Abstract

An electrically-modulated laser was fabricated based on cholesteric liquid crystal photonic band gap. To lower the modulation voltage, the nematic liquid crystals with high dielectric constant was selected, and thus, the emission energy can be modulated with a voltage of less than 10 V. Polymer stabilization was carried out to obtain a stable and switchable helical liquid crystal system. It is noteworthy that visible light initiation system was adopted to prevent the deformation of photonic band gap. The monomer concentration effects on lasing performances were studied and discussed. The results indicate that the laser emission threshold is decreased and the response time is shortened with the increasing of monomer, while the hysteresis may be enhanced. This study provides some new insights into the fabrication, materials improvements and performances of dye-doped liquid crystal laser, and such electrically modulated laser will be a prospective candidate in the laser displays, micro-light-source or the other optical systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coles and S. M. Morris, “Liquid crystal lasers,” Nat. Photonics4(10), 676–685 (2010).
    [CrossRef]
  2. W. Lee and S.-T. Wu, “Focus issue introduction: liquid crystal materials for photonic applications,” Opt. Mater. Express1(8), 1585–1587 (2011).
    [CrossRef]
  3. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett.23(21), 1707–1709 (1998).
    [CrossRef] [PubMed]
  4. J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B31(2), 179–194 (2003).
    [CrossRef]
  5. P. J. W. Hands, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Two-dimensional liquid crystal laser array,” Opt. Lett.33(5), 515–517 (2008).
    [CrossRef] [PubMed]
  6. S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp.14(6), 565–573 (2006).
    [CrossRef]
  7. T. H. Lin, Y. J. Chen, C. H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett.86(16), 161120 (2005).
    [CrossRef]
  8. Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett.88(1), 011107 (2006).
    [CrossRef]
  9. Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express14(3), 1236–1242 (2006).
    [CrossRef] [PubMed]
  10. Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater.23(46), 5498–5501 (2011).
    [CrossRef]
  11. H. Yu, B. Y. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express13(18), 7243–7249 (2005).
    [CrossRef] [PubMed]
  12. M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys.51(8), 082702 (2012).
    [CrossRef]
  13. H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett.94(9), 093306 (2009).
    [CrossRef]
  14. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett.88(6), 061122 (2006).
    [CrossRef]
  15. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
    [CrossRef]
  16. P. V. Shibaev, V. I. Kopp, and A. Z. Genack, “Photonic materials based on mixture of cholesteric liquid crystals with polymers,” J. Phys. Chem. B107(29), 6961–6964 (2003).
    [CrossRef]
  17. Z. G. Zheng, H. F. Wang, G. Zhu, X. W. Lin, J. N. Li, W. Hu, H. Q. Cui, D. Shen, and Y. Q. Lu, “Low-temperature-applicable polymer-stabilized blue-phase liquid crystal and its Kerr effect,” J. Soc. Inf. Disp.20(6), 326–332 (2012).
    [CrossRef]
  18. Z. G. Zheng, W. Hu, G. Zhu, M. Sun, D. Shen, and Y. Q. Lu, “Brief review of recent research on blue phase liquid crystal materials and devices,” Chin. Opt. Lett.11(1), 011601–011605 (2013).
    [CrossRef]
  19. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
    [CrossRef]
  20. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye-doped cholesteric polymer network,” Adv. Mater.14(10), 746–749 (2002).
    [CrossRef]
  21. T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9837 (2010).
    [CrossRef]
  22. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, Ltd., 2006).
  23. S. T. Wu, J. D. Margerum, M. S. Ho, and B. M. Fung, “Liquid crystal dyes with high solubility and large dielectric anisotropy,” Appl. Phys. Lett.64(17), 2191–2193 (1994).
    [CrossRef]
  24. D. Demus, Handbook of Liquid Crystals (Wiley-VCH, 1998).

2013 (1)

2012 (2)

M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys.51(8), 082702 (2012).
[CrossRef]

Z. G. Zheng, H. F. Wang, G. Zhu, X. W. Lin, J. N. Li, W. Hu, H. Q. Cui, D. Shen, and Y. Q. Lu, “Low-temperature-applicable polymer-stabilized blue-phase liquid crystal and its Kerr effect,” J. Soc. Inf. Disp.20(6), 326–332 (2012).
[CrossRef]

2011 (2)

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef]

W. Lee and S.-T. Wu, “Focus issue introduction: liquid crystal materials for photonic applications,” Opt. Mater. Express1(8), 1585–1587 (2011).
[CrossRef]

2010 (2)

H. J. Coles and S. M. Morris, “Liquid crystal lasers,” Nat. Photonics4(10), 676–685 (2010).
[CrossRef]

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9837 (2010).
[CrossRef]

2009 (1)

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett.94(9), 093306 (2009).
[CrossRef]

2008 (1)

2006 (4)

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp.14(6), 565–573 (2006).
[CrossRef]

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett.88(1), 011107 (2006).
[CrossRef]

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express14(3), 1236–1242 (2006).
[CrossRef] [PubMed]

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett.88(6), 061122 (2006).
[CrossRef]

2005 (2)

H. Yu, B. Y. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express13(18), 7243–7249 (2005).
[CrossRef] [PubMed]

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett.86(16), 161120 (2005).
[CrossRef]

2003 (3)

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B31(2), 179–194 (2003).
[CrossRef]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

P. V. Shibaev, V. I. Kopp, and A. Z. Genack, “Photonic materials based on mixture of cholesteric liquid crystals with polymers,” J. Phys. Chem. B107(29), 6961–6964 (2003).
[CrossRef]

2002 (1)

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye-doped cholesteric polymer network,” Adv. Mater.14(10), 746–749 (2002).
[CrossRef]

1998 (1)

1995 (1)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

1994 (1)

S. T. Wu, J. D. Margerum, M. S. Ho, and B. M. Fung, “Liquid crystal dyes with high solubility and large dielectric anisotropy,” Appl. Phys. Lett.64(17), 2191–2193 (1994).
[CrossRef]

Broer, D. J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

Bunning, T. J.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9837 (2010).
[CrossRef]

Chen, C.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett.88(6), 061122 (2006).
[CrossRef]

Chen, C.-W.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett.88(6), 061122 (2006).
[CrossRef]

Chen, Y. J.

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett.86(16), 161120 (2005).
[CrossRef]

Chen, Y.-J.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett.88(6), 061122 (2006).
[CrossRef]

Coles, H. J.

H. J. Coles and S. M. Morris, “Liquid crystal lasers,” Nat. Photonics4(10), 676–685 (2010).
[CrossRef]

P. J. W. Hands, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Two-dimensional liquid crystal laser array,” Opt. Lett.33(5), 515–517 (2008).
[CrossRef] [PubMed]

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp.14(6), 565–573 (2006).
[CrossRef]

Cui, H. Q.

Z. G. Zheng, H. F. Wang, G. Zhu, X. W. Lin, J. N. Li, W. Hu, H. Q. Cui, D. Shen, and Y. Q. Lu, “Low-temperature-applicable polymer-stabilized blue-phase liquid crystal and its Kerr effect,” J. Soc. Inf. Disp.20(6), 326–332 (2012).
[CrossRef]

Doyle, C.

Fan, B.

Finkelmann, H.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye-doped cholesteric polymer network,” Adv. Mater.14(10), 746–749 (2002).
[CrossRef]

Ford, A. D.

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp.14(6), 565–573 (2006).
[CrossRef]

Fuh, A. Y. G.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett.88(6), 061122 (2006).
[CrossRef]

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett.86(16), 161120 (2005).
[CrossRef]

Fujii, A.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef]

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett.94(9), 093306 (2009).
[CrossRef]

Fung, B. M.

S. T. Wu, J. D. Margerum, M. S. Ho, and B. M. Fung, “Liquid crystal dyes with high solubility and large dielectric anisotropy,” Appl. Phys. Lett.64(17), 2191–2193 (1994).
[CrossRef]

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

Genack, A. Z.

P. V. Shibaev, V. I. Kopp, and A. Z. Genack, “Photonic materials based on mixture of cholesteric liquid crystals with polymers,” J. Phys. Chem. B107(29), 6961–6964 (2003).
[CrossRef]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett.23(21), 1707–1709 (1998).
[CrossRef] [PubMed]

Gillespie, C.

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp.14(6), 565–573 (2006).
[CrossRef]

Hadeler, O.

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp.14(6), 565–573 (2006).
[CrossRef]

Hands, P. J. W.

Ho, M. S.

S. T. Wu, J. D. Margerum, M. S. Ho, and B. M. Fung, “Liquid crystal dyes with high solubility and large dielectric anisotropy,” Appl. Phys. Lett.64(17), 2191–2193 (1994).
[CrossRef]

Hu, W.

Z. G. Zheng, W. Hu, G. Zhu, M. Sun, D. Shen, and Y. Q. Lu, “Brief review of recent research on blue phase liquid crystal materials and devices,” Chin. Opt. Lett.11(1), 011601–011605 (2013).
[CrossRef]

Z. G. Zheng, H. F. Wang, G. Zhu, X. W. Lin, J. N. Li, W. Hu, H. Q. Cui, D. Shen, and Y. Q. Lu, “Low-temperature-applicable polymer-stabilized blue-phase liquid crystal and its Kerr effect,” J. Soc. Inf. Disp.20(6), 326–332 (2012).
[CrossRef]

Huang, Y.

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett.88(1), 011107 (2006).
[CrossRef]

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express14(3), 1236–1242 (2006).
[CrossRef] [PubMed]

Inoue, K.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef]

Inoue, Y.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef]

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett.94(9), 093306 (2009).
[CrossRef]

Isomura, T.

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett.94(9), 093306 (2009).
[CrossRef]

Jau, H.-C.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett.88(6), 061122 (2006).
[CrossRef]

Jeong, M.-Y.

M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys.51(8), 082702 (2012).
[CrossRef]

Kim, S. T.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye-doped cholesteric polymer network,” Adv. Mater.14(10), 746–749 (2002).
[CrossRef]

Kopp, V. I.

P. V. Shibaev, V. I. Kopp, and A. Z. Genack, “Photonic materials based on mixture of cholesteric liquid crystals with polymers,” J. Phys. Chem. B107(29), 6961–6964 (2003).
[CrossRef]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett.23(21), 1707–1709 (1998).
[CrossRef] [PubMed]

Kubo, H.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef]

Lee, W.

Li, J.

Li, J. N.

Z. G. Zheng, H. F. Wang, G. Zhu, X. W. Lin, J. N. Li, W. Hu, H. Q. Cui, D. Shen, and Y. Q. Lu, “Low-temperature-applicable polymer-stabilized blue-phase liquid crystal and its Kerr effect,” J. Soc. Inf. Disp.20(6), 326–332 (2012).
[CrossRef]

Li, L.

Lin, T. H.

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett.86(16), 161120 (2005).
[CrossRef]

Lin, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett.88(6), 061122 (2006).
[CrossRef]

Lin, X. W.

Z. G. Zheng, H. F. Wang, G. Zhu, X. W. Lin, J. N. Li, W. Hu, H. Q. Cui, D. Shen, and Y. Q. Lu, “Low-temperature-applicable polymer-stabilized blue-phase liquid crystal and its Kerr effect,” J. Soc. Inf. Disp.20(6), 326–332 (2012).
[CrossRef]

Liu, J. H.

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett.86(16), 161120 (2005).
[CrossRef]

Lu, Y. Q.

Z. G. Zheng, W. Hu, G. Zhu, M. Sun, D. Shen, and Y. Q. Lu, “Brief review of recent research on blue phase liquid crystal materials and devices,” Chin. Opt. Lett.11(1), 011601–011605 (2013).
[CrossRef]

Z. G. Zheng, H. F. Wang, G. Zhu, X. W. Lin, J. N. Li, W. Hu, H. Q. Cui, D. Shen, and Y. Q. Lu, “Low-temperature-applicable polymer-stabilized blue-phase liquid crystal and its Kerr effect,” J. Soc. Inf. Disp.20(6), 326–332 (2012).
[CrossRef]

Lub, J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

Margerum, J. D.

S. T. Wu, J. D. Margerum, M. S. Ho, and B. M. Fung, “Liquid crystal dyes with high solubility and large dielectric anisotropy,” Appl. Phys. Lett.64(17), 2191–2193 (1994).
[CrossRef]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

Matsuhisa, Y.

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett.94(9), 093306 (2009).
[CrossRef]

McConney, M. E.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9837 (2010).
[CrossRef]

Mol, G. N.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

Morris, S. M.

H. J. Coles and S. M. Morris, “Liquid crystal lasers,” Nat. Photonics4(10), 676–685 (2010).
[CrossRef]

P. J. W. Hands, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Two-dimensional liquid crystal laser array,” Opt. Lett.33(5), 515–517 (2008).
[CrossRef] [PubMed]

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp.14(6), 565–573 (2006).
[CrossRef]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

Ozaki, M.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef]

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett.94(9), 093306 (2009).
[CrossRef]

Pivnenko, M. N.

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp.14(6), 565–573 (2006).
[CrossRef]

Schmidtke, J.

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B31(2), 179–194 (2003).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye-doped cholesteric polymer network,” Adv. Mater.14(10), 746–749 (2002).
[CrossRef]

Shen, D.

Z. G. Zheng, W. Hu, G. Zhu, M. Sun, D. Shen, and Y. Q. Lu, “Brief review of recent research on blue phase liquid crystal materials and devices,” Chin. Opt. Lett.11(1), 011601–011605 (2013).
[CrossRef]

Z. G. Zheng, H. F. Wang, G. Zhu, X. W. Lin, J. N. Li, W. Hu, H. Q. Cui, D. Shen, and Y. Q. Lu, “Low-temperature-applicable polymer-stabilized blue-phase liquid crystal and its Kerr effect,” J. Soc. Inf. Disp.20(6), 326–332 (2012).
[CrossRef]

Shibaev, P. V.

P. V. Shibaev, V. I. Kopp, and A. Z. Genack, “Photonic materials based on mixture of cholesteric liquid crystals with polymers,” J. Phys. Chem. B107(29), 6961–6964 (2003).
[CrossRef]

Shiozaki, Y.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef]

Stille, W.

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B31(2), 179–194 (2003).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye-doped cholesteric polymer network,” Adv. Mater.14(10), 746–749 (2002).
[CrossRef]

Sun, M.

Tang, B. Y.

Vithana, H. K. M.

Wang, H. F.

Z. G. Zheng, H. F. Wang, G. Zhu, X. W. Lin, J. N. Li, W. Hu, H. Q. Cui, D. Shen, and Y. Q. Lu, “Low-temperature-applicable polymer-stabilized blue-phase liquid crystal and its Kerr effect,” J. Soc. Inf. Disp.20(6), 326–332 (2012).
[CrossRef]

Wei, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett.88(6), 061122 (2006).
[CrossRef]

White, T. J.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9837 (2010).
[CrossRef]

Wilkinson, T. D.

Wu, C. H.

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett.86(16), 161120 (2005).
[CrossRef]

Wu, J. W.

M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys.51(8), 082702 (2012).
[CrossRef]

Wu, S. T.

S. T. Wu, J. D. Margerum, M. S. Ho, and B. M. Fung, “Liquid crystal dyes with high solubility and large dielectric anisotropy,” Appl. Phys. Lett.64(17), 2191–2193 (1994).
[CrossRef]

Wu, S.-T.

Yang, P. C.

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett.86(16), 161120 (2005).
[CrossRef]

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

Yoshida, H.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef]

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett.94(9), 093306 (2009).
[CrossRef]

Yu, H.

Zheng, Z. G.

Z. G. Zheng, W. Hu, G. Zhu, M. Sun, D. Shen, and Y. Q. Lu, “Brief review of recent research on blue phase liquid crystal materials and devices,” Chin. Opt. Lett.11(1), 011601–011605 (2013).
[CrossRef]

Z. G. Zheng, H. F. Wang, G. Zhu, X. W. Lin, J. N. Li, W. Hu, H. Q. Cui, D. Shen, and Y. Q. Lu, “Low-temperature-applicable polymer-stabilized blue-phase liquid crystal and its Kerr effect,” J. Soc. Inf. Disp.20(6), 326–332 (2012).
[CrossRef]

Zhou, Y.

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express14(3), 1236–1242 (2006).
[CrossRef] [PubMed]

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett.88(1), 011107 (2006).
[CrossRef]

Zhu, G.

Z. G. Zheng, W. Hu, G. Zhu, M. Sun, D. Shen, and Y. Q. Lu, “Brief review of recent research on blue phase liquid crystal materials and devices,” Chin. Opt. Lett.11(1), 011601–011605 (2013).
[CrossRef]

Z. G. Zheng, H. F. Wang, G. Zhu, X. W. Lin, J. N. Li, W. Hu, H. Q. Cui, D. Shen, and Y. Q. Lu, “Low-temperature-applicable polymer-stabilized blue-phase liquid crystal and its Kerr effect,” J. Soc. Inf. Disp.20(6), 326–332 (2012).
[CrossRef]

Adv. Mater. (2)

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye-doped cholesteric polymer network,” Adv. Mater.14(10), 746–749 (2002).
[CrossRef]

Appl. Phys. Lett. (6)

S. T. Wu, J. D. Margerum, M. S. Ho, and B. M. Fung, “Liquid crystal dyes with high solubility and large dielectric anisotropy,” Appl. Phys. Lett.64(17), 2191–2193 (1994).
[CrossRef]

H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett.94(9), 093306 (2009).
[CrossRef]

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett.88(6), 061122 (2006).
[CrossRef]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett.82(1), 16–18 (2003).
[CrossRef]

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett.86(16), 161120 (2005).
[CrossRef]

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett.88(1), 011107 (2006).
[CrossRef]

Chin. Opt. Lett. (1)

Eur. Phys. J. B (1)

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B31(2), 179–194 (2003).
[CrossRef]

J. Mater. Chem. (1)

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9837 (2010).
[CrossRef]

J. Phys. Chem. B (1)

P. V. Shibaev, V. I. Kopp, and A. Z. Genack, “Photonic materials based on mixture of cholesteric liquid crystals with polymers,” J. Phys. Chem. B107(29), 6961–6964 (2003).
[CrossRef]

J. Soc. Inf. Disp. (2)

Z. G. Zheng, H. F. Wang, G. Zhu, X. W. Lin, J. N. Li, W. Hu, H. Q. Cui, D. Shen, and Y. Q. Lu, “Low-temperature-applicable polymer-stabilized blue-phase liquid crystal and its Kerr effect,” J. Soc. Inf. Disp.20(6), 326–332 (2012).
[CrossRef]

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. Soc. Inf. Disp.14(6), 565–573 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys.51(8), 082702 (2012).
[CrossRef]

Nat. Photonics (1)

H. J. Coles and S. M. Morris, “Liquid crystal lasers,” Nat. Photonics4(10), 676–685 (2010).
[CrossRef]

Nature (1)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Other (2)

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, Ltd., 2006).

D. Demus, Handbook of Liquid Crystals (Wiley-VCH, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The schematic experimental setup for the lasing and measurement. A: attenuator; BS: beam splitter; CF: color filter; L: lens; P: polarizer; QW: quarter wave plate; (b) Experimental setup for measuring the response time. A: attenuator; D: high sensitive Si-based; detector; E: expander; L: lens; S: sample; LED: 550-nm-LED source.

Fig. 2
Fig. 2

(a) Transmission spectra of the sample before and after UV curing; (b) Absorbance of DCM and photoinitiator with 0.02 wt% concentration; (c) Transmission spectra of the sample before and after 532-nm-laserirradiation.

Fig. 3
Fig. 3

(a) Pump energy dependent laser emission energy (sample with 4.7 wt% monomer concentration); (b) Tested LETs for the samples. LETs for samples with 0, 4.7, 7.0 and 9.3 wt% monomer is about 2.16, 2.04, 1.95, 1.86μJ/pulse.

Fig. 4
Fig. 4

Voltage-dependent laser emission energy for the samples with (a)7.0 wt% and (b) 9.3 wt% monomer concentration. (c) The PBGs at different applied voltage and the spectrum of the emission laser. (d) Voltage-dependent LETs. (e) Laser patterns at the voltage of 7.4, 7.8 and 8.2 V.

Fig. 5
Fig. 5

Results for the response time. (a) 7.0 wt% monomer concentration, rise time: 15 ms, decay time: 104 ms; (b) 9.3 wt% monomer concentration, rise time: 29 ms, decay time: 74ms.

Metrics