Abstract

Depressed cladding optical waveguides have been fabricated in a zinc sulfide (ZnS) crystal by femtosecond laser inscription. The structures support single- or multi-mode guidance at the mid-infrared wavelength of ~4 μm. The two-dimensional refractive index profiles of the single-mode waveguides have been reconstructed, and the modal profiles of TE and TM modes were calculated numerically, that show very good agreement with the measured near-field modal profiles. The minimum propagation losses of the multimode cladding waveguides at 4 μm were ~1.1 dB/cm for the TE polarization and ~1.3 dB/cm for the TM polarization.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
    [CrossRef]
  2. I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-Based Dilute-Nitride Mid-Infrared Type-II ‘W’ Quantum-Well Lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
    [CrossRef]
  3. L. J. Mawst, J. Y. T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown Dilute-Nitride Type-II Quantum Wells,” IEEE J. Sel. Top. Quantum Electron.14(4), 979–991 (2008).
    [CrossRef]
  4. N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
    [CrossRef]
  5. N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ :3.4 μm and λ ~ 3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
    [CrossRef]
  6. S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem.390(1), 231–237 (2008).
    [CrossRef] [PubMed]
  7. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
    [CrossRef] [PubMed]
  8. M. M. Milošević, P. S. Matavulj, P. Yang, A. Bagolini, and G. Z. Mashanovich, “Rib waveguides for mid-infrared silicon photonics,” J. Opt. Soc. Am. B26(9), 1760–1766 (2009).
    [CrossRef]
  9. A. J. Maker and A. M. Armani, “Low-loss silica-on-silicon waveguides,” Opt. Lett.36(19), 3729–3731 (2011).
    [CrossRef] [PubMed]
  10. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett.37(3), 392–394 (2012).
    [CrossRef] [PubMed]
  11. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
    [CrossRef] [PubMed]
  12. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
    [CrossRef]
  13. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010).
    [CrossRef]
  14. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express19(18), 17820–17833 (2011).
    [CrossRef] [PubMed]
  15. A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
    [CrossRef]
  16. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
    [CrossRef]
  17. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
    [CrossRef]
  18. N. Dong, Y. Yao, F. Chen, and J. R. Vazquez de Aldana, “Channel waveguides preserving luminescence features in Nd3+:Y2O3 ceramics produced by ultrafast laser inscription,” Phys. Status Solidi5(5–6), 184–186 (2011).
  19. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
    [CrossRef]
  20. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16(24), 20029–20037 (2008).
    [CrossRef] [PubMed]
  21. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011).
    [CrossRef] [PubMed]
  22. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19(9), 7929–7936 (2011).
    [CrossRef] [PubMed]
  23. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
    [CrossRef]
  24. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and cannel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004).
    [CrossRef]
  25. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
    [CrossRef]
  26. A. G. Okhrimchuk, V. K. Mezentsev, V. V. Dvoyrin, A. S. Kurkov, E. M. Sholokhov, S. K. Turitsyn, A. V. Shestakov, and I. Bennion, “Waveguide-saturable absorber fabricated by femtosecond pulses in YAG:Cr4+ crystal for Q-switched operation of Yb-fiber laser,” Opt. Lett.34(24), 3881–3883 (2009).
    [CrossRef] [PubMed]
  27. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30(17), 2248–2250 (2005).
    [CrossRef] [PubMed]
  28. A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett.35(3), 330–332 (2010).
    [CrossRef] [PubMed]
  29. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
    [CrossRef] [PubMed]
  30. Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express20(15), 16801–16806 (2012).
    [CrossRef]
  31. Y. Jia, J. R. Vazquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
    [CrossRef]
  32. N. Dong, F. Chen, and J. R. Vazquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi6(7), 306–308 (2012).
    [CrossRef]
  33. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
    [CrossRef]
  34. http://www.ispoptics.com .
  35. N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, “Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass,” Opt. Express15(19), 12395–12408 (2007).
    [CrossRef] [PubMed]
  36. RSoft Design Group, Computer Software BeamPROP, http://www.rsoftdesign.com .

2012 (7)

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ :3.4 μm and λ ~ 3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Y. Jia, J. R. Vazquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

N. Dong, F. Chen, and J. R. Vazquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi6(7), 306–308 (2012).
[CrossRef]

A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett.37(3), 392–394 (2012).
[CrossRef] [PubMed]

Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express20(15), 16801–16806 (2012).
[CrossRef]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
[CrossRef] [PubMed]

2011 (7)

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19(9), 7929–7936 (2011).
[CrossRef] [PubMed]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011).
[CrossRef] [PubMed]

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express19(18), 17820–17833 (2011).
[CrossRef] [PubMed]

A. J. Maker and A. M. Armani, “Low-loss silica-on-silicon waveguides,” Opt. Lett.36(19), 3729–3731 (2011).
[CrossRef] [PubMed]

N. Dong, Y. Yao, F. Chen, and J. R. Vazquez de Aldana, “Channel waveguides preserving luminescence features in Nd3+:Y2O3 ceramics produced by ultrafast laser inscription,” Phys. Status Solidi5(5–6), 184–186 (2011).

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

2010 (3)

2009 (6)

M. M. Milošević, P. S. Matavulj, P. Yang, A. Bagolini, and G. Z. Mashanovich, “Rib waveguides for mid-infrared silicon photonics,” J. Opt. Soc. Am. B26(9), 1760–1766 (2009).
[CrossRef]

A. G. Okhrimchuk, V. K. Mezentsev, V. V. Dvoyrin, A. S. Kurkov, E. M. Sholokhov, S. K. Turitsyn, A. V. Shestakov, and I. Bennion, “Waveguide-saturable absorber fabricated by femtosecond pulses in YAG:Cr4+ crystal for Q-switched operation of Yb-fiber laser,” Opt. Lett.34(24), 3881–3883 (2009).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

2008 (4)

L. J. Mawst, J. Y. T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown Dilute-Nitride Type-II Quantum Wells,” IEEE J. Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem.390(1), 231–237 (2008).
[CrossRef] [PubMed]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16(24), 20029–20037 (2008).
[CrossRef] [PubMed]

2007 (3)

N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, “Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass,” Opt. Express15(19), 12395–12408 (2007).
[CrossRef] [PubMed]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

2005 (1)

2004 (2)

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and cannel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-Based Dilute-Nitride Mid-Infrared Type-II ‘W’ Quantum-Well Lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
[CrossRef]

1995 (1)

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
[CrossRef]

Ams, M.

Apostolopoulos, V.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and cannel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004).
[CrossRef]

Arezki, B.

Armani, A. M.

Audouard, E.

Bagolini, A.

Bai, Y.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ :3.4 μm and λ ~ 3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Bandyopadhyay, N.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ :3.4 μm and λ ~ 3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

Bartoli, F. J.

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
[CrossRef]

Beecher, S.

Benayas, A.

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett.35(3), 330–332 (2010).
[CrossRef] [PubMed]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Bennion, I.

Bookey, H. T.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

Brow, R. K.

Brown, G.

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

Calmano, T.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010).
[CrossRef]

Cantelar, E.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett.35(3), 330–332 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Cerullo, G.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and cannel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004).
[CrossRef]

Chen, F.

Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express20(15), 16801–16806 (2012).
[CrossRef]

N. Dong, F. Chen, and J. R. Vazquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi6(7), 306–308 (2012).
[CrossRef]

Y. Jia, J. R. Vazquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
[CrossRef] [PubMed]

N. Dong, Y. Yao, F. Chen, and J. R. Vazquez de Aldana, “Channel waveguides preserving luminescence features in Nd3+:Y2O3 ceramics produced by ultrafast laser inscription,” Phys. Status Solidi5(5–6), 184–186 (2011).

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

Chiodo, N.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

Colomb, T.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and cannel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004).
[CrossRef]

Dawes, J. M.

Dekker, P.

Depeursinge, C.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and cannel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004).
[CrossRef]

Dong, N.

N. Dong, F. Chen, and J. R. Vazquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi6(7), 306–308 (2012).
[CrossRef]

N. Dong, Y. Yao, F. Chen, and J. R. Vazquez de Aldana, “Channel waveguides preserving luminescence features in Nd3+:Y2O3 ceramics produced by ultrafast laser inscription,” Phys. Status Solidi5(5–6), 184–186 (2011).

Dvoyrin, V. V.

Ebendorff-Heidepriem, H.

Fletcher, L. B.

Fuerbach, A.

Gross, S.

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010).
[CrossRef]

Hoffman, C. A.

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
[CrossRef]

Hu, Y.

Huang, J. Y. T.

L. J. Mawst, J. Y. T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown Dilute-Nitride Type-II Quantum Wells,” IEEE J. Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

Huber, G.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Huot, N.

Jacinto, C.

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett.35(3), 330–332 (2010).
[CrossRef] [PubMed]

Jaque, D.

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett.35(3), 330–332 (2010).
[CrossRef] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Jaque, F.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett.35(3), 330–332 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Jha, A.

A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett.37(3), 392–394 (2012).
[CrossRef] [PubMed]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

Jia, Y.

Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express20(15), 16801–16806 (2012).
[CrossRef]

Y. Jia, J. R. Vazquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Jose, G.

Kaminskii, A. A.

Kar, A.

Kar, A. K.

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
[CrossRef] [PubMed]

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express19(18), 17820–17833 (2011).
[CrossRef] [PubMed]

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

Kern, P.

Khrushchev, I.

Kim, S.-S.

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem.390(1), 231–237 (2008).
[CrossRef] [PubMed]

Krol, D. M.

Kuan, K.

Kuech, T. F.

L. J. Mawst, J. Y. T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown Dilute-Nitride Type-II Quantum Wells,” IEEE J. Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

Kurkov, A. S.

Labadie, L.

Lamela, J.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett.35(3), 330–332 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Lancaster, D. G.

Laporta, P.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and cannel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004).
[CrossRef]

Laversenne, L.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and cannel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004).
[CrossRef]

Lifante, G.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Little, D. J.

Lu, Q.

Y. Jia, J. R. Vazquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

Maker, A. J.

Marshall, G. D.

Martin, G.

Mashanovich, G. Z.

Matavulj, P. S.

Mauclair, C.

Mawst, L. J.

L. J. Mawst, J. Y. T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown Dilute-Nitride Type-II Quantum Wells,” IEEE J. Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-Based Dilute-Nitride Mid-Infrared Type-II ‘W’ Quantum-Well Lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
[CrossRef]

Mermillod-Blondin, A.

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-Based Dilute-Nitride Mid-Infrared Type-II ‘W’ Quantum-Well Lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
[CrossRef]

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
[CrossRef]

Mezentsev, V. K.

Miloševic, M. M.

Mitchell, J.

Mizaikoff, B.

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem.390(1), 231–237 (2008).
[CrossRef] [PubMed]

Monro, T. M.

Nedeljkovic, M.

Nida, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

Okhrimchuk, A. G.

Osellame, R.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and cannel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004).
[CrossRef]

Owens, N.

Petermann, K.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Pollnau, M.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and cannel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004).
[CrossRef]

Psaila, N.

Psaila, N. D.

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Ram-Mohan, L. R.

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
[CrossRef]

Razeghi, M.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ :3.4 μm and λ ~ 3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Reid, D. T.

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

Reis, S. T.

Ren, Y.

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
[CrossRef] [PubMed]

Y. Jia, J. R. Vazquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Rodenas, A.

Ródenas, A.

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
[CrossRef] [PubMed]

A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett.37(3), 392–394 (2012).
[CrossRef] [PubMed]

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Romero, C.

Y. Jia, J. R. Vazquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Roso, L.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett.35(3), 330–332 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Salathé, R. P.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and cannel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004).
[CrossRef]

Shen, S.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

Shestakov, A. V.

Sholokhov, E. M.

Siebenmorgen, J.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Silva, W. F.

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett.35(3), 330–332 (2010).
[CrossRef] [PubMed]

Slivken, S.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ :3.4 μm and λ ~ 3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

Stoian, R.

Tan, Y.

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

Tansu, N.

L. J. Mawst, J. Y. T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown Dilute-Nitride Type-II Quantum Wells,” IEEE J. Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-Based Dilute-Nitride Mid-Infrared Type-II ‘W’ Quantum-Well Lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
[CrossRef]

Teo, E. J.

Thomsom, R. R.

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

Thomson, R.

Thomson, R. R.

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

Torchia, G. A.

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett.35(3), 330–332 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Troy, N.

Tsao, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

Tsvid, G.

L. J. Mawst, J. Y. T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown Dilute-Nitride Type-II Quantum Wells,” IEEE J. Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

Tunnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Tünnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

Turitsyn, S. K.

Vazquez de Aldana, J. R.

N. Dong, F. Chen, and J. R. Vazquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi6(7), 306–308 (2012).
[CrossRef]

Y. Jia, J. R. Vazquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

N. Dong, Y. Yao, F. Chen, and J. R. Vazquez de Aldana, “Channel waveguides preserving luminescence features in Nd3+:Y2O3 ceramics produced by ultrafast laser inscription,” Phys. Status Solidi5(5–6), 184–186 (2011).

Vázquez de Aldana, J.

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

Vázquez de Aldana, J. R.

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-Based Dilute-Nitride Mid-Infrared Type-II ‘W’ Quantum-Well Lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
[CrossRef]

Witcher, J. J.

Withford, M. J.

Xiong, B.

Xu, D. P.

L. J. Mawst, J. Y. T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown Dilute-Nitride Type-II Quantum Wells,” IEEE J. Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

Yang, P.

Yao, Y.

N. Dong, Y. Yao, F. Chen, and J. R. Vazquez de Aldana, “Channel waveguides preserving luminescence features in Nd3+:Y2O3 ceramics produced by ultrafast laser inscription,” Phys. Status Solidi5(5–6), 184–186 (2011).

Yeh, J. Y.

L. J. Mawst, J. Y. T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown Dilute-Nitride Type-II Quantum Wells,” IEEE J. Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

Young, C.

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem.390(1), 231–237 (2008).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem.390(1), 231–237 (2008).
[CrossRef] [PubMed]

Appl. Phys. B (5)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Appl. Phys. Express (1)

Y. Jia, J. R. Vazquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Appl. Phys. Lett. (6)

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and cannel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ :3.4 μm and λ ~ 3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. J. Mawst, J. Y. T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown Dilute-Nitride Type-II Quantum Wells,” IEEE J. Sel. Top. Quantum Electron.14(4), 979–991 (2008).
[CrossRef]

J. Appl. Phys. (1)

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-Based Dilute-Nitride Mid-Infrared Type-II ‘W’ Quantum-Well Lasers,” J. Appl. Phys.96(8), 4653–4655 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (7)

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express19(18), 17820–17833 (2011).
[CrossRef] [PubMed]

Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express20(15), 16801–16806 (2012).
[CrossRef]

N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, “Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass,” Opt. Express15(19), 12395–12408 (2007).
[CrossRef] [PubMed]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16(24), 20029–20037 (2008).
[CrossRef] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19(9), 7929–7936 (2011).
[CrossRef] [PubMed]

Opt. Lett. (7)

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011).
[CrossRef] [PubMed]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
[CrossRef] [PubMed]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30(17), 2248–2250 (2005).
[CrossRef] [PubMed]

A. J. Maker and A. M. Armani, “Low-loss silica-on-silicon waveguides,” Opt. Lett.36(19), 3729–3731 (2011).
[CrossRef] [PubMed]

A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett.37(3), 392–394 (2012).
[CrossRef] [PubMed]

A. G. Okhrimchuk, V. K. Mezentsev, V. V. Dvoyrin, A. S. Kurkov, E. M. Sholokhov, S. K. Turitsyn, A. V. Shestakov, and I. Bennion, “Waveguide-saturable absorber fabricated by femtosecond pulses in YAG:Cr4+ crystal for Q-switched operation of Yb-fiber laser,” Opt. Lett.34(24), 3881–3883 (2009).
[CrossRef] [PubMed]

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett.35(3), 330–332 (2010).
[CrossRef] [PubMed]

Phys. Status Solidi (2)

N. Dong, Y. Yao, F. Chen, and J. R. Vazquez de Aldana, “Channel waveguides preserving luminescence features in Nd3+:Y2O3 ceramics produced by ultrafast laser inscription,” Phys. Status Solidi5(5–6), 184–186 (2011).

N. Dong, F. Chen, and J. R. Vazquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi6(7), 306–308 (2012).
[CrossRef]

Other (2)

http://www.ispoptics.com .

RSoft Design Group, Computer Software BeamPROP, http://www.rsoftdesign.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross section of WG1 (a), WG2 (b) and WG3 (c) fabricated in ZnS crystal. The picture was taken with an optical microscope in transmission illumination.

Fig. 2
Fig. 2

Schematic of the end-face coupling arrangement applied to investigate the optical properties of the cladding waveguides in ZnS crystal.

Fig. 3
Fig. 3

The reconstructed refractive index profiles for the TE (a) and the TM (b) polarizations are shown.

Fig. 4
Fig. 4

2-D, 3-D measured near-field modal profiles of WG1 for the TE (a) and TM (c) polarization, and calculated ones for the TE (b) and TM (d) polarization (The red circles in all the 2-D figures represent the position of the depressed cladding structure).

Fig. 5
Fig. 5

2-D, 3-D measured near-field modal profiles of WG2 for the TE (a) and TM (c) polarization, and the ones of WG3 for the TE (b) and TM (d) polarization (The red circles in all the 2-D figures represent the position of the depressed cladding structure).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn sin 2 θ m 2n

Metrics