Abstract

The band edge and higher-lying interband transitions of CuAl(Se0.5S0.5)2 compound have been characterized using thermoreflectance (TR) measurements at room temperature. Single crystals of CuAl(Se0.5S0.5)2 were grown by chemical vapor transport method using ICl3 as the transport agent. The TR measurement results showed three interband transitions denoted as E1, E2, and E3 detected near the band edge of CuAl(Se0.5S0.5)2 chalcopyrite compound. The lowest-energy transition is the main band-edge transition positioned at E1 = 2.96 eV, the second is E2 = 3.05 eV, and the other higher-energy transition is E3 = 3.202 eV, respectively. Polarized-thermoreflectance (PTR) measurements showed that the E1 and E2 transition features are observed only with the linearly polarized light along the ε||<111¯> (needle axis) direction while the E3 transition largely appears with the electrical field of ε perpendicular (⊥) to the needle axis. The E1 and E2 transitions may originate from the valence-band top while the E3 transition is closely related to the valence-band splitting in the crystal. To characterize the anisotropic properties of electronic structure of CuAl(Se0.5S0.5)2, PTR measurements were carried out over a wide energy range of 2.5-6 eV. The interband transitions belonging to E|| or E polarization are respectively identified. On the basis of experimental analysis, the electronic structure near the fundamental band edge of CuAl(Se0.5S0.5)2 has thus been determined.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. Res. Appl.11(7), 437–443 (2003).
    [CrossRef]
  2. M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics,” J. Am. Chem. Soc.130(49), 16770–16777 (2008).
    [CrossRef] [PubMed]
  3. M. L. Albor Aguilera, J. R. Aguilar Hernández, M. A. González Trujillo, and M. Ortega Lopez, “Photoluminescence studies of p-type chalcopyrite AgInS2:Sn,” Sol. Energy Mater. Sol. Cells91(15-16), 1483–1487 (2007).
    [CrossRef]
  4. S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, and Y. Cui, “Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods,” J. Am. Chem. Soc.131(13), 4962–4966 (2009).
    [CrossRef] [PubMed]
  5. C. H. Ho, “Thermoreflectance characterization of the band-edge excitonic transitions in CuAlS2 ultraviolet solar-cell material,” Appl. Phys. Lett.96(6), 061902 (2010).
    [CrossRef]
  6. I. Tsuji, H. Kato, and A. Kudo, “Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst,” Angew. Chem. Int. Ed. Engl.44(23), 3565–3568 (2005).
    [CrossRef] [PubMed]
  7. I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, “Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures,” J. Am. Chem. Soc.126(41), 13406–13413 (2004).
    [CrossRef] [PubMed]
  8. C. H. Ho and C. C. Pan, “Surface sensing behavior and band edge properties of AgAlS2: Experimental observations in optical, chemical, and thermoreflectance spectroscopy,” AIP Adv.2(2), 022123 (2012).
    [CrossRef]
  9. F. C. Akkari, R. Brini, M. Kanzari, and B. Rezig, “High absorbing CuInS2 thin films growing by oblique angle incidence deposition in presence of thermal gradient,” J. Mater. Sci.40(21), 5751–5755 (2005).
    [CrossRef]
  10. B. Mao, C.-H. Chuang, J. Wang, and C. Burda, “Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States,” J. Phys. Chem. C115(18), 8945–8954 (2011).
    [CrossRef]
  11. Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure,” J. Phys. Chem. C115(5), 1786–1792 (2011).
    [CrossRef]
  12. S. Chichibu, S. Matsumoto, S. Shirakata, S. Isomura, and H. Higuchi, “Excitonic photoluminescence in a CuAlSe2 chalcopyrite semiconductor grown by low‐pressure metalorganic chemical‐vapor deposition,” J. Appl. Phys.74(10), 6446–6447 (1993).
    [CrossRef]
  13. Y. Shim, K. Hasegawa, K. Wakita, and N. Mamedov, “CuAl1-xInxSe2 solid solutions: Dielectric function and inter-band optical transitions,” Thin Solid Films517(4), 1442–1444 (2008).
    [CrossRef]
  14. M. I. Alonso, J. Pascual, M. Garriga, Y. Kikuno, N. Yamamoto, and K. Wakita, “Optical Properties of CuAlSe2,” J. Appl. Phys.88(4), 1923–1928 (2000).
    [CrossRef]
  15. M. Bettini, “Reflection measurements with polarization modulation: A method to investigate bandgaps in birefringent materials like I-III-VI2 chalcopyrite compounds,” Solid State Commun.13(5), 599–602 (1973).
    [CrossRef]
  16. N. N. Syrbu, B. V. Korzun, A. A. Fadzeyeva, R. R. Mianzelen, V. V. Ursaki, and I. Galbic, “Exciton Spectra and Energy Band Structure of CuAlS2 Crystals,” Physica B405(16), 3243–3247 (2010).
    [CrossRef]
  17. C. H. Ho, “Single Crystal Growth and Characterization of Copper Aluminum Indium Disulfide Chalcopyrites,” J. Cryst. Growth317(1), 52–59 (2011).
    [CrossRef]
  18. C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical Thermoreflectance Design for Optical Characterization of Layer Semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004).
    [CrossRef]
  19. D. E. Aspnes, in Handbook on Semiconductors, M. Balkanski, ed. (North Holland, Amsterdam, 1980).
  20. F. H. Pollak and H. Shen, “Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices,” Mater. Sci. Eng.R10, 275–374 (1993).
  21. J. E. Jaffe and A. Zunger, “Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2,” Phys. Rev. B28(10), 5822–5847 (1983).
    [CrossRef]
  22. A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil, “Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te),” J. Alloy. Comp.487(1-2), 206–213 (2009).
    [CrossRef]
  23. J. L. Shay, E. Buehler, and J. H. Wernick, “Electroreflectance Study of the Energy-Band Structure of CdSnP2,” Phys. Rev. B2(10), 4104–4109 (1970).
    [CrossRef]
  24. J. L. Shay, E. Buehler, and J. H. Wernick, “Optical Properties and Electronic Structure of ZnSiAs2,” Phys. Rev. B3(6), 2004–2011 (1971).
    [CrossRef]
  25. C. H. Ho, “Temperature Dependent Crystal-Field Splitting and Band-Edge Characteristic in Cu(AlxIn1-x)S2 (0≤x≤1) Series Solar Energy Materials,” J. Electrochem. Soc.158(5), H554–H560 (2011).
    [CrossRef]
  26. S. Shirakata, S. Chichibu, and S. Isomura, “Crystal Growth and Optical Properties of CuAl(SxSe1-x)2 Alloys,” Jpn. J. Appl. Phys.36(Part 1, No. 11), 6645–6649 (1997).
    [CrossRef]
  27. B. Tell, J. L. Shay, H. M. Kasper, and R. L. Barns, “Valence-Band Structure of CuGaxIn1-xS2 Alloys,” Phys. Rev. B10(4), 1748–1750 (1974).
    [CrossRef]

2012 (1)

C. H. Ho and C. C. Pan, “Surface sensing behavior and band edge properties of AgAlS2: Experimental observations in optical, chemical, and thermoreflectance spectroscopy,” AIP Adv.2(2), 022123 (2012).
[CrossRef]

2011 (4)

B. Mao, C.-H. Chuang, J. Wang, and C. Burda, “Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States,” J. Phys. Chem. C115(18), 8945–8954 (2011).
[CrossRef]

Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure,” J. Phys. Chem. C115(5), 1786–1792 (2011).
[CrossRef]

C. H. Ho, “Single Crystal Growth and Characterization of Copper Aluminum Indium Disulfide Chalcopyrites,” J. Cryst. Growth317(1), 52–59 (2011).
[CrossRef]

C. H. Ho, “Temperature Dependent Crystal-Field Splitting and Band-Edge Characteristic in Cu(AlxIn1-x)S2 (0≤x≤1) Series Solar Energy Materials,” J. Electrochem. Soc.158(5), H554–H560 (2011).
[CrossRef]

2010 (2)

N. N. Syrbu, B. V. Korzun, A. A. Fadzeyeva, R. R. Mianzelen, V. V. Ursaki, and I. Galbic, “Exciton Spectra and Energy Band Structure of CuAlS2 Crystals,” Physica B405(16), 3243–3247 (2010).
[CrossRef]

C. H. Ho, “Thermoreflectance characterization of the band-edge excitonic transitions in CuAlS2 ultraviolet solar-cell material,” Appl. Phys. Lett.96(6), 061902 (2010).
[CrossRef]

2009 (2)

S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, and Y. Cui, “Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods,” J. Am. Chem. Soc.131(13), 4962–4966 (2009).
[CrossRef] [PubMed]

A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil, “Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te),” J. Alloy. Comp.487(1-2), 206–213 (2009).
[CrossRef]

2008 (2)

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics,” J. Am. Chem. Soc.130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Y. Shim, K. Hasegawa, K. Wakita, and N. Mamedov, “CuAl1-xInxSe2 solid solutions: Dielectric function and inter-band optical transitions,” Thin Solid Films517(4), 1442–1444 (2008).
[CrossRef]

2007 (1)

M. L. Albor Aguilera, J. R. Aguilar Hernández, M. A. González Trujillo, and M. Ortega Lopez, “Photoluminescence studies of p-type chalcopyrite AgInS2:Sn,” Sol. Energy Mater. Sol. Cells91(15-16), 1483–1487 (2007).
[CrossRef]

2005 (2)

I. Tsuji, H. Kato, and A. Kudo, “Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst,” Angew. Chem. Int. Ed. Engl.44(23), 3565–3568 (2005).
[CrossRef] [PubMed]

F. C. Akkari, R. Brini, M. Kanzari, and B. Rezig, “High absorbing CuInS2 thin films growing by oblique angle incidence deposition in presence of thermal gradient,” J. Mater. Sci.40(21), 5751–5755 (2005).
[CrossRef]

2004 (2)

I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, “Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures,” J. Am. Chem. Soc.126(41), 13406–13413 (2004).
[CrossRef] [PubMed]

C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical Thermoreflectance Design for Optical Characterization of Layer Semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004).
[CrossRef]

2003 (1)

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. Res. Appl.11(7), 437–443 (2003).
[CrossRef]

2000 (1)

M. I. Alonso, J. Pascual, M. Garriga, Y. Kikuno, N. Yamamoto, and K. Wakita, “Optical Properties of CuAlSe2,” J. Appl. Phys.88(4), 1923–1928 (2000).
[CrossRef]

1997 (1)

S. Shirakata, S. Chichibu, and S. Isomura, “Crystal Growth and Optical Properties of CuAl(SxSe1-x)2 Alloys,” Jpn. J. Appl. Phys.36(Part 1, No. 11), 6645–6649 (1997).
[CrossRef]

1993 (2)

S. Chichibu, S. Matsumoto, S. Shirakata, S. Isomura, and H. Higuchi, “Excitonic photoluminescence in a CuAlSe2 chalcopyrite semiconductor grown by low‐pressure metalorganic chemical‐vapor deposition,” J. Appl. Phys.74(10), 6446–6447 (1993).
[CrossRef]

F. H. Pollak and H. Shen, “Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices,” Mater. Sci. Eng.R10, 275–374 (1993).

1983 (1)

J. E. Jaffe and A. Zunger, “Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2,” Phys. Rev. B28(10), 5822–5847 (1983).
[CrossRef]

1974 (1)

B. Tell, J. L. Shay, H. M. Kasper, and R. L. Barns, “Valence-Band Structure of CuGaxIn1-xS2 Alloys,” Phys. Rev. B10(4), 1748–1750 (1974).
[CrossRef]

1973 (1)

M. Bettini, “Reflection measurements with polarization modulation: A method to investigate bandgaps in birefringent materials like I-III-VI2 chalcopyrite compounds,” Solid State Commun.13(5), 599–602 (1973).
[CrossRef]

1971 (1)

J. L. Shay, E. Buehler, and J. H. Wernick, “Optical Properties and Electronic Structure of ZnSiAs2,” Phys. Rev. B3(6), 2004–2011 (1971).
[CrossRef]

1970 (1)

J. L. Shay, E. Buehler, and J. H. Wernick, “Electroreflectance Study of the Energy-Band Structure of CdSnP2,” Phys. Rev. B2(10), 4104–4109 (1970).
[CrossRef]

Abdellaoui, A.

A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil, “Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te),” J. Alloy. Comp.487(1-2), 206–213 (2009).
[CrossRef]

Abidri, B.

A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil, “Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te),” J. Alloy. Comp.487(1-2), 206–213 (2009).
[CrossRef]

Aguilar Hernández, J. R.

M. L. Albor Aguilera, J. R. Aguilar Hernández, M. A. González Trujillo, and M. Ortega Lopez, “Photoluminescence studies of p-type chalcopyrite AgInS2:Sn,” Sol. Energy Mater. Sol. Cells91(15-16), 1483–1487 (2007).
[CrossRef]

Akhavan, V.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics,” J. Am. Chem. Soc.130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Akkari, F. C.

F. C. Akkari, R. Brini, M. Kanzari, and B. Rezig, “High absorbing CuInS2 thin films growing by oblique angle incidence deposition in presence of thermal gradient,” J. Mater. Sci.40(21), 5751–5755 (2005).
[CrossRef]

Albor Aguilera, M. L.

M. L. Albor Aguilera, J. R. Aguilar Hernández, M. A. González Trujillo, and M. Ortega Lopez, “Photoluminescence studies of p-type chalcopyrite AgInS2:Sn,” Sol. Energy Mater. Sol. Cells91(15-16), 1483–1487 (2007).
[CrossRef]

Aloni, S.

S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, and Y. Cui, “Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods,” J. Am. Chem. Soc.131(13), 4962–4966 (2009).
[CrossRef] [PubMed]

Alonso, M. I.

M. I. Alonso, J. Pascual, M. Garriga, Y. Kikuno, N. Yamamoto, and K. Wakita, “Optical Properties of CuAlSe2,” J. Appl. Phys.88(4), 1923–1928 (2000).
[CrossRef]

Barbara, P. F.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics,” J. Am. Chem. Soc.130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Barns, R. L.

B. Tell, J. L. Shay, H. M. Kasper, and R. L. Barns, “Valence-Band Structure of CuGaxIn1-xS2 Alloys,” Phys. Rev. B10(4), 1748–1750 (1974).
[CrossRef]

Benalia, S.

A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil, “Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te),” J. Alloy. Comp.487(1-2), 206–213 (2009).
[CrossRef]

Bettini, M.

M. Bettini, “Reflection measurements with polarization modulation: A method to investigate bandgaps in birefringent materials like I-III-VI2 chalcopyrite compounds,” Solid State Commun.13(5), 599–602 (1973).
[CrossRef]

Bouslama, M.

A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil, “Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te),” J. Alloy. Comp.487(1-2), 206–213 (2009).
[CrossRef]

Brini, R.

F. C. Akkari, R. Brini, M. Kanzari, and B. Rezig, “High absorbing CuInS2 thin films growing by oblique angle incidence deposition in presence of thermal gradient,” J. Mater. Sci.40(21), 5751–5755 (2005).
[CrossRef]

Buehler, E.

J. L. Shay, E. Buehler, and J. H. Wernick, “Optical Properties and Electronic Structure of ZnSiAs2,” Phys. Rev. B3(6), 2004–2011 (1971).
[CrossRef]

J. L. Shay, E. Buehler, and J. H. Wernick, “Electroreflectance Study of the Energy-Band Structure of CdSnP2,” Phys. Rev. B2(10), 4104–4109 (1970).
[CrossRef]

Burda, C.

B. Mao, C.-H. Chuang, J. Wang, and C. Burda, “Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States,” J. Phys. Chem. C115(18), 8945–8954 (2011).
[CrossRef]

Cavana, B.

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. Res. Appl.11(7), 437–443 (2003).
[CrossRef]

Cheng, Z. H.

C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical Thermoreflectance Design for Optical Characterization of Layer Semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004).
[CrossRef]

Chichibu, S.

S. Shirakata, S. Chichibu, and S. Isomura, “Crystal Growth and Optical Properties of CuAl(SxSe1-x)2 Alloys,” Jpn. J. Appl. Phys.36(Part 1, No. 11), 6645–6649 (1997).
[CrossRef]

S. Chichibu, S. Matsumoto, S. Shirakata, S. Isomura, and H. Higuchi, “Excitonic photoluminescence in a CuAlSe2 chalcopyrite semiconductor grown by low‐pressure metalorganic chemical‐vapor deposition,” J. Appl. Phys.74(10), 6446–6447 (1993).
[CrossRef]

Chuang, C.-H.

B. Mao, C.-H. Chuang, J. Wang, and C. Burda, “Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States,” J. Phys. Chem. C115(18), 8945–8954 (2011).
[CrossRef]

Connor, S. T.

S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, and Y. Cui, “Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods,” J. Am. Chem. Soc.131(13), 4962–4966 (2009).
[CrossRef] [PubMed]

Cui, Y.

S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, and Y. Cui, “Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods,” J. Am. Chem. Soc.131(13), 4962–4966 (2009).
[CrossRef] [PubMed]

Dodabalapur, A.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics,” J. Am. Chem. Soc.130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Dunn, L.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics,” J. Am. Chem. Soc.130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Fadzeyeva, A. A.

N. N. Syrbu, B. V. Korzun, A. A. Fadzeyeva, R. R. Mianzelen, V. V. Ursaki, and I. Galbic, “Exciton Spectra and Energy Band Structure of CuAlS2 Crystals,” Physica B405(16), 3243–3247 (2010).
[CrossRef]

Galbic, I.

N. N. Syrbu, B. V. Korzun, A. A. Fadzeyeva, R. R. Mianzelen, V. V. Ursaki, and I. Galbic, “Exciton Spectra and Energy Band Structure of CuAlS2 Crystals,” Physica B405(16), 3243–3247 (2010).
[CrossRef]

Garriga, M.

M. I. Alonso, J. Pascual, M. Garriga, Y. Kikuno, N. Yamamoto, and K. Wakita, “Optical Properties of CuAlSe2,” J. Appl. Phys.88(4), 1923–1928 (2000).
[CrossRef]

Ghaffour, M.

A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil, “Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te),” J. Alloy. Comp.487(1-2), 206–213 (2009).
[CrossRef]

González Trujillo, M. A.

M. L. Albor Aguilera, J. R. Aguilar Hernández, M. A. González Trujillo, and M. Ortega Lopez, “Photoluminescence studies of p-type chalcopyrite AgInS2:Sn,” Sol. Energy Mater. Sol. Cells91(15-16), 1483–1487 (2007).
[CrossRef]

Goodfellow, B.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics,” J. Am. Chem. Soc.130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Hamanaka, Y.

Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure,” J. Phys. Chem. C115(5), 1786–1792 (2011).
[CrossRef]

Hasegawa, K.

Y. Shim, K. Hasegawa, K. Wakita, and N. Mamedov, “CuAl1-xInxSe2 solid solutions: Dielectric function and inter-band optical transitions,” Thin Solid Films517(4), 1442–1444 (2008).
[CrossRef]

Higuchi, H.

S. Chichibu, S. Matsumoto, S. Shirakata, S. Isomura, and H. Higuchi, “Excitonic photoluminescence in a CuAlSe2 chalcopyrite semiconductor grown by low‐pressure metalorganic chemical‐vapor deposition,” J. Appl. Phys.74(10), 6446–6447 (1993).
[CrossRef]

Ho, C. H.

C. H. Ho and C. C. Pan, “Surface sensing behavior and band edge properties of AgAlS2: Experimental observations in optical, chemical, and thermoreflectance spectroscopy,” AIP Adv.2(2), 022123 (2012).
[CrossRef]

C. H. Ho, “Single Crystal Growth and Characterization of Copper Aluminum Indium Disulfide Chalcopyrites,” J. Cryst. Growth317(1), 52–59 (2011).
[CrossRef]

C. H. Ho, “Temperature Dependent Crystal-Field Splitting and Band-Edge Characteristic in Cu(AlxIn1-x)S2 (0≤x≤1) Series Solar Energy Materials,” J. Electrochem. Soc.158(5), H554–H560 (2011).
[CrossRef]

C. H. Ho, “Thermoreflectance characterization of the band-edge excitonic transitions in CuAlS2 ultraviolet solar-cell material,” Appl. Phys. Lett.96(6), 061902 (2010).
[CrossRef]

C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical Thermoreflectance Design for Optical Characterization of Layer Semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004).
[CrossRef]

Hsu, C. M.

S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, and Y. Cui, “Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods,” J. Am. Chem. Soc.131(13), 4962–4966 (2009).
[CrossRef] [PubMed]

Isomura, S.

S. Shirakata, S. Chichibu, and S. Isomura, “Crystal Growth and Optical Properties of CuAl(SxSe1-x)2 Alloys,” Jpn. J. Appl. Phys.36(Part 1, No. 11), 6645–6649 (1997).
[CrossRef]

S. Chichibu, S. Matsumoto, S. Shirakata, S. Isomura, and H. Higuchi, “Excitonic photoluminescence in a CuAlSe2 chalcopyrite semiconductor grown by low‐pressure metalorganic chemical‐vapor deposition,” J. Appl. Phys.74(10), 6446–6447 (1993).
[CrossRef]

Jaffe, J. E.

J. E. Jaffe and A. Zunger, “Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2,” Phys. Rev. B28(10), 5822–5847 (1983).
[CrossRef]

Kanzari, M.

F. C. Akkari, R. Brini, M. Kanzari, and B. Rezig, “High absorbing CuInS2 thin films growing by oblique angle incidence deposition in presence of thermal gradient,” J. Mater. Sci.40(21), 5751–5755 (2005).
[CrossRef]

Kasper, H. M.

B. Tell, J. L. Shay, H. M. Kasper, and R. L. Barns, “Valence-Band Structure of CuGaxIn1-xS2 Alloys,” Phys. Rev. B10(4), 1748–1750 (1974).
[CrossRef]

Kato, H.

I. Tsuji, H. Kato, and A. Kudo, “Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst,” Angew. Chem. Int. Ed. Engl.44(23), 3565–3568 (2005).
[CrossRef] [PubMed]

I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, “Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures,” J. Am. Chem. Soc.126(41), 13406–13413 (2004).
[CrossRef] [PubMed]

Kikuno, Y.

M. I. Alonso, J. Pascual, M. Garriga, Y. Kikuno, N. Yamamoto, and K. Wakita, “Optical Properties of CuAlSe2,” J. Appl. Phys.88(4), 1923–1928 (2000).
[CrossRef]

Kobayashi, H.

I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, “Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures,” J. Am. Chem. Soc.126(41), 13406–13413 (2004).
[CrossRef] [PubMed]

Korgel, B. A.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics,” J. Am. Chem. Soc.130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Korzun, B. V.

N. N. Syrbu, B. V. Korzun, A. A. Fadzeyeva, R. R. Mianzelen, V. V. Ursaki, and I. Galbic, “Exciton Spectra and Energy Band Structure of CuAlS2 Crystals,” Physica B405(16), 3243–3247 (2010).
[CrossRef]

Kudo, A.

I. Tsuji, H. Kato, and A. Kudo, “Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst,” Angew. Chem. Int. Ed. Engl.44(23), 3565–3568 (2005).
[CrossRef] [PubMed]

I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, “Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures,” J. Am. Chem. Soc.126(41), 13406–13413 (2004).
[CrossRef] [PubMed]

Kuzuya, T.

Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure,” J. Phys. Chem. C115(5), 1786–1792 (2011).
[CrossRef]

Lee, H. W.

C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical Thermoreflectance Design for Optical Characterization of Layer Semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004).
[CrossRef]

Lincot, D.

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. Res. Appl.11(7), 437–443 (2003).
[CrossRef]

Mamedov, N.

Y. Shim, K. Hasegawa, K. Wakita, and N. Mamedov, “CuAl1-xInxSe2 solid solutions: Dielectric function and inter-band optical transitions,” Thin Solid Films517(4), 1442–1444 (2008).
[CrossRef]

Mao, B.

B. Mao, C.-H. Chuang, J. Wang, and C. Burda, “Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States,” J. Phys. Chem. C115(18), 8945–8954 (2011).
[CrossRef]

Matsumoto, S.

S. Chichibu, S. Matsumoto, S. Shirakata, S. Isomura, and H. Higuchi, “Excitonic photoluminescence in a CuAlSe2 chalcopyrite semiconductor grown by low‐pressure metalorganic chemical‐vapor deposition,” J. Appl. Phys.74(10), 6446–6447 (1993).
[CrossRef]

Mianzelen, R. R.

N. N. Syrbu, B. V. Korzun, A. A. Fadzeyeva, R. R. Mianzelen, V. V. Ursaki, and I. Galbic, “Exciton Spectra and Energy Band Structure of CuAlS2 Crystals,” Physica B405(16), 3243–3247 (2010).
[CrossRef]

Monteil, Y.

A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil, “Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te),” J. Alloy. Comp.487(1-2), 206–213 (2009).
[CrossRef]

Naghavi, N.

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. Res. Appl.11(7), 437–443 (2003).
[CrossRef]

Ogawa, T.

Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure,” J. Phys. Chem. C115(5), 1786–1792 (2011).
[CrossRef]

Ortega Lopez, M.

M. L. Albor Aguilera, J. R. Aguilar Hernández, M. A. González Trujillo, and M. Ortega Lopez, “Photoluminescence studies of p-type chalcopyrite AgInS2:Sn,” Sol. Energy Mater. Sol. Cells91(15-16), 1483–1487 (2007).
[CrossRef]

Ouerdane, A.

A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil, “Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te),” J. Alloy. Comp.487(1-2), 206–213 (2009).
[CrossRef]

Pan, C. C.

C. H. Ho and C. C. Pan, “Surface sensing behavior and band edge properties of AgAlS2: Experimental observations in optical, chemical, and thermoreflectance spectroscopy,” AIP Adv.2(2), 022123 (2012).
[CrossRef]

Panthani, M. G.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics,” J. Am. Chem. Soc.130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Pascual, J.

M. I. Alonso, J. Pascual, M. Garriga, Y. Kikuno, N. Yamamoto, and K. Wakita, “Optical Properties of CuAlSe2,” J. Appl. Phys.88(4), 1923–1928 (2000).
[CrossRef]

Pollak, F. H.

F. H. Pollak and H. Shen, “Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices,” Mater. Sci. Eng.R10, 275–374 (1993).

Powalla, M.

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. Res. Appl.11(7), 437–443 (2003).
[CrossRef]

Rezig, B.

F. C. Akkari, R. Brini, M. Kanzari, and B. Rezig, “High absorbing CuInS2 thin films growing by oblique angle incidence deposition in presence of thermal gradient,” J. Mater. Sci.40(21), 5751–5755 (2005).
[CrossRef]

Schmidtke, J. P.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics,” J. Am. Chem. Soc.130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Shay, J. L.

B. Tell, J. L. Shay, H. M. Kasper, and R. L. Barns, “Valence-Band Structure of CuGaxIn1-xS2 Alloys,” Phys. Rev. B10(4), 1748–1750 (1974).
[CrossRef]

J. L. Shay, E. Buehler, and J. H. Wernick, “Optical Properties and Electronic Structure of ZnSiAs2,” Phys. Rev. B3(6), 2004–2011 (1971).
[CrossRef]

J. L. Shay, E. Buehler, and J. H. Wernick, “Electroreflectance Study of the Energy-Band Structure of CdSnP2,” Phys. Rev. B2(10), 4104–4109 (1970).
[CrossRef]

Shen, H.

F. H. Pollak and H. Shen, “Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices,” Mater. Sci. Eng.R10, 275–374 (1993).

Shim, Y.

Y. Shim, K. Hasegawa, K. Wakita, and N. Mamedov, “CuAl1-xInxSe2 solid solutions: Dielectric function and inter-band optical transitions,” Thin Solid Films517(4), 1442–1444 (2008).
[CrossRef]

Shirakata, S.

S. Shirakata, S. Chichibu, and S. Isomura, “Crystal Growth and Optical Properties of CuAl(SxSe1-x)2 Alloys,” Jpn. J. Appl. Phys.36(Part 1, No. 11), 6645–6649 (1997).
[CrossRef]

S. Chichibu, S. Matsumoto, S. Shirakata, S. Isomura, and H. Higuchi, “Excitonic photoluminescence in a CuAlSe2 chalcopyrite semiconductor grown by low‐pressure metalorganic chemical‐vapor deposition,” J. Appl. Phys.74(10), 6446–6447 (1993).
[CrossRef]

Spiering, S.

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. Res. Appl.11(7), 437–443 (2003).
[CrossRef]

Syrbu, N. N.

N. N. Syrbu, B. V. Korzun, A. A. Fadzeyeva, R. R. Mianzelen, V. V. Ursaki, and I. Galbic, “Exciton Spectra and Energy Band Structure of CuAlS2 Crystals,” Physica B405(16), 3243–3247 (2010).
[CrossRef]

Tell, B.

B. Tell, J. L. Shay, H. M. Kasper, and R. L. Barns, “Valence-Band Structure of CuGaxIn1-xS2 Alloys,” Phys. Rev. B10(4), 1748–1750 (1974).
[CrossRef]

Tsuji, I.

I. Tsuji, H. Kato, and A. Kudo, “Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst,” Angew. Chem. Int. Ed. Engl.44(23), 3565–3568 (2005).
[CrossRef] [PubMed]

I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, “Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures,” J. Am. Chem. Soc.126(41), 13406–13413 (2004).
[CrossRef] [PubMed]

Tsuzuki, M.

Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure,” J. Phys. Chem. C115(5), 1786–1792 (2011).
[CrossRef]

Ursaki, V. V.

N. N. Syrbu, B. V. Korzun, A. A. Fadzeyeva, R. R. Mianzelen, V. V. Ursaki, and I. Galbic, “Exciton Spectra and Energy Band Structure of CuAlS2 Crystals,” Physica B405(16), 3243–3247 (2010).
[CrossRef]

Wakita, K.

Y. Shim, K. Hasegawa, K. Wakita, and N. Mamedov, “CuAl1-xInxSe2 solid solutions: Dielectric function and inter-band optical transitions,” Thin Solid Films517(4), 1442–1444 (2008).
[CrossRef]

M. I. Alonso, J. Pascual, M. Garriga, Y. Kikuno, N. Yamamoto, and K. Wakita, “Optical Properties of CuAlSe2,” J. Appl. Phys.88(4), 1923–1928 (2000).
[CrossRef]

Wang, J.

B. Mao, C.-H. Chuang, J. Wang, and C. Burda, “Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States,” J. Phys. Chem. C115(18), 8945–8954 (2011).
[CrossRef]

Weil, B. D.

S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, and Y. Cui, “Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods,” J. Am. Chem. Soc.131(13), 4962–4966 (2009).
[CrossRef] [PubMed]

Wernick, J. H.

J. L. Shay, E. Buehler, and J. H. Wernick, “Optical Properties and Electronic Structure of ZnSiAs2,” Phys. Rev. B3(6), 2004–2011 (1971).
[CrossRef]

J. L. Shay, E. Buehler, and J. H. Wernick, “Electroreflectance Study of the Energy-Band Structure of CdSnP2,” Phys. Rev. B2(10), 4104–4109 (1970).
[CrossRef]

Yamamoto, N.

M. I. Alonso, J. Pascual, M. Garriga, Y. Kikuno, N. Yamamoto, and K. Wakita, “Optical Properties of CuAlSe2,” J. Appl. Phys.88(4), 1923–1928 (2000).
[CrossRef]

Zunger, A.

J. E. Jaffe and A. Zunger, “Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2,” Phys. Rev. B28(10), 5822–5847 (1983).
[CrossRef]

AIP Adv. (1)

C. H. Ho and C. C. Pan, “Surface sensing behavior and band edge properties of AgAlS2: Experimental observations in optical, chemical, and thermoreflectance spectroscopy,” AIP Adv.2(2), 022123 (2012).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

I. Tsuji, H. Kato, and A. Kudo, “Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst,” Angew. Chem. Int. Ed. Engl.44(23), 3565–3568 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C. H. Ho, “Thermoreflectance characterization of the band-edge excitonic transitions in CuAlS2 ultraviolet solar-cell material,” Appl. Phys. Lett.96(6), 061902 (2010).
[CrossRef]

J. Alloy. Comp. (1)

A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil, “Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te),” J. Alloy. Comp.487(1-2), 206–213 (2009).
[CrossRef]

J. Am. Chem. Soc. (3)

I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, “Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures,” J. Am. Chem. Soc.126(41), 13406–13413 (2004).
[CrossRef] [PubMed]

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics,” J. Am. Chem. Soc.130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, and Y. Cui, “Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods,” J. Am. Chem. Soc.131(13), 4962–4966 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

S. Chichibu, S. Matsumoto, S. Shirakata, S. Isomura, and H. Higuchi, “Excitonic photoluminescence in a CuAlSe2 chalcopyrite semiconductor grown by low‐pressure metalorganic chemical‐vapor deposition,” J. Appl. Phys.74(10), 6446–6447 (1993).
[CrossRef]

M. I. Alonso, J. Pascual, M. Garriga, Y. Kikuno, N. Yamamoto, and K. Wakita, “Optical Properties of CuAlSe2,” J. Appl. Phys.88(4), 1923–1928 (2000).
[CrossRef]

J. Cryst. Growth (1)

C. H. Ho, “Single Crystal Growth and Characterization of Copper Aluminum Indium Disulfide Chalcopyrites,” J. Cryst. Growth317(1), 52–59 (2011).
[CrossRef]

J. Electrochem. Soc. (1)

C. H. Ho, “Temperature Dependent Crystal-Field Splitting and Band-Edge Characteristic in Cu(AlxIn1-x)S2 (0≤x≤1) Series Solar Energy Materials,” J. Electrochem. Soc.158(5), H554–H560 (2011).
[CrossRef]

J. Mater. Sci. (1)

F. C. Akkari, R. Brini, M. Kanzari, and B. Rezig, “High absorbing CuInS2 thin films growing by oblique angle incidence deposition in presence of thermal gradient,” J. Mater. Sci.40(21), 5751–5755 (2005).
[CrossRef]

J. Phys. Chem. C (2)

B. Mao, C.-H. Chuang, J. Wang, and C. Burda, “Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States,” J. Phys. Chem. C115(18), 8945–8954 (2011).
[CrossRef]

Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure,” J. Phys. Chem. C115(5), 1786–1792 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Shirakata, S. Chichibu, and S. Isomura, “Crystal Growth and Optical Properties of CuAl(SxSe1-x)2 Alloys,” Jpn. J. Appl. Phys.36(Part 1, No. 11), 6645–6649 (1997).
[CrossRef]

Mater. Sci. Eng. (1)

F. H. Pollak and H. Shen, “Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices,” Mater. Sci. Eng.R10, 275–374 (1993).

Phys. Rev. B (4)

J. E. Jaffe and A. Zunger, “Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2,” Phys. Rev. B28(10), 5822–5847 (1983).
[CrossRef]

B. Tell, J. L. Shay, H. M. Kasper, and R. L. Barns, “Valence-Band Structure of CuGaxIn1-xS2 Alloys,” Phys. Rev. B10(4), 1748–1750 (1974).
[CrossRef]

J. L. Shay, E. Buehler, and J. H. Wernick, “Electroreflectance Study of the Energy-Band Structure of CdSnP2,” Phys. Rev. B2(10), 4104–4109 (1970).
[CrossRef]

J. L. Shay, E. Buehler, and J. H. Wernick, “Optical Properties and Electronic Structure of ZnSiAs2,” Phys. Rev. B3(6), 2004–2011 (1971).
[CrossRef]

Physica B (1)

N. N. Syrbu, B. V. Korzun, A. A. Fadzeyeva, R. R. Mianzelen, V. V. Ursaki, and I. Galbic, “Exciton Spectra and Energy Band Structure of CuAlS2 Crystals,” Physica B405(16), 3243–3247 (2010).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. Res. Appl.11(7), 437–443 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical Thermoreflectance Design for Optical Characterization of Layer Semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

M. L. Albor Aguilera, J. R. Aguilar Hernández, M. A. González Trujillo, and M. Ortega Lopez, “Photoluminescence studies of p-type chalcopyrite AgInS2:Sn,” Sol. Energy Mater. Sol. Cells91(15-16), 1483–1487 (2007).
[CrossRef]

Solid State Commun. (1)

M. Bettini, “Reflection measurements with polarization modulation: A method to investigate bandgaps in birefringent materials like I-III-VI2 chalcopyrite compounds,” Solid State Commun.13(5), 599–602 (1973).
[CrossRef]

Thin Solid Films (1)

Y. Shim, K. Hasegawa, K. Wakita, and N. Mamedov, “CuAl1-xInxSe2 solid solutions: Dielectric function and inter-band optical transitions,” Thin Solid Films517(4), 1442–1444 (2008).
[CrossRef]

Other (1)

D. E. Aspnes, in Handbook on Semiconductors, M. Balkanski, ed. (North Holland, Amsterdam, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics