surface texturing processes for high-efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells87(1-4), 423–431 (2005).
    [CrossRef]
  12. B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl.19(6), 631–639 (2011).
    [CrossRef]
  13. L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells,” J. Achiev. Mater. Manuf. Eng.31, 77–82 (2008).
  14. J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells95(1), 2–6 (2011).
    [CrossRef]
  15. J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells90(18-19), 3085–3093 (2006).
    [CrossRef]
  16. J. Yoo, G. Yu, and J. Yi, “Black surface structures for crystalline silicon solar cells,” Mater. Sci. Eng. B159–160, 333–337 (2009).
    [CrossRef]
  17. J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
    [CrossRef]
  18. M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
    [CrossRef]
  19. T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys.110(7), 073106 (2011).
    [CrossRef]
  20. V. Schütz, A. Horn, and U. Stute, “High-throughput process parallelization for laser surface modification on Si-Solar cells: determination of the process window,” Proc. SPIE8244, 82440X, 82440X-7 (2012).
    [CrossRef]
  21. R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys.93(5), 2626–2629 (2003).
    [CrossRef]
  22. M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
    [CrossRef]
  23. B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng.48(10), 966–973 (2010).
    [CrossRef]
  24. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
    [CrossRef] [PubMed]
  25. J. Schille, R. Ebert, U. Loeschner, P. Regenfuss, T. Suess, and H. Exner, “Micro structuring with highly repetitive ultra short laser pulses,” in Proceedings of LPM, The 9th International Symposium on Laser Precision Microfabrication (2008).
  26. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process.70(4), 383–385 (2000).
    [CrossRef]

2012

J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012).
[CrossRef] [PubMed]

V. Schütz, A. Horn, and U. Stute, “High-throughput process parallelization for laser surface modification on Si-Solar cells: determination of the process window,” Proc. SPIE8244, 82440X, 82440X-7 (2012).
[CrossRef]

2011

Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. Zhou, M. C. Gupta, and J. C. Campbell, “Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt.50(17), 2508–2511 (2011).
[CrossRef] [PubMed]

H. Hauser, B. Michl, V. Kübler, S. Schwarzkopf, C. Müller, M. Hermle, and B. Bläsi, “Nanoimprint lithography for honeycomb texturing of multicrystalline silicon,” Energy Procedia8, 648–653 (2011).
[CrossRef]

M. S. Kang, S. J. Joo, W. Bahng, J. H. Lee, N. K. Kim, and S. M. Koo, “Anti-reflective nano- and micro-structures on 4H-SiC for photodiodes,” Nanoscale Res. Lett.6(1), 236 (2011).
[CrossRef] [PubMed]

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl.19(6), 631–639 (2011).
[CrossRef]

J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells95(1), 2–6 (2011).
[CrossRef]

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys.110(7), 073106 (2011).
[CrossRef]

2010

B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng.48(10), 966–973 (2010).
[CrossRef]

2009

J. Yoo, G. Yu, and J. Yi, “Black surface structures for crystalline silicon solar cells,” Mater. Sci. Eng. B159–160, 333–337 (2009).
[CrossRef]

2008

L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells,” J. Achiev. Mater. Manuf. Eng.31, 77–82 (2008).

K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, “Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication,” Sol. Energy Mater. Sol. Cells92(8), 960–968 (2008).
[CrossRef]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

2006

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells90(15), 2319–2328 (2006).
[CrossRef]

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells90(18-19), 3085–3093 (2006).
[CrossRef]

2005

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, and V. Moagar Poladian, “Optimization of front surface texturing processes for high-efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells87(1-4), 423–431 (2005).
[CrossRef]

2004

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process.79(7), 1635–1641 (2004).
[CrossRef]

2003

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys.93(5), 2626–2629 (2003).
[CrossRef]

2002

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells74(1-4), 133–137 (2002).
[CrossRef]

2000

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process.70(4), 383–385 (2000).
[CrossRef]

Bahng, W.

M. S. Kang, S. J. Joo, W. Bahng, J. H. Lee, N. K. Kim, and S. M. Koo, “Anti-reflective nano- and micro-structures on 4H-SiC for photodiodes,” Nanoscale Res. Lett.6(1), 236 (2011).
[CrossRef] [PubMed]

Bläsi, B.

H. Hauser, B. Michl, V. Kübler, S. Schwarzkopf, C. Müller, M. Hermle, and B. Bläsi, “Nanoimprint lithography for honeycomb texturing of multicrystalline silicon,” Energy Procedia8, 648–653 (2011).
[CrossRef]

Branz, H. M.

J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012).
[CrossRef] [PubMed]

Budianu, E.

E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, and V. Moagar Poladian, “Optimization of front surface texturing processes for high-efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells87(1-4), 423–431 (2005).
[CrossRef]

Campbell, J. C.

Carey, J. E.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process.79(7), 1635–1641 (2004).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys.93(5), 2626–2629 (2003).
[CrossRef]

Cernica, I.

E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, and V. Moagar Poladian, “Optimization of front surface texturing processes for high-efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells87(1-4), 423–431 (2005).
[CrossRef]

Chaumartin, A.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells90(15), 2319–2328 (2006).
[CrossRef]

Chen, D. Y.

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

Chen, T.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys.110(7), 073106 (2011).
[CrossRef]

Chen, W. J.

Cristea, D.

E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, and V. Moagar Poladian, “Optimization of front surface texturing processes for high-efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells87(1-4), 423–431 (2005).
[CrossRef]

Crouch, C. H.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process.79(7), 1635–1641 (2004).
[CrossRef]

Damiani, B. M.

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells74(1-4), 133–137 (2002).
[CrossRef]

Delaporte, Ph.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Dhungel, S. K.

K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, “Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication,” Sol. Energy Mater. Sol. Cells92(8), 960–968 (2008).
[CrossRef]

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells90(18-19), 3085–3093 (2006).
[CrossRef]

Dobrzanski, L. A.

L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells,” J. Achiev. Mater. Manuf. Eng.31, 77–82 (2008).

Drygala, A.

L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells,” J. Achiev. Mater. Manuf. Eng.31, 77–82 (2008).

Eaton, S. M.

Ebert, R.

J. Schille, R. Ebert, U. Loeschner, P. Regenfuss, T. Suess, and H. Exner, “Micro structuring with highly repetitive ultra short laser pulses,” in Proceedings of LPM, The 9th International Symposium on Laser Precision Microfabrication (2008).

Etienne, H.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Exner, H.

J. Schille, R. Ebert, U. Loeschner, P. Regenfuss, T. Suess, and H. Exner, “Micro structuring with highly repetitive ultra short laser pulses,” in Proceedings of LPM, The 9th International Symposium on Laser Precision Microfabrication (2008).

Fave, A.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells90(15), 2319–2328 (2006).
[CrossRef]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process.70(4), 383–385 (2000).
[CrossRef]

Friend, C. M.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys.93(5), 2626–2629 (2003).
[CrossRef]

Gangopadhyay, U.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells90(18-19), 3085–3093 (2006).
[CrossRef]

Génin, F. Y.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process.79(7), 1635–1641 (2004).
[CrossRef]

Gupta, M. C.

Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. Zhou, M. C. Gupta, and J. C. Campbell, “Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt.50(17), 2508–2511 (2011).
[CrossRef] [PubMed]

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl.19(6), 631–639 (2011).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng.48(10), 966–973 (2010).
[CrossRef]

Halbwax, M.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Hauser, H.

H. Hauser, B. Michl, V. Kübler, S. Schwarzkopf, C. Müller, M. Hermle, and B. Bläsi, “Nanoimprint lithography for honeycomb texturing of multicrystalline silicon,” Energy Procedia8, 648–653 (2011).
[CrossRef]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process.70(4), 383–385 (2000).
[CrossRef]

Herman, P. R.

Hermle, M.

H. Hauser, B. Michl, V. Kübler, S. Schwarzkopf, C. Müller, M. Hermle, and B. Bläsi, “Nanoimprint lithography for honeycomb texturing of multicrystalline silicon,” Energy Procedia8, 648–653 (2011).
[CrossRef]

Hirao, K.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys.110(7), 073106 (2011).
[CrossRef]

Ho, S.

Horn, A.

V. Schütz, A. Horn, and U. Stute, “High-throughput process parallelization for laser surface modification on Si-Solar cells: determination of the process window,” Proc. SPIE8244, 82440X, 82440X-7 (2012).
[CrossRef]

Hou, X.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys.110(7), 073106 (2011).
[CrossRef]

Iyengar, V. V.

Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. Zhou, M. C. Gupta, and J. C. Campbell, “Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt.50(17), 2508–2511 (2011).
[CrossRef] [PubMed]

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl.19(6), 631–639 (2011).
[CrossRef]

Joo, S. J.

M. S. Kang, S. J. Joo, W. Bahng, J. H. Lee, N. K. Kim, and S. M. Koo, “Anti-reflective nano- and micro-structures on 4H-SiC for photodiodes,” Nanoscale Res. Lett.6(1), 236 (2011).
[CrossRef] [PubMed]

Jung, S.

K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, “Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication,” Sol. Energy Mater. Sol. Cells92(8), 960–968 (2008).
[CrossRef]

Kaminski, A.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells90(15), 2319–2328 (2006).
[CrossRef]

Kanehira, S.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys.110(7), 073106 (2011).
[CrossRef]

Kang, M. S.

M. S. Kang, S. J. Joo, W. Bahng, J. H. Lee, N. K. Kim, and S. M. Koo, “Anti-reflective nano- and micro-structures on 4H-SiC for photodiodes,” Nanoscale Res. Lett.6(1), 236 (2011).
[CrossRef] [PubMed]

Kim, K.

K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, “Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication,” Sol. Energy Mater. Sol. Cells92(8), 960–968 (2008).
[CrossRef]

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells90(18-19), 3085–3093 (2006).
[CrossRef]

Kim, N. K.

M. S. Kang, S. J. Joo, W. Bahng, J. H. Lee, N. K. Kim, and S. M. Koo, “Anti-reflective nano- and micro-structures on 4H-SiC for photodiodes,” Nanoscale Res. Lett.6(1), 236 (2011).
[CrossRef] [PubMed]

Koo, S. M.

M. S. Kang, S. J. Joo, W. Bahng, J. H. Lee, N. K. Kim, and S. M. Koo, “Anti-reflective nano- and micro-structures on 4H-SiC for photodiodes,” Nanoscale Res. Lett.6(1), 236 (2011).
[CrossRef] [PubMed]

Kraiem, J.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells90(15), 2319–2328 (2006).
[CrossRef]

Kübler, V.

H. Hauser, B. Michl, V. Kübler, S. Schwarzkopf, C. Müller, M. Hermle, and B. Bläsi, “Nanoimprint lithography for honeycomb texturing of multicrystalline silicon,” Energy Procedia8, 648–653 (2011).
[CrossRef]

Lee, J. H.

M. S. Kang, S. J. Joo, W. Bahng, J. H. Lee, N. K. Kim, and S. M. Koo, “Anti-reflective nano- and micro-structures on 4H-SiC for photodiodes,” Nanoscale Res. Lett.6(1), 236 (2011).
[CrossRef] [PubMed]

Lelievre, J. F.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells90(15), 2319–2328 (2006).
[CrossRef]

Lemiti, M.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells90(15), 2319–2328 (2006).
[CrossRef]

Levinson, J. A.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys.93(5), 2626–2629 (2003).
[CrossRef]

Li, J.

Li, Z.

Loeschner, U.

J. Schille, R. Ebert, U. Loeschner, P. Regenfuss, T. Suess, and H. Exner, “Micro structuring with highly repetitive ultra short laser pulses,” in Proceedings of LPM, The 9th International Symposium on Laser Precision Microfabrication (2008).

Manea, E.

E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, and V. Moagar Poladian, “Optimization of front surface texturing processes for high-efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells87(1-4), 423–431 (2005).
[CrossRef]

Mangalaraj, D.

K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, “Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication,” Sol. Energy Mater. Sol. Cells92(8), 960–968 (2008).
[CrossRef]

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells90(18-19), 3085–3093 (2006).
[CrossRef]

Martinuzzi, S.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Mazur, E.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process.79(7), 1635–1641 (2004).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys.93(5), 2626–2629 (2003).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process.70(4), 383–385 (2000).
[CrossRef]

McIntosh, D.

Michl, B.

H. Hauser, B. Michl, V. Kübler, S. Schwarzkopf, C. Müller, M. Hermle, and B. Bläsi, “Nanoimprint lithography for honeycomb texturing of multicrystalline silicon,” Energy Procedia8, 648–653 (2011).
[CrossRef]

Miura, K.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys.110(7), 073106 (2011).
[CrossRef]

Moagar Poladian, V.

E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, and V. Moagar Poladian, “Optimization of front surface texturing processes for high-efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells87(1-4), 423–431 (2005).
[CrossRef]

Muller, R.

E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, and V. Moagar Poladian, “Optimization of front surface texturing processes for high-efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells87(1-4), 423–431 (2005).
[CrossRef]

Müller, C.

H. Hauser, B. Michl, V. Kübler, S. Schwarzkopf, C. Müller, M. Hermle, and B. Bläsi, “Nanoimprint lithography for honeycomb texturing of multicrystalline silicon,” Energy Procedia8, 648–653 (2011).
[CrossRef]

Narayanan, S.

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells74(1-4), 133–137 (2002).
[CrossRef]

Nayak, B. K.

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl.19(6), 631–639 (2011).
[CrossRef]

Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. Zhou, M. C. Gupta, and J. C. Campbell, “Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt.50(17), 2508–2511 (2011).
[CrossRef] [PubMed]

B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng.48(10), 966–973 (2010).
[CrossRef]

Ng, M. L.

Nichiporuk, O.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells90(15), 2319–2328 (2006).
[CrossRef]

Oh, J.

J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012).
[CrossRef] [PubMed]

Papet, P.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells90(15), 2319–2328 (2006).
[CrossRef]

Parm, I. O.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells90(18-19), 3085–3093 (2006).
[CrossRef]

Perichaud, I.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Purica, M.

E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, and V. Moagar Poladian, “Optimization of front surface texturing processes for high-efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells87(1-4), 423–431 (2005).
[CrossRef]

Regenfuss, P.

J. Schille, R. Ebert, U. Loeschner, P. Regenfuss, T. Suess, and H. Exner, “Micro structuring with highly repetitive ultra short laser pulses,” in Proceedings of LPM, The 9th International Symposium on Laser Precision Microfabrication (2008).

Rohatgi, A.

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells74(1-4), 133–137 (2002).
[CrossRef]

Rozier, Y.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells90(15), 2319–2328 (2006).
[CrossRef]

Ruby, D. S.

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells74(1-4), 133–137 (2002).
[CrossRef]

Sarnet, T.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Schille, J.

J. Schille, R. Ebert, U. Loeschner, P. Regenfuss, T. Suess, and H. Exner, “Micro structuring with highly repetitive ultra short laser pulses,” in Proceedings of LPM, The 9th International Symposium on Laser Precision Microfabrication (2008).

Schütz, V.

V. Schütz, A. Horn, and U. Stute, “High-throughput process parallelization for laser surface modification on Si-Solar cells: determination of the process window,” Proc. SPIE8244, 82440X, 82440X-7 (2012).
[CrossRef]

Schwarzkopf, S.

H. Hauser, B. Michl, V. Kübler, S. Schwarzkopf, C. Müller, M. Hermle, and B. Bläsi, “Nanoimprint lithography for honeycomb texturing of multicrystalline silicon,” Energy Procedia8, 648–653 (2011).
[CrossRef]

Sentis, M.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Sheehy, M. A.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

Shen, M.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process.79(7), 1635–1641 (2004).
[CrossRef]

Si, J.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys.110(7), 073106 (2011).
[CrossRef]

Stute, U.

V. Schütz, A. Horn, and U. Stute, “High-throughput process parallelization for laser surface modification on Si-Solar cells: determination of the process window,” Proc. SPIE8244, 82440X, 82440X-7 (2012).
[CrossRef]

Suess, T.

J. Schille, R. Ebert, U. Loeschner, P. Regenfuss, T. Suess, and H. Exner, “Micro structuring with highly repetitive ultra short laser pulses,” in Proceedings of LPM, The 9th International Symposium on Laser Precision Microfabrication (2008).

Torregrosa, F.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Vervisch, V.

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Winston, L.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

Wu, C.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process.70(4), 383–385 (2000).
[CrossRef]

Yi, J.

J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells95(1), 2–6 (2011).
[CrossRef]

J. Yoo, G. Yu, and J. Yi, “Black surface structures for crystalline silicon solar cells,” Mater. Sci. Eng. B159–160, 333–337 (2009).
[CrossRef]

K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, “Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication,” Sol. Energy Mater. Sol. Cells92(8), 960–968 (2008).
[CrossRef]

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells90(18-19), 3085–3093 (2006).
[CrossRef]

Yin, G.

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

Yoo, J.

J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells95(1), 2–6 (2011).
[CrossRef]

J. Yoo, G. Yu, and J. Yi, “Black surface structures for crystalline silicon solar cells,” Mater. Sci. Eng. B159–160, 333–337 (2009).
[CrossRef]

Yoo, J. S.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells90(18-19), 3085–3093 (2006).
[CrossRef]

Younkin, R.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys.93(5), 2626–2629 (2003).
[CrossRef]

Yu, G.

J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells95(1), 2–6 (2011).
[CrossRef]

J. Yoo, G. Yu, and J. Yi, “Black surface structures for crystalline silicon solar cells,” Mater. Sci. Eng. B159–160, 333–337 (2009).
[CrossRef]

Yuan, H. C.

J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012).
[CrossRef] [PubMed]

Zaidi, S. H.

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells74(1-4), 133–137 (2002).
[CrossRef]

Zhang, H.

Zhao, L.

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

Zhao, M.

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

Zhou, Q.

Zhu, J. T.

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys., A Mater. Sci. Process.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process.79(7), 1635–1641 (2004).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process.70(4), 383–385 (2000).
[CrossRef]

Appl. Surf. Sci.

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005).
[CrossRef]

Chem. Mater.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005).
[CrossRef]

Energy Procedia

H. Hauser, B. Michl, V. Kübler, S. Schwarzkopf, C. Müller, M. Hermle, and B. Bläsi, “Nanoimprint lithography for honeycomb texturing of multicrystalline silicon,” Energy Procedia8, 648–653 (2011).
[CrossRef]

J. Achiev. Mater. Manuf. Eng.

L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells,” J. Achiev. Mater. Manuf. Eng.31, 77–82 (2008).

J. Appl. Phys.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys.110(7), 073106 (2011).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys.93(5), 2626–2629 (2003).
[CrossRef]

Mater. Sci. Eng. B

J. Yoo, G. Yu, and J. Yi, “Black surface structures for crystalline silicon solar cells,” Mater. Sci. Eng. B159–160, 333–337 (2009).
[CrossRef]

Nanoscale Res. Lett.

M. S. Kang, S. J. Joo, W. Bahng, J. H. Lee, N. K. Kim, and S. M. Koo, “Anti-reflective nano- and micro-structures on 4H-SiC for photodiodes,” Nanoscale Res. Lett.6(1), 236 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol.

J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012).
[CrossRef] [PubMed]

Opt. Express

Opt. Lasers Eng.

B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng.48(10), 966–973 (2010).
[CrossRef]

Proc. SPIE

V. Schütz, A. Horn, and U. Stute, “High-throughput process parallelization for laser surface modification on Si-Solar cells: determination of the process window,” Proc. SPIE8244, 82440X, 82440X-7 (2012).
[CrossRef]

Prog. Photovolt. Res. Appl.

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl.19(6), 631–639 (2011).
[CrossRef]

Sol. Energy Mater. Sol. Cells

E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, and V. Moagar Poladian, “Optimization of front surface texturing processes for high-efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells87(1-4), 423–431 (2005).
[CrossRef]

J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells95(1), 2–6 (2011).
[CrossRef]

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells90(18-19), 3085–3093 (2006).
[CrossRef]

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells90(15), 2319–2328 (2006).
[CrossRef]

K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, “Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication,” Sol. Energy Mater. Sol. Cells92(8), 960–968 (2008).
[CrossRef]

D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells74(1-4), 133–137 (2002).
[CrossRef]

Thin Solid Films

M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008).
[CrossRef]

Other

J. Schille, R. Ebert, U. Loeschner, P. Regenfuss, T. Suess, and H. Exner, “Micro structuring with highly repetitive ultra short laser pulses,” in Proceedings of LPM, The 9th International Symposium on Laser Precision Microfabrication (2008).

C. Zechner, G. Hahn, W. Jooss, M. Wibral, B. Bitnar, S. Keller, M. Spiegel, P. Fath, G. Willeke, and E. Bucher, “Systematic study towards high efficiency multicrystalline silicon solar cells with mechanical surface texturization,” Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference (1997), pp. 243–246.
[CrossRef]

http://sionyx.com/2011/10/sionyx-solar-achieves-record-results-for-black-silicon-solar-cells-2/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram of the experimental setup. (b) Variation of the fluence by defocusing the laser spot on the sample surface (left: sample surface at focus; right: sample surface displaced by ‘L’ with respect to the focal position); (c, d, e) optical microscope images of the irradiated samples at various fluences.

Fig. 2
Fig. 2

Comparison of micro-structures fabricated at 1 kHz at various sample translation speeds; (a-d) SEM images at two different magnifications; (e) comparison of absorptance spectra for micro-structured and pristine silicon, the sample translation speeds are also indicated.

Fig. 3
Fig. 3

Scalability of the micromachining process at (a) 10 kHz and (b) 20 kHz is demonstrated by a proportional increase in the sample translation speed. (c) Absorptance spectra of the micro-machined samples are compared to the spectrum obtained at 1 kHz.

Fig. 4
Fig. 4

Micro-structuring at repetition rates from 100 kHz to 1 MHz. (a-d) SEM images and (e) their corresponding absorption spectra compared to the 1 kHz spectrum.

Fig. 5
Fig. 5

Dependence of the measured periodicity of the surface texturing with respect to the corresponding value of the figure of merit ξ, at different repetition rates.

Fig. 6
Fig. 6

Figure of merit ξ and average measured absorptance for surface texturing fabricated at 1 kHz repetition rate at various sample translation speeds. The shaded area covers the optimal values for ξ (250-1000 J/cm2) corresponding to an average absorptance above 90%.

Fig. 7
Fig. 7

The figure of merit ξ, corresponding to all the processing conditions yielding absorptance above 90%, is plotted as a function of repetition rate. It can be appreciated that all the experimental points of ξ lie in the optimal range defined at 1 kHz (see Fig. 6).

Fig. 8
Fig. 8

Fabrication time for micro-structuring a 10 × 10 cm2 silicon wafer and corresponding average absorptance are plotted as a function of repetition rate.

Tables (1)

Tables Icon

Table 1 List of Optimal Experimental Parameters Used to Obtain Black Silicon with an Above 90% Absorptance

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ξ = ( E π w 2 ) ( 2 w R v ) ( 2 w s ) K = 4 E R π v s K ,
K = 1 1 + R / R 0 ,
ξ = 4 E R π v s 1 1 + R / R 0 ,

Metrics