Abstract

The tunability, brightness, and energy efficiencies of infrared-emitting rare earth doped nanomaterials are important performance parameters for biomedical imaging applications. In this work, hexagonal phase NaYF4:Yb3+, Ln3+ (Ho3+, Tm3+ and Pr3+) was synthesized and optimized using a facile hydrothermal method in the presence of poly(vinyl-pyrrolidone). Distinct infrared emission peaks were measured at 1185, 1310 and 1475 nm upon excitation at 980 nm. The optical efficiencies of NaYF4:Yb3+, Ln3+ at optimal concentrations were measured to quantify the brightness of these particles in comparison to that of NaYF4:Yb3+, Er3+ particles. Efficiencies were ranked as Er3+>Ho3+>Tm3+>Pr3+.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
    [CrossRef]
  2. S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim.5(12), 815–824 (2002).
    [CrossRef]
  3. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
    [CrossRef]
  4. K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express19(3), 1749–1754 (2011).
    [CrossRef] [PubMed]
  5. A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol.4(11), 710–711 (2009).
    [CrossRef] [PubMed]
  6. S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, “Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater.16(23-24), 2102–2105 (2004).
    [CrossRef]
  7. R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol.19(4), 316–317 (2001).
    [CrossRef] [PubMed]
  8. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol.7(5), 626–634 (2003).
    [CrossRef] [PubMed]
  9. D. J. Naczynski, T. Andelman, D. Pal, S. Chen, R. E. Riman, C. M. Roth, and P. V. Moghe, “Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging,” Small6(15), 1631–1640 (2010).
    [CrossRef] [PubMed]
  10. M. C. Tan, G. A. Kumar, R. E. Riman, M. G. Brik, E. Brown, and U. Hommerich, “Synthesis and optical properties of infrared emitting YF3:Nd nanoparticles,” J. Appl. Phys.106(6), 063118 (2009).
    [CrossRef]
  11. Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging2(1), 50–64 (2003).
    [CrossRef] [PubMed]
  12. A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small3(4), 536–557 (2007).
    [CrossRef] [PubMed]
  13. S. Tanabe, T. Kouda, and T. Hanada, “Energy transfer and 1.3 µm emission in Pr-Yb codoped tellurite glasses,” J. Non-Cryst. Solids274(1-3), 55–61 (2000).
    [CrossRef]
  14. A. Kermaoui and F. Pelle, “Synthesis and infrared spectroscopic properties of Tm3+-doped phosphate glasses,” J. Alloy. Comp.469(1-2), 601–608 (2009).
    [CrossRef]
  15. X. P. Chen, W. J. Zhang, and Q. Y. Zhang, “Towards efficient upconversion and downconversion of NaYF4: Ho3+, Yb3+ phosphors,” Physica B406(6-7), 1248–1252 (2011).
    [CrossRef]
  16. X. Zou and H. Toratani, “Dynamics and mechanics of up-conversion processes in Yb3+ sensitized Tm3+- and Ho3+-doped fluorozircoaluminate glasses,” J. Non-Cryst. Solids181(1-2), 87–99 (1995).
    [CrossRef]
  17. M. C. Tan, J. Connolly, and R. E. Riman, “Optical efficiency of short wave infrared emitting phosphors,” J. Phys. Chem. C115(36), 17952–17957 (2011).
    [CrossRef]
  18. G. Wang, W. Qin, J. Zhang, L. Wang, G. Wei, P. Zhu, and R. Kim, “Controlled synthesis and luminescence properties from cubic to hexagonal NaYF4: Ln3+ (Ln=Eu and Yb/Tm) microcrystals,” J. Alloy. Comp.475(1-2), 452–455 (2009).
    [CrossRef]
  19. J. C. Zhou, Z. L. Yang, W. Dong, R. J. Tang, L. D. Sun, and C. H. Yan, “Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals,” Biomaterials32(34), 9059–9067 (2011).
    [CrossRef] [PubMed]
  20. D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe are preparing a manuscript to be called “Rare-earth doped biologic composites as shortwave infrared reporters in vivo”.
  21. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction (Prentice Hall, 2001).
  22. J. Solé, L. Bausa, and D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids (John Wiley, 2005).
  23. G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater.14(16), 1147–1150 (2002).
    [CrossRef]
  24. Y. S. Tver’yanovich, “Concentration quenching of luminescence of rare-earth ions in chalcogenide glasses,” Glass Phys. Chem.29(2), 166–168 (2003).
    [CrossRef]
  25. X. P. Chen, X. Y. Huang, and Q. Y. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4: Pr3+, Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009).
    [CrossRef]

2012 (1)

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

2011 (4)

K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express19(3), 1749–1754 (2011).
[CrossRef] [PubMed]

X. P. Chen, W. J. Zhang, and Q. Y. Zhang, “Towards efficient upconversion and downconversion of NaYF4: Ho3+, Yb3+ phosphors,” Physica B406(6-7), 1248–1252 (2011).
[CrossRef]

M. C. Tan, J. Connolly, and R. E. Riman, “Optical efficiency of short wave infrared emitting phosphors,” J. Phys. Chem. C115(36), 17952–17957 (2011).
[CrossRef]

J. C. Zhou, Z. L. Yang, W. Dong, R. J. Tang, L. D. Sun, and C. H. Yan, “Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals,” Biomaterials32(34), 9059–9067 (2011).
[CrossRef] [PubMed]

2010 (1)

D. J. Naczynski, T. Andelman, D. Pal, S. Chen, R. E. Riman, C. M. Roth, and P. V. Moghe, “Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging,” Small6(15), 1631–1640 (2010).
[CrossRef] [PubMed]

2009 (5)

M. C. Tan, G. A. Kumar, R. E. Riman, M. G. Brik, E. Brown, and U. Hommerich, “Synthesis and optical properties of infrared emitting YF3:Nd nanoparticles,” J. Appl. Phys.106(6), 063118 (2009).
[CrossRef]

G. Wang, W. Qin, J. Zhang, L. Wang, G. Wei, P. Zhu, and R. Kim, “Controlled synthesis and luminescence properties from cubic to hexagonal NaYF4: Ln3+ (Ln=Eu and Yb/Tm) microcrystals,” J. Alloy. Comp.475(1-2), 452–455 (2009).
[CrossRef]

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol.4(11), 710–711 (2009).
[CrossRef] [PubMed]

A. Kermaoui and F. Pelle, “Synthesis and infrared spectroscopic properties of Tm3+-doped phosphate glasses,” J. Alloy. Comp.469(1-2), 601–608 (2009).
[CrossRef]

X. P. Chen, X. Y. Huang, and Q. Y. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4: Pr3+, Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009).
[CrossRef]

2007 (1)

A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small3(4), 536–557 (2007).
[CrossRef] [PubMed]

2006 (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
[CrossRef]

2004 (1)

S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, “Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater.16(23-24), 2102–2105 (2004).
[CrossRef]

2003 (3)

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol.7(5), 626–634 (2003).
[CrossRef] [PubMed]

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging2(1), 50–64 (2003).
[CrossRef] [PubMed]

Y. S. Tver’yanovich, “Concentration quenching of luminescence of rare-earth ions in chalcogenide glasses,” Glass Phys. Chem.29(2), 166–168 (2003).
[CrossRef]

2002 (2)

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater.14(16), 1147–1150 (2002).
[CrossRef]

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim.5(12), 815–824 (2002).
[CrossRef]

2001 (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol.19(4), 316–317 (2001).
[CrossRef] [PubMed]

2000 (1)

S. Tanabe, T. Kouda, and T. Hanada, “Energy transfer and 1.3 µm emission in Pr-Yb codoped tellurite glasses,” J. Non-Cryst. Solids274(1-3), 55–61 (2000).
[CrossRef]

1995 (1)

X. Zou and H. Toratani, “Dynamics and mechanics of up-conversion processes in Yb3+ sensitized Tm3+- and Ho3+-doped fluorozircoaluminate glasses,” J. Non-Cryst. Solids181(1-2), 87–99 (1995).
[CrossRef]

Andelman, T.

D. J. Naczynski, T. Andelman, D. Pal, S. Chen, R. E. Riman, C. M. Roth, and P. V. Moghe, “Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging,” Small6(15), 1631–1640 (2010).
[CrossRef] [PubMed]

Bawendi, M. G.

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging2(1), 50–64 (2003).
[CrossRef] [PubMed]

Brik, M. G.

M. C. Tan, G. A. Kumar, R. E. Riman, M. G. Brik, E. Brown, and U. Hommerich, “Synthesis and optical properties of infrared emitting YF3:Nd nanoparticles,” J. Appl. Phys.106(6), 063118 (2009).
[CrossRef]

Brown, E.

M. C. Tan, G. A. Kumar, R. E. Riman, M. G. Brik, E. Brown, and U. Hommerich, “Synthesis and optical properties of infrared emitting YF3:Nd nanoparticles,” J. Appl. Phys.106(6), 063118 (2009).
[CrossRef]

Chen, S.

D. J. Naczynski, T. Andelman, D. Pal, S. Chen, R. E. Riman, C. M. Roth, and P. V. Moghe, “Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging,” Small6(15), 1631–1640 (2010).
[CrossRef] [PubMed]

Chen, X. P.

X. P. Chen, W. J. Zhang, and Q. Y. Zhang, “Towards efficient upconversion and downconversion of NaYF4: Ho3+, Yb3+ phosphors,” Physica B406(6-7), 1248–1252 (2011).
[CrossRef]

X. P. Chen, X. Y. Huang, and Q. Y. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4: Pr3+, Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009).
[CrossRef]

Chen, Y.

Connolly, J.

M. C. Tan, J. Connolly, and R. E. Riman, “Optical efficiency of short wave infrared emitting phosphors,” J. Phys. Chem. C115(36), 17952–17957 (2011).
[CrossRef]

Deng, K.

Dong, W.

J. C. Zhou, Z. L. Yang, W. Dong, R. J. Tang, L. D. Sun, and C. H. Yan, “Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals,” Biomaterials32(34), 9059–9067 (2011).
[CrossRef] [PubMed]

Eychmüller, A.

A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small3(4), 536–557 (2007).
[CrossRef] [PubMed]

Frangioni, J. V.

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging2(1), 50–64 (2003).
[CrossRef] [PubMed]

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol.7(5), 626–634 (2003).
[CrossRef] [PubMed]

Gong, T.

Güdel, H. U.

S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, “Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater.16(23-24), 2102–2105 (2004).
[CrossRef]

Haase, M.

S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, “Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater.16(23-24), 2102–2105 (2004).
[CrossRef]

Hanada, T.

S. Tanabe, T. Kouda, and T. Hanada, “Energy transfer and 1.3 µm emission in Pr-Yb codoped tellurite glasses,” J. Non-Cryst. Solids274(1-3), 55–61 (2000).
[CrossRef]

Hebbink, G. A.

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater.14(16), 1147–1150 (2002).
[CrossRef]

Heer, S.

S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, “Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater.16(23-24), 2102–2105 (2004).
[CrossRef]

Hickey, S. G.

A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small3(4), 536–557 (2007).
[CrossRef] [PubMed]

Hommerich, U.

M. C. Tan, G. A. Kumar, R. E. Riman, M. G. Brik, E. Brown, and U. Hommerich, “Synthesis and optical properties of infrared emitting YF3:Nd nanoparticles,” J. Appl. Phys.106(6), 063118 (2009).
[CrossRef]

Hu, L.

Huang, X. Y.

X. P. Chen, X. Y. Huang, and Q. Y. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4: Pr3+, Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009).
[CrossRef]

Jha, A.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Jiang, X.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Jose, G.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Joshi, P.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Kermaoui, A.

A. Kermaoui and F. Pelle, “Synthesis and infrared spectroscopic properties of Tm3+-doped phosphate glasses,” J. Alloy. Comp.469(1-2), 601–608 (2009).
[CrossRef]

Kershaw, S. V.

A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small3(4), 536–557 (2007).
[CrossRef] [PubMed]

Kim, R.

G. Wang, W. Qin, J. Zhang, L. Wang, G. Wei, P. Zhu, and R. Kim, “Controlled synthesis and luminescence properties from cubic to hexagonal NaYF4: Ln3+ (Ln=Eu and Yb/Tm) microcrystals,” J. Alloy. Comp.475(1-2), 452–455 (2009).
[CrossRef]

Kim, S.

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging2(1), 50–64 (2003).
[CrossRef] [PubMed]

Kömpe, K.

S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, “Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater.16(23-24), 2102–2105 (2004).
[CrossRef]

Kouda, T.

S. Tanabe, T. Kouda, and T. Hanada, “Energy transfer and 1.3 µm emission in Pr-Yb codoped tellurite glasses,” J. Non-Cryst. Solids274(1-3), 55–61 (2000).
[CrossRef]

Kumar, G. A.

M. C. Tan, G. A. Kumar, R. E. Riman, M. G. Brik, E. Brown, and U. Hommerich, “Synthesis and optical properties of infrared emitting YF3:Nd nanoparticles,” J. Appl. Phys.106(6), 063118 (2009).
[CrossRef]

Lim, Y. T.

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging2(1), 50–64 (2003).
[CrossRef] [PubMed]

Lousteau, J.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Mancini, M. C.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol.4(11), 710–711 (2009).
[CrossRef] [PubMed]

Moghe, P. V.

D. J. Naczynski, T. Andelman, D. Pal, S. Chen, R. E. Riman, C. M. Roth, and P. V. Moghe, “Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging,” Small6(15), 1631–1640 (2010).
[CrossRef] [PubMed]

Naczynski, D. J.

D. J. Naczynski, T. Andelman, D. Pal, S. Chen, R. E. Riman, C. M. Roth, and P. V. Moghe, “Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging,” Small6(15), 1631–1640 (2010).
[CrossRef] [PubMed]

Nakayama, A.

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging2(1), 50–64 (2003).
[CrossRef] [PubMed]

Nie, S.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol.4(11), 710–711 (2009).
[CrossRef] [PubMed]

Pal, D.

D. J. Naczynski, T. Andelman, D. Pal, S. Chen, R. E. Riman, C. M. Roth, and P. V. Moghe, “Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging,” Small6(15), 1631–1640 (2010).
[CrossRef] [PubMed]

Pelle, F.

A. Kermaoui and F. Pelle, “Synthesis and infrared spectroscopic properties of Tm3+-doped phosphate glasses,” J. Alloy. Comp.469(1-2), 601–608 (2009).
[CrossRef]

Qin, W.

G. Wang, W. Qin, J. Zhang, L. Wang, G. Wei, P. Zhu, and R. Kim, “Controlled synthesis and luminescence properties from cubic to hexagonal NaYF4: Ln3+ (Ln=Eu and Yb/Tm) microcrystals,” J. Alloy. Comp.475(1-2), 452–455 (2009).
[CrossRef]

Reinhoudt, D. N.

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater.14(16), 1147–1150 (2002).
[CrossRef]

Richards, B.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Richards, B. S.

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
[CrossRef]

Riman, R. E.

M. C. Tan, J. Connolly, and R. E. Riman, “Optical efficiency of short wave infrared emitting phosphors,” J. Phys. Chem. C115(36), 17952–17957 (2011).
[CrossRef]

D. J. Naczynski, T. Andelman, D. Pal, S. Chen, R. E. Riman, C. M. Roth, and P. V. Moghe, “Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging,” Small6(15), 1631–1640 (2010).
[CrossRef] [PubMed]

M. C. Tan, G. A. Kumar, R. E. Riman, M. G. Brik, E. Brown, and U. Hommerich, “Synthesis and optical properties of infrared emitting YF3:Nd nanoparticles,” J. Appl. Phys.106(6), 063118 (2009).
[CrossRef]

Rogach, A. L.

A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small3(4), 536–557 (2007).
[CrossRef] [PubMed]

Roth, C. M.

D. J. Naczynski, T. Andelman, D. Pal, S. Chen, R. E. Riman, C. M. Roth, and P. V. Moghe, “Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging,” Small6(15), 1631–1640 (2010).
[CrossRef] [PubMed]

Smith, A. M.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol.4(11), 710–711 (2009).
[CrossRef] [PubMed]

Stott, N. E.

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging2(1), 50–64 (2003).
[CrossRef] [PubMed]

Stouwdam, J. W.

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater.14(16), 1147–1150 (2002).
[CrossRef]

Sun, L. D.

J. C. Zhou, Z. L. Yang, W. Dong, R. J. Tang, L. D. Sun, and C. H. Yan, “Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals,” Biomaterials32(34), 9059–9067 (2011).
[CrossRef] [PubMed]

Tan, M. C.

M. C. Tan, J. Connolly, and R. E. Riman, “Optical efficiency of short wave infrared emitting phosphors,” J. Phys. Chem. C115(36), 17952–17957 (2011).
[CrossRef]

M. C. Tan, G. A. Kumar, R. E. Riman, M. G. Brik, E. Brown, and U. Hommerich, “Synthesis and optical properties of infrared emitting YF3:Nd nanoparticles,” J. Appl. Phys.106(6), 063118 (2009).
[CrossRef]

Tanabe, S.

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim.5(12), 815–824 (2002).
[CrossRef]

S. Tanabe, T. Kouda, and T. Hanada, “Energy transfer and 1.3 µm emission in Pr-Yb codoped tellurite glasses,” J. Non-Cryst. Solids274(1-3), 55–61 (2000).
[CrossRef]

Tang, R. J.

J. C. Zhou, Z. L. Yang, W. Dong, R. J. Tang, L. D. Sun, and C. H. Yan, “Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals,” Biomaterials32(34), 9059–9067 (2011).
[CrossRef] [PubMed]

Teddy-Fernandez, T.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Toratani, H.

X. Zou and H. Toratani, “Dynamics and mechanics of up-conversion processes in Yb3+ sensitized Tm3+- and Ho3+-doped fluorozircoaluminate glasses,” J. Non-Cryst. Solids181(1-2), 87–99 (1995).
[CrossRef]

Tver’yanovich, Y. S.

Y. S. Tver’yanovich, “Concentration quenching of luminescence of rare-earth ions in chalcogenide glasses,” Glass Phys. Chem.29(2), 166–168 (2003).
[CrossRef]

van Veggel, F.

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater.14(16), 1147–1150 (2002).
[CrossRef]

Wang, G.

G. Wang, W. Qin, J. Zhang, L. Wang, G. Wei, P. Zhu, and R. Kim, “Controlled synthesis and luminescence properties from cubic to hexagonal NaYF4: Ln3+ (Ln=Eu and Yb/Tm) microcrystals,” J. Alloy. Comp.475(1-2), 452–455 (2009).
[CrossRef]

Wang, L.

G. Wang, W. Qin, J. Zhang, L. Wang, G. Wei, P. Zhu, and R. Kim, “Controlled synthesis and luminescence properties from cubic to hexagonal NaYF4: Ln3+ (Ln=Eu and Yb/Tm) microcrystals,” J. Alloy. Comp.475(1-2), 452–455 (2009).
[CrossRef]

Wei, G.

G. Wang, W. Qin, J. Zhang, L. Wang, G. Wei, P. Zhu, and R. Kim, “Controlled synthesis and luminescence properties from cubic to hexagonal NaYF4: Ln3+ (Ln=Eu and Yb/Tm) microcrystals,” J. Alloy. Comp.475(1-2), 452–455 (2009).
[CrossRef]

Wei, X.

Weissleder, R.

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol.19(4), 316–317 (2001).
[CrossRef] [PubMed]

Yan, C. H.

J. C. Zhou, Z. L. Yang, W. Dong, R. J. Tang, L. D. Sun, and C. H. Yan, “Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals,” Biomaterials32(34), 9059–9067 (2011).
[CrossRef] [PubMed]

Yang, Z. L.

J. C. Zhou, Z. L. Yang, W. Dong, R. J. Tang, L. D. Sun, and C. H. Yan, “Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals,” Biomaterials32(34), 9059–9067 (2011).
[CrossRef] [PubMed]

Yin, M.

Zhang, J.

G. Wang, W. Qin, J. Zhang, L. Wang, G. Wei, P. Zhu, and R. Kim, “Controlled synthesis and luminescence properties from cubic to hexagonal NaYF4: Ln3+ (Ln=Eu and Yb/Tm) microcrystals,” J. Alloy. Comp.475(1-2), 452–455 (2009).
[CrossRef]

Zhang, Q. Y.

X. P. Chen, W. J. Zhang, and Q. Y. Zhang, “Towards efficient upconversion and downconversion of NaYF4: Ho3+, Yb3+ phosphors,” Physica B406(6-7), 1248–1252 (2011).
[CrossRef]

X. P. Chen, X. Y. Huang, and Q. Y. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4: Pr3+, Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009).
[CrossRef]

Zhang, W. J.

X. P. Chen, W. J. Zhang, and Q. Y. Zhang, “Towards efficient upconversion and downconversion of NaYF4: Ho3+, Yb3+ phosphors,” Physica B406(6-7), 1248–1252 (2011).
[CrossRef]

Zhou, J. C.

J. C. Zhou, Z. L. Yang, W. Dong, R. J. Tang, L. D. Sun, and C. H. Yan, “Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals,” Biomaterials32(34), 9059–9067 (2011).
[CrossRef] [PubMed]

Zhu, P.

G. Wang, W. Qin, J. Zhang, L. Wang, G. Wei, P. Zhu, and R. Kim, “Controlled synthesis and luminescence properties from cubic to hexagonal NaYF4: Ln3+ (Ln=Eu and Yb/Tm) microcrystals,” J. Alloy. Comp.475(1-2), 452–455 (2009).
[CrossRef]

Zou, X.

X. Zou and H. Toratani, “Dynamics and mechanics of up-conversion processes in Yb3+ sensitized Tm3+- and Ho3+-doped fluorozircoaluminate glasses,” J. Non-Cryst. Solids181(1-2), 87–99 (1995).
[CrossRef]

Adv. Mater. (2)

S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, “Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater.16(23-24), 2102–2105 (2004).
[CrossRef]

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater.14(16), 1147–1150 (2002).
[CrossRef]

Biomaterials (1)

J. C. Zhou, Z. L. Yang, W. Dong, R. J. Tang, L. D. Sun, and C. H. Yan, “Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals,” Biomaterials32(34), 9059–9067 (2011).
[CrossRef] [PubMed]

C. R. Chim. (1)

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim.5(12), 815–824 (2002).
[CrossRef]

Curr. Opin. Chem. Biol. (1)

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol.7(5), 626–634 (2003).
[CrossRef] [PubMed]

Glass Phys. Chem. (1)

Y. S. Tver’yanovich, “Concentration quenching of luminescence of rare-earth ions in chalcogenide glasses,” Glass Phys. Chem.29(2), 166–168 (2003).
[CrossRef]

J. Alloy. Comp. (2)

G. Wang, W. Qin, J. Zhang, L. Wang, G. Wei, P. Zhu, and R. Kim, “Controlled synthesis and luminescence properties from cubic to hexagonal NaYF4: Ln3+ (Ln=Eu and Yb/Tm) microcrystals,” J. Alloy. Comp.475(1-2), 452–455 (2009).
[CrossRef]

A. Kermaoui and F. Pelle, “Synthesis and infrared spectroscopic properties of Tm3+-doped phosphate glasses,” J. Alloy. Comp.469(1-2), 601–608 (2009).
[CrossRef]

J. Appl. Phys. (2)

M. C. Tan, G. A. Kumar, R. E. Riman, M. G. Brik, E. Brown, and U. Hommerich, “Synthesis and optical properties of infrared emitting YF3:Nd nanoparticles,” J. Appl. Phys.106(6), 063118 (2009).
[CrossRef]

X. P. Chen, X. Y. Huang, and Q. Y. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4: Pr3+, Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009).
[CrossRef]

J. Non-Cryst. Solids (2)

S. Tanabe, T. Kouda, and T. Hanada, “Energy transfer and 1.3 µm emission in Pr-Yb codoped tellurite glasses,” J. Non-Cryst. Solids274(1-3), 55–61 (2000).
[CrossRef]

X. Zou and H. Toratani, “Dynamics and mechanics of up-conversion processes in Yb3+ sensitized Tm3+- and Ho3+-doped fluorozircoaluminate glasses,” J. Non-Cryst. Solids181(1-2), 87–99 (1995).
[CrossRef]

J. Phys. Chem. C (1)

M. C. Tan, J. Connolly, and R. E. Riman, “Optical efficiency of short wave infrared emitting phosphors,” J. Phys. Chem. C115(36), 17952–17957 (2011).
[CrossRef]

Mol. Imaging (1)

Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging2(1), 50–64 (2003).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol.19(4), 316–317 (2001).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol.4(11), 710–711 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Physica B (1)

X. P. Chen, W. J. Zhang, and Q. Y. Zhang, “Towards efficient upconversion and downconversion of NaYF4: Ho3+, Yb3+ phosphors,” Physica B406(6-7), 1248–1252 (2011).
[CrossRef]

Prog. Mater. Sci. (1)

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Small (2)

D. J. Naczynski, T. Andelman, D. Pal, S. Chen, R. E. Riman, C. M. Roth, and P. V. Moghe, “Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging,” Small6(15), 1631–1640 (2010).
[CrossRef] [PubMed]

A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small3(4), 536–557 (2007).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
[CrossRef]

Other (3)

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe are preparing a manuscript to be called “Rare-earth doped biologic composites as shortwave infrared reporters in vivo”.

B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction (Prentice Hall, 2001).

J. Solé, L. Bausa, and D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids (John Wiley, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy levels of Yb3+, Tm3+, Pr3+, Ho3+, and Er3+ showing excitation and emission pathways.

Fig. 2
Fig. 2

XRD profile of NaYF4:Yb3+:RE3+ for RE3+ = Ho3+, Tm3+ and Pr3+. All diffraction peaks were attributed to hexagonal NaYF4.

Fig. 3
Fig. 3

SEM micro-graphs showing synthesized NaYF4: Yb0.2, Ln0.01, where Ln = (a) Ho3+, (b) Tm3+, and (c) Pr3+ doped NaYF4 particles. Distributions of major axis were 1.31 ± 0.49, 1.21 ± 0.51, and 1.25 ± 0.47 µm, respectively. Distributions of minor axis were 0.39 ± 0.10, 0.36 ± 0.11, 0.40 ± 0.12 µm, respectively.

Fig. 4
Fig. 4

EDX elemental composition of NaYF4: Yb3+, Ho3+ particles synthesized with different Ho3+ concentrations. The blue and red horizontal lines represent the theoretical atomic fractions for Y3+ and Yb3+ + Ho3+, respectively. The error bars represent the range of ± 1σ, where σ is the standard deviation. For a statistical difference at a 95% confidence level, the values should be bounded within ± 2σ.

Fig. 5
Fig. 5

Emission spectrum of NaYF4:Yb3+:Ln3+ for Ln3+ = Ho3+, Tm3+, Pr3+ and Er3+ particles upon excitation at 980 nm, showing tunable emission peaks at 1185, 1475, 1310, and 1530 nm, respectively. The labels indicate the ratio of the maximum emission peak intensities for the non-normalized emission spectra.

Fig. 6
Fig. 6

Integrated emission intensity as a function of (a) Ho3+, Tm3+, or Pr3+ concentration in NaYF4, and (b) Yb3+ sensitizer concentration upon excitation at ~980 nm.

Tables (1)

Tables Icon

Table 1 Optical Efficiencies of Various Samples upon Excitation at ~980 nm

Metrics