Abstract

For label-free assays employing photonic crystal slabs (PCSs), the sensitivity is one of the most important properties influencing the detection limit. We investigate the bulk sensitivity and the surface sensitivity of 24 different PCSs fabricated by injection molding of PMMA and subsequent sputtering of a Ta2O5 high-index layer. The duty cycle of the linear grating is varied in steps of 0.1 between 0.2 and 0.7. Four different Ta2O5 layer thicknesses (89 nm, 99 nm, 189 nm, 301 nm) are deposited. Both bulk and surface sensitivity are optimal for a Ta2O5 layer thickness of 99 nm. The maximum bulk sensitivity of 138 nm/RIU is achieved for a duty cycle of 0.7, while the maximum surface sensitivity of 47 nm/RIU is obtained for a duty cycle of 0.5. Good agreement between experimental results and finite-difference time-domain (FDTD) simulations is observed. The PCSs sensitivity is linked to the mode intensity distribution.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis19(12), 1239–1257 (2007).
    [CrossRef] [PubMed]
  2. G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. U.S.A.98(4), 1560–1564 (2001).
    [CrossRef] [PubMed]
  3. D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics16, 1–16 (2012).
    [PubMed]
  4. G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem.381(1), 141–155 (2005).
    [CrossRef] [PubMed]
  5. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A7(8), 1470–1474 (1990).
    [CrossRef]
  6. S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
    [CrossRef]
  7. B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
    [CrossRef]
  8. B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
    [CrossRef] [PubMed]
  9. Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express18(18), 19120–19128 (2010).
    [CrossRef] [PubMed]
  10. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  11. M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18(22), 22702–22714 (2010).
    [CrossRef] [PubMed]
  12. U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
    [CrossRef]
  13. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
    [CrossRef]
  14. C.-H. Chang and W.-B. Young, “Fabrication of the plastic component for photonic crystal using micro injection molding,” Microsyst. Technol.16(6), 941–946 (2010).
    [CrossRef]
  15. E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
    [CrossRef] [PubMed]
  16. C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguide into a PMMA substrate,” Microelectron. Eng.87(5-8), 693–695 (2010).
    [CrossRef]
  17. Y. Nazirizadeh, J. G. Müller, U. Geyer, D. Schelle, E.-B. Kley, A. Tünnermann, U. Lemmer, and M. Gerken, “Optical characterization of photonic crystal slabs using orthogonally oriented polarization filters,” Opt. Express16(10), 7153–7160 (2008).
    [CrossRef] [PubMed]
  18. M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17(26), 24224–24233 (2009).
    [CrossRef] [PubMed]
  19. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1-2), 117–127 (2008).
    [CrossRef]
  20. A. Szeghalmi, E. B. Kley, and M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C114(49), 21150–21157 (2010).
    [CrossRef]

2012 (1)

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics16, 1–16 (2012).
[PubMed]

2011 (1)

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

2010 (5)

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguide into a PMMA substrate,” Microelectron. Eng.87(5-8), 693–695 (2010).
[CrossRef]

M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18(22), 22702–22714 (2010).
[CrossRef] [PubMed]

C.-H. Chang and W.-B. Young, “Fabrication of the plastic component for photonic crystal using micro injection molding,” Microsyst. Technol.16(6), 941–946 (2010).
[CrossRef]

Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express18(18), 19120–19128 (2010).
[CrossRef] [PubMed]

A. Szeghalmi, E. B. Kley, and M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C114(49), 21150–21157 (2010).
[CrossRef]

2009 (1)

2008 (4)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1-2), 117–127 (2008).
[CrossRef]

Y. Nazirizadeh, J. G. Müller, U. Geyer, D. Schelle, E.-B. Kley, A. Tünnermann, U. Lemmer, and M. Gerken, “Optical characterization of photonic crystal slabs using orthogonally oriented polarization filters,” Opt. Express16(10), 7153–7160 (2008).
[CrossRef] [PubMed]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

2007 (2)

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis19(12), 1239–1257 (2007).
[CrossRef] [PubMed]

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
[CrossRef]

2005 (1)

G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem.381(1), 141–155 (2005).
[CrossRef] [PubMed]

2004 (1)

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

2002 (2)

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
[CrossRef]

2001 (1)

G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. U.S.A.98(4), 1560–1564 (2001).
[CrossRef] [PubMed]

1990 (1)

Altug, H.

Bagby, J. S.

Baird, C.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Bog, U.

Chakraborty, A. K.

G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. U.S.A.98(4), 1560–1564 (2001).
[CrossRef] [PubMed]

Chang, C.-H.

C.-H. Chang and W.-B. Young, “Fabrication of the plastic component for photonic crystal using micro injection molding,” Microsyst. Technol.16(6), 941–946 (2010).
[CrossRef]

Chang, T. Y.

Cho, E.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Choi, S.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Cote, R.

G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. U.S.A.98(4), 1560–1564 (2001).
[CrossRef] [PubMed]

Cunningham, B. T.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
[CrossRef]

Daniels, J. S.

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis19(12), 1239–1257 (2007).
[CrossRef] [PubMed]

Datar, R.

G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. U.S.A.98(4), 1560–1564 (2001).
[CrossRef] [PubMed]

Dehm, S.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguide into a PMMA substrate,” Microelectron. Eng.87(5-8), 693–695 (2010).
[CrossRef]

El Beheiry, M.

Fan, S.

M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18(22), 22702–22714 (2010).
[CrossRef] [PubMed]

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Fan, X.

Fine, E.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Gauglitz, G.

G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem.381(1), 141–155 (2005).
[CrossRef] [PubMed]

Genick, C.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Gerken, M.

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics16, 1–16 (2012).
[PubMed]

Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express18(18), 19120–19128 (2010).
[CrossRef] [PubMed]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Y. Nazirizadeh, J. G. Müller, U. Geyer, D. Schelle, E.-B. Kley, A. Tünnermann, U. Lemmer, and M. Gerken, “Optical characterization of photonic crystal slabs using orthogonally oriented polarization filters,” Opt. Express16(10), 7153–7160 (2008).
[CrossRef] [PubMed]

Gerstenmaier, J.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Geyer, U.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Y. Nazirizadeh, J. G. Müller, U. Geyer, D. Schelle, E.-B. Kley, A. Tünnermann, U. Lemmer, and M. Gerken, “Optical characterization of photonic crystal slabs using orthogonally oriented polarization filters,” Opt. Express16(10), 7153–7160 (2008).
[CrossRef] [PubMed]

Gleiss, S.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Guo, L. J.

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
[CrossRef]

Guttmann, M.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguide into a PMMA substrate,” Microelectron. Eng.87(5-8), 693–695 (2010).
[CrossRef]

Hagan, M. F.

G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. U.S.A.98(4), 1560–1564 (2001).
[CrossRef] [PubMed]

Han, J.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Hansen, K.

G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. U.S.A.98(4), 1560–1564 (2001).
[CrossRef] [PubMed]

Hauss, J.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Heo, Y.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Huang, M.

Jakobs, P.-J.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguide into a PMMA substrate,” Microelectron. Eng.87(5-8), 693–695 (2010).
[CrossRef]

Ji, H.

G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. U.S.A.98(4), 1560–1564 (2001).
[CrossRef] [PubMed]

Jin, J.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Joannopoulos, J.

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Kang, S.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Kim, B.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Kim, S.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Kley, E. B.

A. Szeghalmi, E. B. Kley, and M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C114(49), 21150–21157 (2010).
[CrossRef]

Kley, E.-B.

Klinkhammer, S.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguide into a PMMA substrate,” Microelectron. Eng.87(5-8), 693–695 (2010).
[CrossRef]

Knez, M.

A. Szeghalmi, E. B. Kley, and M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C114(49), 21150–21157 (2010).
[CrossRef]

Kolew, A.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguide into a PMMA substrate,” Microelectron. Eng.87(5-8), 693–695 (2010).
[CrossRef]

Laing, L.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Lemmer, U.

Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express18(18), 19120–19128 (2010).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguide into a PMMA substrate,” Microelectron. Eng.87(5-8), 693–695 (2010).
[CrossRef]

Y. Nazirizadeh, J. G. Müller, U. Geyer, D. Schelle, E.-B. Kley, A. Tünnermann, U. Lemmer, and M. Gerken, “Optical characterization of photonic crystal slabs using orthogonally oriented polarization filters,” Opt. Express16(10), 7153–7160 (2008).
[CrossRef] [PubMed]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Levi, O.

Li, P.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
[CrossRef]

Lim, J.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Lin, B.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
[CrossRef]

Liu, V.

Magnusson, R.

Majumdar, A.

G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. U.S.A.98(4), 1560–1564 (2001).
[CrossRef] [PubMed]

Mappes, T.

Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express18(18), 19120–19128 (2010).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguide into a PMMA substrate,” Microelectron. Eng.87(5-8), 693–695 (2010).
[CrossRef]

Moharam, M. G.

Mortensen, N. A.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1-2), 117–127 (2008).
[CrossRef]

Müller, J. G.

Nazirizadeh, Y.

Pedersen, J.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1-2), 117–127 (2008).
[CrossRef]

Pepper, J.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
[CrossRef]

Pourmand, N.

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis19(12), 1239–1257 (2007).
[CrossRef] [PubMed]

Riedel, B.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Schelle, D.

Schulz, S.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Sekula, S.

Sung, G. Y.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Szeghalmi, A.

A. Szeghalmi, E. B. Kley, and M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C114(49), 21150–21157 (2010).
[CrossRef]

Threm, D.

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics16, 1–16 (2012).
[PubMed]

Thundat, T.

G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. U.S.A.98(4), 1560–1564 (2001).
[CrossRef] [PubMed]

Tünnermann, A.

Vannahme, C.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguide into a PMMA substrate,” Microelectron. Eng.87(5-8), 693–695 (2010).
[CrossRef]

Wang, F.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Wang, S. S.

White, I. M.

Wu, G.

G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. U.S.A.98(4), 1560–1564 (2001).
[CrossRef] [PubMed]

Xiao, S.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1-2), 117–127 (2008).
[CrossRef]

Yanik, A. A.

Young, W.-B.

C.-H. Chang and W.-B. Young, “Fabrication of the plastic component for photonic crystal using micro injection molding,” Microsyst. Technol.16(6), 941–946 (2010).
[CrossRef]

Adv. Mater. (1)

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
[CrossRef]

Anal. Bioanal. Chem. (1)

G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem.381(1), 141–155 (2005).
[CrossRef] [PubMed]

Electroanalysis (1)

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis19(12), 1239–1257 (2007).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

J. Biomol. Screen. (1)

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

J. Biophotonics (1)

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics16, 1–16 (2012).
[PubMed]

J. Nanosci. Nanotechnol. (1)

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

A. Szeghalmi, E. B. Kley, and M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C114(49), 21150–21157 (2010).
[CrossRef]

Microelectron. Eng. (1)

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguide into a PMMA substrate,” Microelectron. Eng.87(5-8), 693–695 (2010).
[CrossRef]

Microfluid. Nanofluid. (1)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1-2), 117–127 (2008).
[CrossRef]

Microsyst. Technol. (1)

C.-H. Chang and W.-B. Young, “Fabrication of the plastic component for photonic crystal using micro injection molding,” Microsyst. Technol.16(6), 941–946 (2010).
[CrossRef]

Opt. Express (5)

Phys. Rev. B (1)

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. U.S.A.98(4), 1560–1564 (2001).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of PCS fabrication using injection molding and sputtering. Hot PMMA is injected in the injection molding tool, composed of a nickel mold and sidewalls. After cooling down the tool is opened and the nanostructured substrate is obtained. In a sputtering process a Ta2O5 layer is deposited on the substrate. (b) SEM images and (c) photographs of the nickel mold and the PMMA replica.

Fig. 2
Fig. 2

(a) Setup for sensitivity measurement: A halogen lamp serves as the light source. The transmitted light is collected by a microscope objective and directed to a spectrometer. Crossed polarization filters are used to suppress the background light. (b) Transmission spectrum for the PCS with a duty cycle of 0.4 and a Ta2O5 layer thickness of 99 nm for two different liquids on the surface. The GMR’s spectral shift Δλ is defined as the shift of the highest maximum. The bulk sensitivity is calculated as Δλ/Δn = 4.6 nm/(1.38-1.33) RIU = 92 nm/RIU.

Fig. 3
Fig. 3

Bulk sensitivity results. (a) To calculate the bulk sensitivity, two transmission experiments with two different refractive indices on the surface of the PCS were performed. (b) Experimental bulk sensitivity as a function of high index slab thickness and periodicity duty cycle. (c) Simulated bulk sensitivity as a function of high index slab thickness and periodicity duty cycle.

Fig. 4
Fig. 4

(a) Transmission spectra through a PCS with a duty cycle of 0.5 and a slab thickness of 99 nm as a function of the ambient refractive index. (b) Bulk sensitivity calculated from the resonance shift.

Fig. 5
Fig. 5

Simulated mode intensity distribution for three different high-index layer thicknesses. For the highest high-index layer thickness, the largest mode fraction is observed in the high-index area. Hence, the fraction of the mode in the analyte area is decreased and the bulk sensitivity drops.

Fig. 6
Fig. 6

Simulated mode intensity distribution for three different duty cycles (0.2, 0.5, 0.7) of the periodicity. Higher duty cycle pushes the mode up and allows for a larger interaction area with the analyte. This improves the bulk sensitivity.

Fig. 7
Fig. 7

Sensitivity as a function of the biolayer thickness. The sensitivity is obtained by dividing the resonance shift (structure with biolayer compared to structure without biolayer) by the refractive index difference of the biolayer (n = 1.38) and the ambient medium (n = 1.33). In this paper we define the surface sensitivity as the sensitivity obtained for a 25-nm biolayer. For higher biolayer thicknesses the sensitivity approaches the bulk sensitivity.

Fig. 8
Fig. 8

Surface sensitivity results. (a) To calculate the surface sensitivity, two transmission experiments with and without a 25 nm LiF layer on the surface of the PCS were performed. In both experiments the PCS was covered with water. (b) Experimental surface sensitivity as a function of high-index slab thickness and periodicity duty cycle. (c) Simulated surface sensitivity as a function of high-index slab thickness and periodicity duty cycle.

Metrics