Abstract

We study the influence of a transient dark current on the buildup dynamics of photorefractive index gratings, which are excited right after the onset of a pulsed voltage, by using low glass-transition temperature photorefractive polymers under a heat-assisted condition. We conclude that the development of photorefractive index gratings is majorly controlled by changes in the transient dark current, through the suppression of a saturated photo-induced space-charge electric field. We also show that this influence can be estimated reasonably well by a simple analysis of the measured transient current traces.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Köber, M. Salvador, and K. Meerholz, “Organic photorefractive materials and applications,” Adv. Mater.23(41), 4725–4763 (2011).
    [CrossRef]
  2. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
    [CrossRef] [PubMed]
  3. M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express17(14), 11834–11849 (2009).
    [CrossRef] [PubMed]
  4. J. A. Quintana, J. M. Villalvilla, P. G. Boj, L. Martín-Gomis, J. Ortiz, F. Fernández-Lázaro, Á. Sastre-Santos, and M. A. D. García, “Enhanced photorefractivity of poly(N-vinylcarbazole)-based composites through electric-field treatments and ionic liquid doping,” Adv. Funct. Mater.19(3), 428–437 (2009).
    [CrossRef]
  5. W. Lv, Z. Chen, and Q. Gong, “Improvement on the photorefractive performance by the insertion of a SiO2 blocking layer,” J. Opt. A, Pure Appl. Opt.9(5), 486–489 (2007).
    [CrossRef]
  6. H. Zhao, C. Lian, X. Sun, and J. W. Zhang, “Nanoscale interlayer that raises response rate in photorefractive liquid crystal polymer composites,” Opt. Express19(13), 12496–12502 (2011).
    [CrossRef] [PubMed]
  7. O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, “Role of temperature in controlling performance of photorefractive organic glasses,” ChemPhysChem4(7), 732–744 (2003).
    [CrossRef] [PubMed]
  8. J.-W. Oh, W.-J. Joo, I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B113(6), 1592–1597 (2009).
    [CrossRef] [PubMed]
  9. W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci.27(1), 585–623 (1997).
    [CrossRef]
  10. J.-C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
    [CrossRef]
  11. J. A. Quintana, P. G. Boj, J. M. Villalvilla, M. A. Díaz-García, J. Ortiz, L. Martín-Gomis, F. Fernández-Lázaro, and Á. Sastre-Santos, “Determination of glass transition temperature of photorefractive polymer composites from photoconductivity measurements,” Appl. Phys. Lett.92(4), 041101 (2008).
    [CrossRef]
  12. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
    [CrossRef] [PubMed]
  13. R. Bittner and K. Meerholz, “Amorphous organic photorefractive materials,” in Photorefractive Materials and Their Applications, P. Gunter and J.-P. Huignard, eds. (Springer, 2007), Vol. 2.
  14. M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into the behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys.104(17), 6834–6842 (1996).
    [CrossRef]
  15. K. Okamoto, S. Kusabayashi, and H. Mikawa, “The photoconductivity of poly (N-vinylcarbazole). II. Dark conductivity in a sandwich-type cell,” Bull. Chem. Soc. Jpn.46(7), 1953–1959 (1973).
    [CrossRef]
  16. D. J. Wehenkel, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Influence of injected charge carriers on photocurrents in polymer solar cells,” Phys. Rev. B85(12), 125203 (2012).
    [CrossRef]
  17. S. Schuessler, R. Richert, and H. Baessler, “Relaxation of second-harmonic generation in guest/host polymers poled by indium-tin oxide sandwich electrodes,” Macromolecules27(15), 4318–4326 (1994).
    [CrossRef]
  18. O. Ostroverkhova, A. Stickrath, and K. D. Singer, “Electric filed-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers,” J. Appl. Phys.91(12), 9481–9486 (2002).
    [CrossRef]

2012 (1)

D. J. Wehenkel, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Influence of injected charge carriers on photocurrents in polymer solar cells,” Phys. Rev. B85(12), 125203 (2012).
[CrossRef]

2011 (2)

2009 (3)

J.-W. Oh, W.-J. Joo, I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B113(6), 1592–1597 (2009).
[CrossRef] [PubMed]

M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express17(14), 11834–11849 (2009).
[CrossRef] [PubMed]

J. A. Quintana, J. M. Villalvilla, P. G. Boj, L. Martín-Gomis, J. Ortiz, F. Fernández-Lázaro, Á. Sastre-Santos, and M. A. D. García, “Enhanced photorefractivity of poly(N-vinylcarbazole)-based composites through electric-field treatments and ionic liquid doping,” Adv. Funct. Mater.19(3), 428–437 (2009).
[CrossRef]

2008 (3)

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

J.-C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

J. A. Quintana, P. G. Boj, J. M. Villalvilla, M. A. Díaz-García, J. Ortiz, L. Martín-Gomis, F. Fernández-Lázaro, and Á. Sastre-Santos, “Determination of glass transition temperature of photorefractive polymer composites from photoconductivity measurements,” Appl. Phys. Lett.92(4), 041101 (2008).
[CrossRef]

2007 (1)

W. Lv, Z. Chen, and Q. Gong, “Improvement on the photorefractive performance by the insertion of a SiO2 blocking layer,” J. Opt. A, Pure Appl. Opt.9(5), 486–489 (2007).
[CrossRef]

2004 (1)

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

2003 (1)

O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, “Role of temperature in controlling performance of photorefractive organic glasses,” ChemPhysChem4(7), 732–744 (2003).
[CrossRef] [PubMed]

2002 (1)

O. Ostroverkhova, A. Stickrath, and K. D. Singer, “Electric filed-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers,” J. Appl. Phys.91(12), 9481–9486 (2002).
[CrossRef]

1997 (1)

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci.27(1), 585–623 (1997).
[CrossRef]

1996 (1)

M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into the behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys.104(17), 6834–6842 (1996).
[CrossRef]

1994 (1)

S. Schuessler, R. Richert, and H. Baessler, “Relaxation of second-harmonic generation in guest/host polymers poled by indium-tin oxide sandwich electrodes,” Macromolecules27(15), 4318–4326 (1994).
[CrossRef]

1973 (1)

K. Okamoto, S. Kusabayashi, and H. Mikawa, “The photoconductivity of poly (N-vinylcarbazole). II. Dark conductivity in a sandwich-type cell,” Bull. Chem. Soc. Jpn.46(7), 1953–1959 (1973).
[CrossRef]

Aoyama, T.

J.-C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

Baessler, H.

S. Schuessler, R. Richert, and H. Baessler, “Relaxation of second-harmonic generation in guest/host polymers poled by indium-tin oxide sandwich electrodes,” Macromolecules27(15), 4318–4326 (1994).
[CrossRef]

Blanche, P.-A.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Boj, P. G.

J. A. Quintana, J. M. Villalvilla, P. G. Boj, L. Martín-Gomis, J. Ortiz, F. Fernández-Lázaro, Á. Sastre-Santos, and M. A. D. García, “Enhanced photorefractivity of poly(N-vinylcarbazole)-based composites through electric-field treatments and ionic liquid doping,” Adv. Funct. Mater.19(3), 428–437 (2009).
[CrossRef]

J. A. Quintana, P. G. Boj, J. M. Villalvilla, M. A. Díaz-García, J. Ortiz, L. Martín-Gomis, F. Fernández-Lázaro, and Á. Sastre-Santos, “Determination of glass transition temperature of photorefractive polymer composites from photoconductivity measurements,” Appl. Phys. Lett.92(4), 041101 (2008).
[CrossRef]

Chen, Z.

W. Lv, Z. Chen, and Q. Gong, “Improvement on the photorefractive performance by the insertion of a SiO2 blocking layer,” J. Opt. A, Pure Appl. Opt.9(5), 486–489 (2007).
[CrossRef]

Choi, C.-S.

J.-W. Oh, W.-J. Joo, I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B113(6), 1592–1597 (2009).
[CrossRef] [PubMed]

Díaz-García, M. A.

J. A. Quintana, P. G. Boj, J. M. Villalvilla, M. A. Díaz-García, J. Ortiz, L. Martín-Gomis, F. Fernández-Lázaro, and Á. Sastre-Santos, “Determination of glass transition temperature of photorefractive polymer composites from photoconductivity measurements,” Appl. Phys. Lett.92(4), 041101 (2008).
[CrossRef]

Fernández-Lázaro, F.

J. A. Quintana, J. M. Villalvilla, P. G. Boj, L. Martín-Gomis, J. Ortiz, F. Fernández-Lázaro, Á. Sastre-Santos, and M. A. D. García, “Enhanced photorefractivity of poly(N-vinylcarbazole)-based composites through electric-field treatments and ionic liquid doping,” Adv. Funct. Mater.19(3), 428–437 (2009).
[CrossRef]

J. A. Quintana, P. G. Boj, J. M. Villalvilla, M. A. Díaz-García, J. Ortiz, L. Martín-Gomis, F. Fernández-Lázaro, and Á. Sastre-Santos, “Determination of glass transition temperature of photorefractive polymer composites from photoconductivity measurements,” Appl. Phys. Lett.92(4), 041101 (2008).
[CrossRef]

Flores, D.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

García, M. A. D.

J. A. Quintana, J. M. Villalvilla, P. G. Boj, L. Martín-Gomis, J. Ortiz, F. Fernández-Lázaro, Á. Sastre-Santos, and M. A. D. García, “Enhanced photorefractivity of poly(N-vinylcarbazole)-based composites through electric-field treatments and ionic liquid doping,” Adv. Funct. Mater.19(3), 428–437 (2009).
[CrossRef]

Gong, Q.

W. Lv, Z. Chen, and Q. Gong, “Improvement on the photorefractive performance by the insertion of a SiO2 blocking layer,” J. Opt. A, Pure Appl. Opt.9(5), 486–489 (2007).
[CrossRef]

Grunnet-Jepsen, A.

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci.27(1), 585–623 (1997).
[CrossRef]

Gu, T.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Guan, H. W.

M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into the behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys.104(17), 6834–6842 (1996).
[CrossRef]

He, M.

O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, “Role of temperature in controlling performance of photorefractive organic glasses,” ChemPhysChem4(7), 732–744 (2003).
[CrossRef] [PubMed]

Imase, Y.

J.-C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

Janssen, R. A. J.

D. J. Wehenkel, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Influence of injected charge carriers on photocurrents in polymer solar cells,” Phys. Rev. B85(12), 125203 (2012).
[CrossRef]

Jeong, K.

Joo, W.-J.

J.-W. Oh, W.-J. Joo, I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B113(6), 1592–1597 (2009).
[CrossRef] [PubMed]

Kim, N.

J.-W. Oh, W.-J. Joo, I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B113(6), 1592–1597 (2009).
[CrossRef] [PubMed]

Köber, S.

Koster, L. J. A.

D. J. Wehenkel, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Influence of injected charge carriers on photocurrents in polymer solar cells,” Phys. Rev. B85(12), 125203 (2012).
[CrossRef]

Kusabayashi, S.

K. Okamoto, S. Kusabayashi, and H. Mikawa, “The photoconductivity of poly (N-vinylcarbazole). II. Dark conductivity in a sandwich-type cell,” Bull. Chem. Soc. Jpn.46(7), 1953–1959 (1973).
[CrossRef]

Li, G.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Lian, C.

Lin, W.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Lv, W.

W. Lv, Z. Chen, and Q. Gong, “Improvement on the photorefractive performance by the insertion of a SiO2 blocking layer,” J. Opt. A, Pure Appl. Opt.9(5), 486–489 (2007).
[CrossRef]

Martín-Gomis, L.

J. A. Quintana, J. M. Villalvilla, P. G. Boj, L. Martín-Gomis, J. Ortiz, F. Fernández-Lázaro, Á. Sastre-Santos, and M. A. D. García, “Enhanced photorefractivity of poly(N-vinylcarbazole)-based composites through electric-field treatments and ionic liquid doping,” Adv. Funct. Mater.19(3), 428–437 (2009).
[CrossRef]

J. A. Quintana, P. G. Boj, J. M. Villalvilla, M. A. Díaz-García, J. Ortiz, L. Martín-Gomis, F. Fernández-Lázaro, and Á. Sastre-Santos, “Determination of glass transition temperature of photorefractive polymer composites from photoconductivity measurements,” Appl. Phys. Lett.92(4), 041101 (2008).
[CrossRef]

Meerholz, K.

Mikawa, H.

K. Okamoto, S. Kusabayashi, and H. Mikawa, “The photoconductivity of poly (N-vinylcarbazole). II. Dark conductivity in a sandwich-type cell,” Bull. Chem. Soc. Jpn.46(7), 1953–1959 (1973).
[CrossRef]

Moerner, W. E.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, “Role of temperature in controlling performance of photorefractive organic glasses,” ChemPhysChem4(7), 732–744 (2003).
[CrossRef] [PubMed]

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci.27(1), 585–623 (1997).
[CrossRef]

Moon, I. K.

J.-W. Oh, W.-J. Joo, I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B113(6), 1592–1597 (2009).
[CrossRef] [PubMed]

Muto, T.

J.-C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

Nolte, D. D.

Norwood, R. A.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Oh, J.-W.

J.-W. Oh, W.-J. Joo, I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B113(6), 1592–1597 (2009).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto, S. Kusabayashi, and H. Mikawa, “The photoconductivity of poly (N-vinylcarbazole). II. Dark conductivity in a sandwich-type cell,” Bull. Chem. Soc. Jpn.46(7), 1953–1959 (1973).
[CrossRef]

Ortiz, J.

J. A. Quintana, J. M. Villalvilla, P. G. Boj, L. Martín-Gomis, J. Ortiz, F. Fernández-Lázaro, Á. Sastre-Santos, and M. A. D. García, “Enhanced photorefractivity of poly(N-vinylcarbazole)-based composites through electric-field treatments and ionic liquid doping,” Adv. Funct. Mater.19(3), 428–437 (2009).
[CrossRef]

J. A. Quintana, P. G. Boj, J. M. Villalvilla, M. A. Díaz-García, J. Ortiz, L. Martín-Gomis, F. Fernández-Lázaro, and Á. Sastre-Santos, “Determination of glass transition temperature of photorefractive polymer composites from photoconductivity measurements,” Appl. Phys. Lett.92(4), 041101 (2008).
[CrossRef]

Ostroverkhova, O.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, “Role of temperature in controlling performance of photorefractive organic glasses,” ChemPhysChem4(7), 732–744 (2003).
[CrossRef] [PubMed]

O. Ostroverkhova, A. Stickrath, and K. D. Singer, “Electric filed-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers,” J. Appl. Phys.91(12), 9481–9486 (2002).
[CrossRef]

Pauley, M. A.

M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into the behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys.104(17), 6834–6842 (1996).
[CrossRef]

Peyghambarian, N.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Prauzner, J.

Quintana, J. A.

J. A. Quintana, J. M. Villalvilla, P. G. Boj, L. Martín-Gomis, J. Ortiz, F. Fernández-Lázaro, Á. Sastre-Santos, and M. A. D. García, “Enhanced photorefractivity of poly(N-vinylcarbazole)-based composites through electric-field treatments and ionic liquid doping,” Adv. Funct. Mater.19(3), 428–437 (2009).
[CrossRef]

J. A. Quintana, P. G. Boj, J. M. Villalvilla, M. A. Díaz-García, J. Ortiz, L. Martín-Gomis, F. Fernández-Lázaro, and Á. Sastre-Santos, “Determination of glass transition temperature of photorefractive polymer composites from photoconductivity measurements,” Appl. Phys. Lett.92(4), 041101 (2008).
[CrossRef]

Ribierre, J.-C.

J.-C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

Richert, R.

S. Schuessler, R. Richert, and H. Baessler, “Relaxation of second-harmonic generation in guest/host polymers poled by indium-tin oxide sandwich electrodes,” Macromolecules27(15), 4318–4326 (1994).
[CrossRef]

Rokutanda, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Salvador, M.

Sastre-Santos, Á.

J. A. Quintana, J. M. Villalvilla, P. G. Boj, L. Martín-Gomis, J. Ortiz, F. Fernández-Lázaro, Á. Sastre-Santos, and M. A. D. García, “Enhanced photorefractivity of poly(N-vinylcarbazole)-based composites through electric-field treatments and ionic liquid doping,” Adv. Funct. Mater.19(3), 428–437 (2009).
[CrossRef]

J. A. Quintana, P. G. Boj, J. M. Villalvilla, M. A. Díaz-García, J. Ortiz, L. Martín-Gomis, F. Fernández-Lázaro, and Á. Sastre-Santos, “Determination of glass transition temperature of photorefractive polymer composites from photoconductivity measurements,” Appl. Phys. Lett.92(4), 041101 (2008).
[CrossRef]

Schuessler, S.

S. Schuessler, R. Richert, and H. Baessler, “Relaxation of second-harmonic generation in guest/host polymers poled by indium-tin oxide sandwich electrodes,” Macromolecules27(15), 4318–4326 (1994).
[CrossRef]

Singer, K. D.

O. Ostroverkhova, A. Stickrath, and K. D. Singer, “Electric filed-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers,” J. Appl. Phys.91(12), 9481–9486 (2002).
[CrossRef]

St Hilaire, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Stickrath, A.

O. Ostroverkhova, A. Stickrath, and K. D. Singer, “Electric filed-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers,” J. Appl. Phys.91(12), 9481–9486 (2002).
[CrossRef]

Sun, X.

Tay, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Thomas, J.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Thompson, C. L.

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci.27(1), 585–623 (1997).
[CrossRef]

Tunç, A. V.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Turek, J. J.

Twieg, R. J.

O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, “Role of temperature in controlling performance of photorefractive organic glasses,” ChemPhysChem4(7), 732–744 (2003).
[CrossRef] [PubMed]

Villalvilla, J. M.

J. A. Quintana, J. M. Villalvilla, P. G. Boj, L. Martín-Gomis, J. Ortiz, F. Fernández-Lázaro, Á. Sastre-Santos, and M. A. D. García, “Enhanced photorefractivity of poly(N-vinylcarbazole)-based composites through electric-field treatments and ionic liquid doping,” Adv. Funct. Mater.19(3), 428–437 (2009).
[CrossRef]

J. A. Quintana, P. G. Boj, J. M. Villalvilla, M. A. Díaz-García, J. Ortiz, L. Martín-Gomis, F. Fernández-Lázaro, and Á. Sastre-Santos, “Determination of glass transition temperature of photorefractive polymer composites from photoconductivity measurements,” Appl. Phys. Lett.92(4), 041101 (2008).
[CrossRef]

Voorakaranam, R.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Wada, T.

J.-C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

Wang, C. H.

M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into the behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys.104(17), 6834–6842 (1996).
[CrossRef]

Wang, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Wehenkel, D. J.

D. J. Wehenkel, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Influence of injected charge carriers on photocurrents in polymer solar cells,” Phys. Rev. B85(12), 125203 (2012).
[CrossRef]

Wienk, M. M.

D. J. Wehenkel, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Influence of injected charge carriers on photocurrents in polymer solar cells,” Phys. Rev. B85(12), 125203 (2012).
[CrossRef]

Yamamoto, M.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Zhang, J. W.

Zhao, H.

Adv. Funct. Mater. (1)

J. A. Quintana, J. M. Villalvilla, P. G. Boj, L. Martín-Gomis, J. Ortiz, F. Fernández-Lázaro, Á. Sastre-Santos, and M. A. D. García, “Enhanced photorefractivity of poly(N-vinylcarbazole)-based composites through electric-field treatments and ionic liquid doping,” Adv. Funct. Mater.19(3), 428–437 (2009).
[CrossRef]

Adv. Mater. (1)

S. Köber, M. Salvador, and K. Meerholz, “Organic photorefractive materials and applications,” Adv. Mater.23(41), 4725–4763 (2011).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci.27(1), 585–623 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

J. A. Quintana, P. G. Boj, J. M. Villalvilla, M. A. Díaz-García, J. Ortiz, L. Martín-Gomis, F. Fernández-Lázaro, and Á. Sastre-Santos, “Determination of glass transition temperature of photorefractive polymer composites from photoconductivity measurements,” Appl. Phys. Lett.92(4), 041101 (2008).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

K. Okamoto, S. Kusabayashi, and H. Mikawa, “The photoconductivity of poly (N-vinylcarbazole). II. Dark conductivity in a sandwich-type cell,” Bull. Chem. Soc. Jpn.46(7), 1953–1959 (1973).
[CrossRef]

Chem. Rev. (1)

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

ChemPhysChem (1)

O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, “Role of temperature in controlling performance of photorefractive organic glasses,” ChemPhysChem4(7), 732–744 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

O. Ostroverkhova, A. Stickrath, and K. D. Singer, “Electric filed-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers,” J. Appl. Phys.91(12), 9481–9486 (2002).
[CrossRef]

J. Chem. Phys. (1)

M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into the behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys.104(17), 6834–6842 (1996).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

W. Lv, Z. Chen, and Q. Gong, “Improvement on the photorefractive performance by the insertion of a SiO2 blocking layer,” J. Opt. A, Pure Appl. Opt.9(5), 486–489 (2007).
[CrossRef]

J. Phys. Chem. B (1)

J.-W. Oh, W.-J. Joo, I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B113(6), 1592–1597 (2009).
[CrossRef] [PubMed]

Macromolecules (1)

S. Schuessler, R. Richert, and H. Baessler, “Relaxation of second-harmonic generation in guest/host polymers poled by indium-tin oxide sandwich electrodes,” Macromolecules27(15), 4318–4326 (1994).
[CrossRef]

Nature (1)

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Org. Electron. (1)

J.-C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

Phys. Rev. B (1)

D. J. Wehenkel, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Influence of injected charge carriers on photocurrents in polymer solar cells,” Phys. Rev. B85(12), 125203 (2012).
[CrossRef]

Other (1)

R. Bittner and K. Meerholz, “Amorphous organic photorefractive materials,” in Photorefractive Materials and Their Applications, P. Gunter and J.-P. Huignard, eds. (Springer, 2007), Vol. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Molecule structures in the PR polymer composite used in this study.

Fig. 2
Fig. 2

Schematics of the experimental procedure for the FWM experiments: (a) optical beam arrangement, (b) timing charts for the writing beams and the pulsed electric field.

Fig. 3
Fig. 3

Results of the FWM experiments: (a) typical evolutions of diffraction beam power (only for the first 4 voltage pulses shown), (b) dependences of the maximum diffraction power on the number of a voltage pulse, (c) dependences of the response speed of Δn on the number of a voltage pulse. Thin solid lines in Figs. 3(b) and 3(c) are only a guide to the eye. Inset of Fig. 3(b) shows the evolution of the diffraction power for the first four voltage pulses. Thick solid lines (black) are the fitted curves. Inset of Fig. 3(c) shows the change of the weight factor on the voltage pulse obtained from the equation fitting.

Fig. 4
Fig. 4

Temporal changes of dark currents from (a) normal cell samples and (b) SiO2-coated cell samples. Dots are measured data and thick solid lines are the fitted curves. The yellow-shaded region corresponds to the two-beam irradiation period. A large noise level in the measured data was caused by a high voltage used in the measurement.

Fig. 5
Fig. 5

Analyses of the onset point P obtained from the transient dark current traces: (a) the inverse of the onset time tp and (b) the onset level ip of the stable dark current. Inset of Fig. 5(a) shows the method to obtain the point P.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A [ m{ 1exp( t/ τ 1 ) }+( 1m ){ 1exp( t/ τ 2 ) } ] 2 ,
i d ( t )= C 1 t n 1 + C 2 t n 2 ,

Metrics