Abstract

A silica-based highly acoustically-anti-guiding optical fiber, fabricated using a molten core approach employing spinel (MgAl2O4) for the first time, is presented. To our knowledge, this is the first truly single mode optical fiber fabricated from a precursor crystal. It is shown that MgO increases the acoustic velocity when added to silica (some physical parameters of MgO are identified) and that the Brillouin gain in the core is less than one third that in the cladding in one of the fibers. This results from a massive acoustic waveguide attenuation term that broadens the spectrum to well over 200 MHz. For the first time, to the best of our knowledge, this also enabled the validation of the intrinsic Brillouin line-width (~20 MHz) of pure silica in fiber form via a direct measurement.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 627–633 (2012).
    [CrossRef]
  2. P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express18(10), 10055–10067 (2010).
    [CrossRef] [PubMed]
  3. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt.11(11), 2489–2494 (1972).
    [CrossRef] [PubMed]
  4. C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
    [CrossRef]
  5. P. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B26(8), 1614–1620 (2009).
    [CrossRef]
  6. P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids355(7), 403–413 (2009).
    [CrossRef]
  7. V. Lou, T. Mitchell, and A. Heuer, “Graphical displays of the thermodynamics of high-temperature gas-solid reactions and their application to oxidation of metals and evaporation of oxides,” J. Am. Ceram. Soc.68(2), 49–58 (1985).
    [CrossRef]
  8. J. B. Heaney, G. Hass, and M. McFarland, “Spinel (Al2O3:MgO): refractive-index variations and lack of stoichiometry in evaporated films,” Appl. Opt.20(14), 2335–2336 (1981).
    [CrossRef] [PubMed]
  9. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol.22(2), 631–639 (2004).
    [CrossRef]
  10. B. Ward and J. Spring, “Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles,” Opt. Express17(18), 15685–15699 (2009).
    [CrossRef] [PubMed]
  11. D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B19(12), 6583–6592 (1979).
    [CrossRef]
  12. P. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol.29(7), 967–973 (2011).
    [CrossRef]
  13. D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids113(1), 58–64 (1989).
    [CrossRef]
  14. P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE7197, 719710, 719710-10 (2009).
    [CrossRef]
  15. S. V. Sinogeikin and J. D. Bass, “Single-crystal elasticity of MgO at high pressure,” Phys. Rev. B59(22), R14141–R14144 (1999).
    [CrossRef]
  16. P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express2(11), 1641–1654 (2012).
    [CrossRef]
  17. G. Gutiérrez and B. Johansson, “Molecular dynamics study of structural properties of amorphous Al2O3,” Phys. Rev. B65(10), 104202 (2002).
    [CrossRef]
  18. W. Kingery, H. Bowen, and D. Uhlmann, Introduction to Ceramics, 2nd ed. (John Wiley & Sons, 1976).
  19. A. von Hippel, Dielectrics and Waves (John Wiley & Sons, 1956).
  20. G. Rankin and H. Merwin, “The ternary system MgO – Al2O3 – SiO2,” Am. J. Sci.s4-45(268), 301–325 (1918).
    [CrossRef]
  21. N. Bowen and O. Andersen, “The binary system MgO – SiO2,” Am. J. Sci.s4-37(222), 487–500 (1914).
    [CrossRef]
  22. J. Greig, “Immiscibility in silicate melts: Part I,” Am. J. Sci.s5-13(73), 1–44 (1927).
    [CrossRef]
  23. P. Wu, G. Eriksson, A. Pelton, and M. Blander, “Prediction of the thermodynamics properties and phase diagrams of silicate systems – evaluation of the FeO – MgO – SiO2 system,” ISIJ Int.33(1), 26–35 (1993).
    [CrossRef]

2012 (2)

2011 (1)

2010 (1)

2009 (4)

2004 (1)

2002 (1)

G. Gutiérrez and B. Johansson, “Molecular dynamics study of structural properties of amorphous Al2O3,” Phys. Rev. B65(10), 104202 (2002).
[CrossRef]

1999 (1)

S. V. Sinogeikin and J. D. Bass, “Single-crystal elasticity of MgO at high pressure,” Phys. Rev. B59(22), R14141–R14144 (1999).
[CrossRef]

1993 (2)

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

P. Wu, G. Eriksson, A. Pelton, and M. Blander, “Prediction of the thermodynamics properties and phase diagrams of silicate systems – evaluation of the FeO – MgO – SiO2 system,” ISIJ Int.33(1), 26–35 (1993).
[CrossRef]

1989 (1)

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids113(1), 58–64 (1989).
[CrossRef]

1985 (1)

V. Lou, T. Mitchell, and A. Heuer, “Graphical displays of the thermodynamics of high-temperature gas-solid reactions and their application to oxidation of metals and evaporation of oxides,” J. Am. Ceram. Soc.68(2), 49–58 (1985).
[CrossRef]

1981 (1)

1979 (1)

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B19(12), 6583–6592 (1979).
[CrossRef]

1972 (1)

1927 (1)

J. Greig, “Immiscibility in silicate melts: Part I,” Am. J. Sci.s5-13(73), 1–44 (1927).
[CrossRef]

1918 (1)

G. Rankin and H. Merwin, “The ternary system MgO – Al2O3 – SiO2,” Am. J. Sci.s4-45(268), 301–325 (1918).
[CrossRef]

1914 (1)

N. Bowen and O. Andersen, “The binary system MgO – SiO2,” Am. J. Sci.s4-37(222), 487–500 (1914).
[CrossRef]

Abe, K.

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Andersen, O.

N. Bowen and O. Andersen, “The binary system MgO – SiO2,” Am. J. Sci.s4-37(222), 487–500 (1914).
[CrossRef]

Ballato, A.

Ballato, J.

Bass, J. D.

S. V. Sinogeikin and J. D. Bass, “Single-crystal elasticity of MgO at high pressure,” Phys. Rev. B59(22), R14141–R14144 (1999).
[CrossRef]

Blander, M.

P. Wu, G. Eriksson, A. Pelton, and M. Blander, “Prediction of the thermodynamics properties and phase diagrams of silicate systems – evaluation of the FeO – MgO – SiO2 system,” ISIJ Int.33(1), 26–35 (1993).
[CrossRef]

Bonnell, L.

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Bowen, N.

N. Bowen and O. Andersen, “The binary system MgO – SiO2,” Am. J. Sci.s4-37(222), 487–500 (1914).
[CrossRef]

Chujo, W.

DiGiovanni, D. J.

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids113(1), 58–64 (1989).
[CrossRef]

Dragic, P.

Dragic, P. D.

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE7197, 719710, 719710-10 (2009).
[CrossRef]

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids355(7), 403–413 (2009).
[CrossRef]

Eriksson, G.

P. Wu, G. Eriksson, A. Pelton, and M. Blander, “Prediction of the thermodynamics properties and phase diagrams of silicate systems – evaluation of the FeO – MgO – SiO2 system,” ISIJ Int.33(1), 26–35 (1993).
[CrossRef]

Foy, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 627–633 (2012).
[CrossRef]

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express18(10), 10055–10067 (2010).
[CrossRef] [PubMed]

Ghosh, S.

Greig, J.

J. Greig, “Immiscibility in silicate melts: Part I,” Am. J. Sci.s5-13(73), 1–44 (1927).
[CrossRef]

Gutiérrez, G.

G. Gutiérrez and B. Johansson, “Molecular dynamics study of structural properties of amorphous Al2O3,” Phys. Rev. B65(10), 104202 (2002).
[CrossRef]

Hamilton, D. S.

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B19(12), 6583–6592 (1979).
[CrossRef]

Hass, G.

Hawkins, T.

Heaney, J. B.

Heiman, D.

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B19(12), 6583–6592 (1979).
[CrossRef]

Hellwarth, R. W.

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B19(12), 6583–6592 (1979).
[CrossRef]

Heuer, A.

V. Lou, T. Mitchell, and A. Heuer, “Graphical displays of the thermodynamics of high-temperature gas-solid reactions and their application to oxidation of metals and evaporation of oxides,” J. Am. Ceram. Soc.68(2), 49–58 (1985).
[CrossRef]

Jen, C.

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Johansson, B.

G. Gutiérrez and B. Johansson, “Molecular dynamics study of structural properties of amorphous Al2O3,” Phys. Rev. B65(10), 104202 (2002).
[CrossRef]

Kometani, T. Y.

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids113(1), 58–64 (1989).
[CrossRef]

Koyamada, Y.

Kushibiki, J.

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Law, P.-C.

Lou, V.

V. Lou, T. Mitchell, and A. Heuer, “Graphical displays of the thermodynamics of high-temperature gas-solid reactions and their application to oxidation of metals and evaporation of oxides,” J. Am. Ceram. Soc.68(2), 49–58 (1985).
[CrossRef]

MacChesney, J. B.

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids113(1), 58–64 (1989).
[CrossRef]

McFarland, M.

Merwin, H.

G. Rankin and H. Merwin, “The ternary system MgO – Al2O3 – SiO2,” Am. J. Sci.s4-45(268), 301–325 (1918).
[CrossRef]

Mitchell, T.

V. Lou, T. Mitchell, and A. Heuer, “Graphical displays of the thermodynamics of high-temperature gas-solid reactions and their application to oxidation of metals and evaporation of oxides,” J. Am. Ceram. Soc.68(2), 49–58 (1985).
[CrossRef]

Morris, S.

Nakamura, S.

Neron, C.

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Paul, M. C.

Pelton, A.

P. Wu, G. Eriksson, A. Pelton, and M. Blander, “Prediction of the thermodynamics properties and phase diagrams of silicate systems – evaluation of the FeO – MgO – SiO2 system,” ISIJ Int.33(1), 26–35 (1993).
[CrossRef]

Rankin, G.

G. Rankin and H. Merwin, “The ternary system MgO – Al2O3 – SiO2,” Am. J. Sci.s4-45(268), 301–325 (1918).
[CrossRef]

Sato, S.

Shang, A.

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Sinogeikin, S. V.

S. V. Sinogeikin and J. D. Bass, “Single-crystal elasticity of MgO at high pressure,” Phys. Rev. B59(22), R14141–R14144 (1999).
[CrossRef]

Smith, R. G.

Sotobayashi, H.

Spring, J.

Ward, B.

Wu, P.

P. Wu, G. Eriksson, A. Pelton, and M. Blander, “Prediction of the thermodynamics properties and phase diagrams of silicate systems – evaluation of the FeO – MgO – SiO2 system,” ISIJ Int.33(1), 26–35 (1993).
[CrossRef]

Am. J. Sci. (3)

G. Rankin and H. Merwin, “The ternary system MgO – Al2O3 – SiO2,” Am. J. Sci.s4-45(268), 301–325 (1918).
[CrossRef]

N. Bowen and O. Andersen, “The binary system MgO – SiO2,” Am. J. Sci.s4-37(222), 487–500 (1914).
[CrossRef]

J. Greig, “Immiscibility in silicate melts: Part I,” Am. J. Sci.s5-13(73), 1–44 (1927).
[CrossRef]

Appl. Opt. (2)

ISIJ Int. (1)

P. Wu, G. Eriksson, A. Pelton, and M. Blander, “Prediction of the thermodynamics properties and phase diagrams of silicate systems – evaluation of the FeO – MgO – SiO2 system,” ISIJ Int.33(1), 26–35 (1993).
[CrossRef]

J. Am. Ceram. Soc. (2)

C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

V. Lou, T. Mitchell, and A. Heuer, “Graphical displays of the thermodynamics of high-temperature gas-solid reactions and their application to oxidation of metals and evaporation of oxides,” J. Am. Ceram. Soc.68(2), 49–58 (1985).
[CrossRef]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (2)

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids113(1), 58–64 (1989).
[CrossRef]

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids355(7), 403–413 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 627–633 (2012).
[CrossRef]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. B (3)

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B19(12), 6583–6592 (1979).
[CrossRef]

S. V. Sinogeikin and J. D. Bass, “Single-crystal elasticity of MgO at high pressure,” Phys. Rev. B59(22), R14141–R14144 (1999).
[CrossRef]

G. Gutiérrez and B. Johansson, “Molecular dynamics study of structural properties of amorphous Al2O3,” Phys. Rev. B65(10), 104202 (2002).
[CrossRef]

Proc. SPIE (1)

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE7197, 719710, 719710-10 (2009).
[CrossRef]

Other (2)

W. Kingery, H. Bowen, and D. Uhlmann, Introduction to Ceramics, 2nd ed. (John Wiley & Sons, 1976).

A. von Hippel, Dielectrics and Waves (John Wiley & Sons, 1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) An end-on view of Fiber A; similar results were obtained for Fiber B (see Table 1 for details). (b) Example of a splice of a segment of SpDF (left-side of image) to standard telecom fiber (right-side of image). High-quality splices were achieved utilizing a standard splice routine.

Fig. 2
Fig. 2

Refractive index (open circles) and compositional profiles (filled shapes) for Fiber A.

Fig. 3
Fig. 3

The Brillouin spectrum (blue) from spinel fibers A and B are fitted with a curve (orange), which is composed of a superposition of Lorentzian curves (dashed). The small peak near 11.15 GHz is the second-order acoustic mode from the apparatus fiber.

Fig. 4
Fig. 4

The Brillouin spectrum (blue) from the SMF fiber of the apparatus (SMF-28TM), fitted with a curve (orange) to the main peak. The small peak near 11.15 GHz is due to the second-order acoustic mode.

Tables (2)

Tables Icon

Table 1 Measured Characteristics of the Spinel-Doped Fiber

Tables Icon

Table 2 Derived Bulk Component Characteristics of the SpDF

Metrics