Abstract

Significant photocurrent enhancement of 0.4 mA/cm2 has been achieved for industrial textured multicrystalline silicon solar cells, due to the light trapping provided by aluminium nanoparticle enhanced antireflection coating. Aluminium nanoparticles support surface plasmon resonances, which can effectively scatter the light into the solar cells. By blue shifting the detrimental Fano resonances away from the important silicon absorption spectrum, aluminium nanoparticles can provide a broadband light absorption enhancement without a reduction at the short wavelengths. Combining the discovery with 75 nm silicon nitride antireflection coating, which can significantly enhance the absorption at the peak solar spectrum, we have achieved the strong broadband light absorption enhancement.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Goetzberger, C. Hebling, and H. W. Schock, “Photovoltaic materials, history, status and outlook,” Mater, Sci. Eng. R40(1), 1–46 (2003).
    [CrossRef]
  2. M. A. Green, Solar Cells: Operating Principles, Technology and System Application (The University of New South Wales, 2010).
  3. P. Panek, M. Lipinski, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci.40(6), 1459–1463 (2005).
    [CrossRef]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  5. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  6. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
    [CrossRef]
  7. M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012).
    [CrossRef]
  8. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
    [CrossRef]
  9. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010).
    [CrossRef]
  10. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
    [CrossRef] [PubMed]
  11. Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
    [CrossRef]
  12. N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express2(2), 190–204 (2012).
    [CrossRef]
  13. X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012).
    [CrossRef] [PubMed]
  14. Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
    [CrossRef]
  15. N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012).
    [CrossRef]
  16. Z. J. Sun, X. L. Zuo, and Y. Yang, “Role of surface metal nanoparticles on the absorption in solar cells,” Opt. Lett.37(4), 641–643 (2012).
    [CrossRef] [PubMed]
  17. N. C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles,” J. Appl. Phys.110(4), 046101 (2011).
    [CrossRef]
  18. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
    [CrossRef]
  19. FDTD Solutions, Lumerical Solutions Inc., Vancouver, British Columbia, Canada (Accessed January 2013), http://www.lumerical.com/tcad-products/fdtd .
  20. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
    [CrossRef]
  21. C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92(5), 053110 (2008).
    [CrossRef]
  22. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
    [CrossRef] [PubMed]
  23. Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
    [CrossRef]
  24. P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
    [CrossRef] [PubMed]
  25. W. H. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
    [CrossRef]
  26. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
    [CrossRef] [PubMed]

2012 (7)

M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express2(2), 190–204 (2012).
[CrossRef]

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012).
[CrossRef]

Z. J. Sun, X. L. Zuo, and Y. Yang, “Role of surface metal nanoparticles on the absorption in solar cells,” Opt. Lett.37(4), 641–643 (2012).
[CrossRef] [PubMed]

W. H. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

2011 (3)

N. C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles,” J. Appl. Phys.110(4), 046101 (2011).
[CrossRef]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

2010 (4)

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010).
[CrossRef]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (4)

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92(5), 053110 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

2007 (3)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

2005 (1)

P. Panek, M. Lipinski, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci.40(6), 1459–1463 (2005).
[CrossRef]

2003 (1)

A. Goetzberger, C. Hebling, and H. W. Schock, “Photovoltaic materials, history, status and outlook,” Mater, Sci. Eng. R40(1), 1–46 (2003).
[CrossRef]

Arif, R. A.

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Beck, F. J.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

Cai, B. Y.

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Campbell, P.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Catchpole, K. R.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

Chen, X.

M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012).
[CrossRef]

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Das, N. C.

N. C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles,” J. Appl. Phys.110(4), 046101 (2011).
[CrossRef]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Dutkiewicz, J.

P. Panek, M. Lipinski, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci.40(6), 1459–1463 (2005).
[CrossRef]

Ee, Y.

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Ee, Y. K.

Fahim, N.

M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express2(2), 190–204 (2012).
[CrossRef]

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Gilchrist, J. F.

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Goetzberger, A.

A. Goetzberger, C. Hebling, and H. W. Schock, “Photovoltaic materials, history, status and outlook,” Mater, Sci. Eng. R40(1), 1–46 (2003).
[CrossRef]

Green, M. A.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

Gu, M.

M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express2(2), 190–204 (2012).
[CrossRef]

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012).
[CrossRef]

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

Hägglund, C.

C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92(5), 053110 (2008).
[CrossRef]

Halas, N. J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Hebling, C.

A. Goetzberger, C. Hebling, and H. W. Schock, “Photovoltaic materials, history, status and outlook,” Mater, Sci. Eng. R40(1), 1–46 (2003).
[CrossRef]

Jia, B. H.

M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012).
[CrossRef]

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012).
[CrossRef]

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express2(2), 190–204 (2012).
[CrossRef]

Kasemo, B.

C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92(5), 053110 (2008).
[CrossRef]

Koo, W. H.

W. H. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Kumnorkaew, P.

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Kunz, O.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Li, X.

W. H. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Li, X. P.

M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012).
[CrossRef]

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Lipinski, M.

P. Panek, M. Lipinski, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci.40(6), 1459–1463 (2005).
[CrossRef]

Liu, G.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Mokkapati, S.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010).
[CrossRef]

Nordlander, P.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Ouyang, Z.

M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012).
[CrossRef]

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express2(2), 190–204 (2012).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

Panek, P.

P. Panek, M. Lipinski, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci.40(6), 1459–1463 (2005).
[CrossRef]

Petersson, G.

C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92(5), 053110 (2008).
[CrossRef]

Pillai, S.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Qiao, Q.

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Saha, J. K.

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Schock, H. W.

A. Goetzberger, C. Hebling, and H. W. Schock, “Photovoltaic materials, history, status and outlook,” Mater, Sci. Eng. R40(1), 1–46 (2003).
[CrossRef]

Shi, Z. R.

M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012).
[CrossRef]

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express2(2), 190–204 (2012).
[CrossRef]

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

So, F.

W. H. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Sobhani, H.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Stokes, N.

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012).
[CrossRef]

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012).
[CrossRef]

Sun, Z. J.

Tansu, N.

W. H. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

Tong, H.

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

Varlamov, S.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

Ventura, M. J.

M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012).
[CrossRef]

Wang, Y. Q.

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Yang, Y.

Youn, W.

W. H. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Zach, M.

C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92(5), 053110 (2008).
[CrossRef]

Zhang, J.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

Zhang, Y. N.

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express2(2), 190–204 (2012).
[CrossRef]

Zhao, H.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

Zhu, P.

W. H. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Zuo, X. L.

Adv. Funct. Mater. (1)

W. H. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012).
[CrossRef]

Appl. Phys. Lett. (7)

Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007).
[CrossRef]

C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92(5), 053110 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012).
[CrossRef]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

J. Appl. Phys. (3)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

N. C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles,” J. Appl. Phys.110(4), 046101 (2011).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

J. Mater. Sci. (1)

P. Panek, M. Lipinski, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci.40(6), 1459–1463 (2005).
[CrossRef]

Langmuir (1)

P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008).
[CrossRef] [PubMed]

Mater, Sci. Eng. R (1)

A. Goetzberger, C. Hebling, and H. W. Schock, “Photovoltaic materials, history, status and outlook,” Mater, Sci. Eng. R40(1), 1–46 (2003).
[CrossRef]

Nano Lett. (2)

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Nanophotonics (1)

M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012).
[CrossRef]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Prog. Photovolt. Res. Appl. (1)

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010).
[CrossRef]

Other (2)

M. A. Green, Solar Cells: Operating Principles, Technology and System Application (The University of New South Wales, 2010).

FDTD Solutions, Lumerical Solutions Inc., Vancouver, British Columbia, Canada (Accessed January 2013), http://www.lumerical.com/tcad-products/fdtd .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics of the Al nanoparticles on the top surface of different solar cell structures: (a) bare solar cells, (b) planar solar cells with a 75 nm SiNx ARC, (c) standard solar cells with both the textured surface and the SiNx ARC and the corresponding SEM image (d) of the Al nanoparticles on the surface of a planar silicon wafer (scale bar: 1 μm). The inset SEM shows the Al nanoparticle in large magnification with a scale bar of 100 nm. Red: Al nanoparticles; dark blue: SiNx ARC; light blue: Si wafer; grey: Al rear contact.

Fig. 2
Fig. 2

(a) Experimentally measured light reflectance and external quantum efficiency (EQE) of the bare mc-Si solar cells with and without the 100 nm Al nanoparticles (NPs) on the top surface. (b) FDTD simulation results of the light reflectance and transmittance of the bare Si with and without the 100 nm Al NPs on the top surface of the Si.

Fig. 3
Fig. 3

Enhancement of the experimental external quantum efficiency (EQE) for the bare mc-Si solar cells with three light trapping schemes on the top surface: (i) Al nanoparticles alone (ii) SiNx antireflection coating (ARC) alone and (iii) Al nanoparticle + SiNx ARC hybrid structure.

Fig. 4
Fig. 4

Experimental reflectance and external quantum efficiency (EQE) of the standard textured mc-Si solar cells with and without the Al nanoparticles integrated on the top surface of the SiNx ARC.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J sc =q λ hc EQE(λ) I AM1.5 dλ ,

Metrics