Abstract

We have investigated the thermal stability of femtosecond laser modification inside fused silica. Raman and FL spectroscopy show that fs-laser induced non-bridging oxygen hole center (NBOHC) defects completely disappear at 300 °C, whereas changes in Si-O ring structures only anneal out after heat treatment at 800-900 °C. After annealing at 900 °C optical waveguides written inside the glass had completely disappeared whereas more significant damage induced in the glass remained. The results are related to different types of bond rearrangements in the glass network.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21(24), 2023–2025 (1996).
    [CrossRef] [PubMed]
  3. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
    [CrossRef]
  4. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
    [CrossRef]
  5. W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.28(24), 2491–2493 (2003).
    [CrossRef] [PubMed]
  6. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett.31(18), 2690–2691 (2006).
    [CrossRef] [PubMed]
  7. W. Watanabe, D. Kuroda, K. Itoh, and J. Nishii, “Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses,” Opt. Express10(19), 978–983 (2002).
    [CrossRef] [PubMed]
  8. T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Discrete diffraction in two-dimensional arrays of coupled waveguides in silica,” Opt. Lett.29(5), 468–470 (2004).
    [CrossRef] [PubMed]
  9. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett.30(9), 1060–1062 (2005).
    [CrossRef] [PubMed]
  10. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett.24(18), 1311–1313 (1999).
    [CrossRef] [PubMed]
  11. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26(21), 1726–1728 (2001).
    [CrossRef] [PubMed]
  12. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
    [CrossRef]
  13. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354(2-9), 416–424 (2008).
    [CrossRef]
  14. Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses,” Opt. Express16(24), 19520–19534 (2008).
    [CrossRef] [PubMed]
  15. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109(2), 023503 (2011).
    [CrossRef]
  16. E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett.88(11), 111119 (2006).
    [CrossRef]
  17. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett.29(12), 1312–1314 (2004).
    [CrossRef] [PubMed]
  18. W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99(12), 123112 (2006).
    [CrossRef]
  19. D. M. Krol, K. B. Lyons, S. A. Brawer, and C. R. Kurkjian, “High-temperature light scattering and the glass transition in vitreous silica,” Phys. Rev. B Condens. Matter33(6), 4196–4202 (1986).
    [CrossRef] [PubMed]
  20. R. Brüning and D. Cottrell, “X-ray and neutron scattering observations of structural relaxation of vitreous silica,” J. Non-Cryst. Solids325(1-3), 6–15 (2003).
    [CrossRef]

2011 (1)

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109(2), 023503 (2011).
[CrossRef]

2008 (2)

2006 (4)

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett.88(11), 111119 (2006).
[CrossRef]

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett.31(18), 2690–2691 (2006).
[CrossRef] [PubMed]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99(12), 123112 (2006).
[CrossRef]

2005 (1)

2004 (2)

2003 (3)

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.28(24), 2491–2493 (2003).
[CrossRef] [PubMed]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

R. Brüning and D. Cottrell, “X-ray and neutron scattering observations of structural relaxation of vitreous silica,” J. Non-Cryst. Solids325(1-3), 6–15 (2003).
[CrossRef]

2002 (1)

2001 (1)

1999 (1)

1997 (1)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

1996 (2)

1986 (1)

D. M. Krol, K. B. Lyons, S. A. Brawer, and C. R. Kurkjian, “High-temperature light scattering and the glass transition in vitreous silica,” Phys. Rev. B Condens. Matter33(6), 4196–4202 (1986).
[CrossRef] [PubMed]

Ams, M.

Arai, A.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99(12), 123112 (2006).
[CrossRef]

Asano, T.

Bado, P.

Barthel, E.

Bellouard, Y.

Bhardwaj, V. R.

Borrelli, N. F.

Brawer, S. A.

D. M. Krol, K. B. Lyons, S. A. Brawer, and C. R. Kurkjian, “High-temperature light scattering and the glass transition in vitreous silica,” Phys. Rev. B Condens. Matter33(6), 4196–4202 (1986).
[CrossRef] [PubMed]

Bricchi, E.

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett.88(11), 111119 (2006).
[CrossRef]

Brüning, R.

R. Brüning and D. Cottrell, “X-ray and neutron scattering observations of structural relaxation of vitreous silica,” J. Non-Cryst. Solids325(1-3), 6–15 (2003).
[CrossRef]

Burghoff, J.

Callan, J. P.

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26(21), 1726–1728 (2001).
[CrossRef] [PubMed]

Corkum, P. B.

Cottrell, D.

R. Brüning and D. Cottrell, “X-ray and neutron scattering observations of structural relaxation of vitreous silica,” J. Non-Cryst. Solids325(1-3), 6–15 (2003).
[CrossRef]

Davis, K. M.

Dugan, M.

Eaton, S. M.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99(12), 123112 (2006).
[CrossRef]

Finlay, R. J.

Fujimoto, J. G.

Gaeta, A. L.

Glezer, E. N.

Her, T. H.

Herman, P. R.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99(12), 123112 (2006).
[CrossRef]

Hirao, K.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109(2), 023503 (2011).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

Homoelle, D.

Huang, L.

Huser, T.

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Ippen, E. P.

Itoh, K.

Kazansky, P. G.

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett.88(11), 111119 (2006).
[CrossRef]

Kowalevicz, A. M.

Krol, D. M.

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354(2-9), 416–424 (2008).
[CrossRef]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99(12), 123112 (2006).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26(21), 1726–1728 (2001).
[CrossRef] [PubMed]

D. M. Krol, K. B. Lyons, S. A. Brawer, and C. R. Kurkjian, “High-temperature light scattering and the glass transition in vitreous silica,” Phys. Rev. B Condens. Matter33(6), 4196–4202 (1986).
[CrossRef] [PubMed]

Kurkjian, C. R.

D. M. Krol, K. B. Lyons, S. A. Brawer, and C. R. Kurkjian, “High-temperature light scattering and the glass transition in vitreous silica,” Phys. Rev. B Condens. Matter33(6), 4196–4202 (1986).
[CrossRef] [PubMed]

Kuroda, D.

Lederer, F.

Lyons, K. B.

D. M. Krol, K. B. Lyons, S. A. Brawer, and C. R. Kurkjian, “High-temperature light scattering and the glass transition in vitreous silica,” Phys. Rev. B Condens. Matter33(6), 4196–4202 (1986).
[CrossRef] [PubMed]

Marshall, G. D.

Mazur, E.

Milosavljevic, M.

Minoshima, K.

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Miura, K.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109(2), 023503 (2011).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Nishii, J.

Nolte, S.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Discrete diffraction in two-dimensional arrays of coupled waveguides in silica,” Opt. Lett.29(5), 468–470 (2004).
[CrossRef] [PubMed]

Pertsch, T.

Peschel, U.

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Rayner, D. M.

Reichman, W. J.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99(12), 123112 (2006).
[CrossRef]

Risbud, S.

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

Said, A. A.

Sakakura, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109(2), 023503 (2011).
[CrossRef]

Schaffer, C.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

Shah, L.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99(12), 123112 (2006).
[CrossRef]

Sharma, V.

Shimotsuma, Y.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109(2), 023503 (2011).
[CrossRef]

Simova, E.

Smith, C.

Sugimoto, N.

Taylor, R. S.

Terazima, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109(2), 023503 (2011).
[CrossRef]

Tünnermann, A.

Watanabe, W.

Wielandy, S.

Will, M.

Withford, M. J.

Yamada, K.

Yoshino, F.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99(12), 123112 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett.88(11), 111119 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

J. Appl. Phys. (2)

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109(2), 023503 (2011).
[CrossRef]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99(12), 123112 (2006).
[CrossRef]

J. Non-Cryst. Solids (2)

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354(2-9), 416–424 (2008).
[CrossRef]

R. Brüning and D. Cottrell, “X-ray and neutron scattering observations of structural relaxation of vitreous silica,” J. Non-Cryst. Solids325(1-3), 6–15 (2003).
[CrossRef]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (9)

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.28(24), 2491–2493 (2003).
[CrossRef] [PubMed]

T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Discrete diffraction in two-dimensional arrays of coupled waveguides in silica,” Opt. Lett.29(5), 468–470 (2004).
[CrossRef] [PubMed]

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett.29(12), 1312–1314 (2004).
[CrossRef] [PubMed]

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett.30(9), 1060–1062 (2005).
[CrossRef] [PubMed]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett.31(18), 2690–2691 (2006).
[CrossRef] [PubMed]

D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett.24(18), 1311–1313 (1999).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21(24), 2023–2025 (1996).
[CrossRef] [PubMed]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26(21), 1726–1728 (2001).
[CrossRef] [PubMed]

Phys. Rev. B Condens. Matter (1)

D. M. Krol, K. B. Lyons, S. A. Brawer, and C. R. Kurkjian, “High-temperature light scattering and the glass transition in vitreous silica,” Phys. Rev. B Condens. Matter33(6), 4196–4202 (1986).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

White light microscopy images of lines written in fused silica before annealing. Lines written in samples A11, A16 and A21 exhibited guiding of 660 nm light as illustrated by the near-field output profile shown in the inset. The labels refer to the fs laser writing conditions. The letter refers to the fs-laser used and the number to the laser pulse fluence (see also Table 1).

Fig. 2
Fig. 2

White light microscopy images of lines written in fused silica before annealing (left column), and after annealing for 10 hours at 600, 800 and 900 °C (column 2, 3 and 4). Line labels are explained in the text. The inset on the right of each image shows the cross-sectional view for white light microscopy. The inset on the left in the top row shows the near-field profile for 660 nm laser light.

Fig. 3
Fig. 3

Fluorescence spectra of modified (solid curves) and unmodified (dashed curves) fused silica; the glass was modified with a pulse fluence of a) 21 J/cm2 and b) 32 J/cm2.

Fig. 4
Fig. 4

Area under 650 nm NBOHC FL peak for fs-laser written lines annealed for 10 hours as a function of annealing temperature. Data are shown for lines written with different pulse fluences: ■ – 800 J/cm2; ▲– 200 J/cm2; ▼– 40 J/cm2; + – 28 J/cm2 and ●– unmodified sample.

Fig. 5
Fig. 5

Area under 650 nm NBOHC peak for lines written with a fs laser pulse fluence of a) 40 J/cm2 and b) 800 J/cm2 as a function of annealing time at different annealing temperatures: ■ – 100 °C; ▲– 300 °C; ◆– 600 °C.

Fig. 6
Fig. 6

Raman spectra of fs-laser written lines in fused silica; line A-32 (large-dashed curve), B-40 (small-dashed curve) and the unmodified sample (solid curve).

Fig. 7
Fig. 7

605 cm−1/800 cm−1 Raman intensity ratio for fs-laser written lines. Raman intensity after annealing at different temperatures for 10 hours (top left). Raman intensity as a function of annealing time at 600 °C (top right), 800 °C (bottom left), and 900 °C (bottom right). Data are shown for different lines: ■ B–800; ▲ B–200; ◆ A–32; + B–28; ✕ A–21 and ● – unmodified sample.

Tables (1)

Tables Icon

Table 1 Fs-laser Writing Conditions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Si-O-Si  fs laser    Si-O  NBOHC Si

Metrics