Abstract

We report on measurements of optical activity in reflection in the conical mount from two plasmonically resonant nanostructures; a sub-wavelength silver meshed grid and a fishnet metamaterial. The square-centimeter size of the materials, formed by nano-imprint lithography, allows reliable investigation of such materials by plane-wave techniques with minimal focusing. For both materials we observe strong polarization conversion (s- to p-polarization, and vice versa) in generalized ellipsometry measurements. We compared the spectra to analytical predictions using surface plasmon polariton (SPP) theory and find good agreement for the meshed grid. The spectra for the meshed grid are also well modeled using the rigorous coupled wave analysis (RCWA) technique. Simulated results for the more complicated fishnet layer showing qualitative agreement are also presented. We then probe the validity of describing the observations using homogenous parameters such as dichroism and birefringence, by examining the calculated reflection of nominally polarized incident light using simulated and measured Mueller matrices. The results show that the cross-polarization that we observe is primarily related to linear birefringence and dichroism, although circular effects are indeed present.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  2. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
    [CrossRef] [PubMed]
  3. A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
    [CrossRef] [PubMed]
  4. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
    [CrossRef]
  5. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
    [CrossRef] [PubMed]
  6. B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106(18), 185501 (2011).
    [CrossRef] [PubMed]
  7. M. D. Pickett and A. Lakhtakia, “On gyrotropic chiral sculptured thin films for magneto-optics,” Optik (Stuttg.)113(8), 367–371 (2002).
    [CrossRef]
  8. L. D. Barron and A. D. Buckingham, “Vibrational optical activity,” Chem. Phys. Lett.492(4-6), 199–213 (2010).
    [CrossRef]
  9. J. C. Bose, “On the rotation of plane of polarization of electric waves by a twisted structure,” Proc. R. Soc. London63(1), 146–152 (1898).
    [CrossRef]
  10. K. F. Lindman, “Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarisation der elekromagnetischen Wellen,” Ann. Phys.368 (23), 621–644 (1920).
    [CrossRef]
  11. A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun.168(5-6), 457–465 (1999).
    [CrossRef]
  12. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
    [CrossRef]
  13. Confusingly, a similar related phenomenon, termed internal conical diffraction, describes the refraction of a Gaussian beam in a biaxial transparent crystal into a light cone, which forms a cylindrical beam upon exit into an isotropic medium (seeM. V. Berry, M. R. Jeffrey, and J. G. Lunney, “Conical diffraction: observations and theory,” Proc. R. Soc. Lond.462, 1629–1642 (2006)).
  14. M. Neviere, D. Maystre, and W. R. Hunter, “Use of classical and conical diffraction mountings for XUV gratings,” J. Opt. Soc. Am.68(8), 1106–1113 (1978).
    [CrossRef]
  15. G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt.37(7), 1227–1232 (1990).
    [CrossRef]
  16. R. C. McPhedran and D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. (Berl.)14(1), 1–20 (1977).
    [CrossRef]
  17. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  18. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
    [CrossRef] [PubMed]
  19. R. Ortuño, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
    [CrossRef]
  20. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt.11(7), 074009 (2009).
    [CrossRef]
  21. C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt.13(1), 013001 (2011).
    [CrossRef]
  22. H. W. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater.20(4), 529–539 (2010).
    [CrossRef]
  23. I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
    [CrossRef] [PubMed]
  24. T. W. H. Oates, B. Dastmalchi, G. Isic, S. Tollabimazraehno, C. Helgert, T. Pertsch, E. B. Kley, M. A. Verschuuren, I. Bergmair, K. Hingerl, and K. Hinrichs, “Oblique incidence ellipsometric characterization and the substrate dependence of visible frequency fishnet metamaterials,” Opt. Express20(10), 11166–11177 (2012).
    [CrossRef] [PubMed]
  25. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
    [CrossRef]
  26. T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86(11-12), 328–376 (2011).
    [CrossRef]
  27. W. A. Shurcliff, Polarized Light: Production and Use (Harvard University Press, 1962).
  28. M. Schubert, “Generalized ellipsometry and complex optical systems,” Thin Solid Films313-314, 323–332 (1998).
    [CrossRef]
  29. R. M. A. Azzam and N. M. Bashara, “Generalized ellipsometry for surfaces with directional preference - application to diffraction gratings,” J. Opt. Soc. Am.62(12), 1521–1523 (1972).
    [CrossRef]
  30. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1987).
  31. M. Foldyna, A. De Martino, E. Garcia-Caurel, R. Ossikovski, F. Bertin, J. Hazart, K. Postava, and B. Drevillon, “Monitoring critical dimensions of bidimensional gratings by spectroscopic ellipsometry and Mueller polarimetry,” Phys. Status Solidi A205, 806–809 (2008).
  32. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27(2), 985–1009 (1983).
    [CrossRef]
  33. T. W. H. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express19(3), 2014–2028 (2011).
    [CrossRef] [PubMed]
  34. C. W. Haggans, L. F. Li, and R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A10(10), 2217–2225 (1993).
    [CrossRef]
  35. J. Lekner, “Reflection and refraction by uniaxial crystals,” J. Phys. Condens. Matter3(32), 6121–6133 (1991).
    [CrossRef]
  36. R. M. A. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization-differential 4x4 matrix calculus,” J. Opt. Soc. Am.68(12), 1756–1767 (1978).
    [CrossRef]
  37. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A13(5), 1106–1113 (1996).
    [CrossRef]
  38. J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev.87(6), 1359–1399 (1987).
    [CrossRef]
  39. H. Takechi, O. Arteaga, J. M. Ribo, and H. Watarai, “Chiroptical measurement of chiral aggregates at liquid-liquid interface in centrifugal liquid membrane cell by Mueller matrix and conventional circular dichroism methods,” Molecules16(12), 3636–3647 (2011).
    [CrossRef]
  40. J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality21(Suppl 1), E20–E27 (2009).
    [CrossRef] [PubMed]
  41. H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag.92(12), 1583–1599 (2012).
    [CrossRef]
  42. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67(5), 717–754 (2004).
    [CrossRef]
  43. J. K. Lee, J. T. Shen, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun.277(1), 63–66 (2007).
    [CrossRef]
  44. R. M. A. Azzam and K. A. Giardina, “Photopolarimeter based on planar grating diffraction,” J. Opt. Soc. Am. A10(6), 1190–1196 (1993).
    [CrossRef]
  45. C. Detlefs, M. Sanchez del Rio, and C. Mazzoli, “X-ray polarization: general formalism and polarization analysis,” Eur. Phys. J. Spec. Top.208(1), 359–371 (2012).
    [CrossRef]

2012 (4)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

T. W. H. Oates, B. Dastmalchi, G. Isic, S. Tollabimazraehno, C. Helgert, T. Pertsch, E. B. Kley, M. A. Verschuuren, I. Bergmair, K. Hingerl, and K. Hinrichs, “Oblique incidence ellipsometric characterization and the substrate dependence of visible frequency fishnet metamaterials,” Opt. Express20(10), 11166–11177 (2012).
[CrossRef] [PubMed]

H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag.92(12), 1583–1599 (2012).
[CrossRef]

C. Detlefs, M. Sanchez del Rio, and C. Mazzoli, “X-ray polarization: general formalism and polarization analysis,” Eur. Phys. J. Spec. Top.208(1), 359–371 (2012).
[CrossRef]

2011 (7)

H. Takechi, O. Arteaga, J. M. Ribo, and H. Watarai, “Chiroptical measurement of chiral aggregates at liquid-liquid interface in centrifugal liquid membrane cell by Mueller matrix and conventional circular dichroism methods,” Molecules16(12), 3636–3647 (2011).
[CrossRef]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt.13(1), 013001 (2011).
[CrossRef]

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86(11-12), 328–376 (2011).
[CrossRef]

T. W. H. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express19(3), 2014–2028 (2011).
[CrossRef] [PubMed]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106(18), 185501 (2011).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

2010 (2)

L. D. Barron and A. D. Buckingham, “Vibrational optical activity,” Chem. Phys. Lett.492(4-6), 199–213 (2010).
[CrossRef]

H. W. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater.20(4), 529–539 (2010).
[CrossRef]

2009 (4)

R. Ortuño, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt.11(7), 074009 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality21(Suppl 1), E20–E27 (2009).
[CrossRef] [PubMed]

2008 (1)

M. Foldyna, A. De Martino, E. Garcia-Caurel, R. Ossikovski, F. Bertin, J. Hazart, K. Postava, and B. Drevillon, “Monitoring critical dimensions of bidimensional gratings by spectroscopic ellipsometry and Mueller polarimetry,” Phys. Status Solidi A205, 806–809 (2008).

2007 (2)

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

J. K. Lee, J. T. Shen, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun.277(1), 63–66 (2007).
[CrossRef]

2006 (1)

Confusingly, a similar related phenomenon, termed internal conical diffraction, describes the refraction of a Gaussian beam in a biaxial transparent crystal into a light cone, which forms a cylindrical beam upon exit into an isotropic medium (seeM. V. Berry, M. R. Jeffrey, and J. G. Lunney, “Conical diffraction: observations and theory,” Proc. R. Soc. Lond.462, 1629–1642 (2006)).

2005 (1)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

2004 (2)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67(5), 717–754 (2004).
[CrossRef]

2003 (1)

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

2002 (2)

M. D. Pickett and A. Lakhtakia, “On gyrotropic chiral sculptured thin films for magneto-optics,” Optik (Stuttg.)113(8), 367–371 (2002).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

1999 (1)

A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun.168(5-6), 457–465 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

M. Schubert, “Generalized ellipsometry and complex optical systems,” Thin Solid Films313-314, 323–332 (1998).
[CrossRef]

1996 (1)

1993 (2)

1991 (1)

J. Lekner, “Reflection and refraction by uniaxial crystals,” J. Phys. Condens. Matter3(32), 6121–6133 (1991).
[CrossRef]

1990 (1)

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt.37(7), 1227–1232 (1990).
[CrossRef]

1987 (1)

J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev.87(6), 1359–1399 (1987).
[CrossRef]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27(2), 985–1009 (1983).
[CrossRef]

1978 (2)

1977 (1)

R. C. McPhedran and D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. (Berl.)14(1), 1–20 (1977).
[CrossRef]

1972 (1)

1920 (1)

K. F. Lindman, “Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarisation der elekromagnetischen Wellen,” Ann. Phys.368 (23), 621–644 (1920).
[CrossRef]

1898 (1)

J. C. Bose, “On the rotation of plane of polarization of electric waves by a twisted structure,” Proc. R. Soc. London63(1), 146–152 (1898).
[CrossRef]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Arteaga, O.

H. Takechi, O. Arteaga, J. M. Ribo, and H. Watarai, “Chiroptical measurement of chiral aggregates at liquid-liquid interface in centrifugal liquid membrane cell by Mueller matrix and conventional circular dichroism methods,” Molecules16(12), 3636–3647 (2011).
[CrossRef]

Arwin, H.

H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag.92(12), 1583–1599 (2012).
[CrossRef]

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86(11-12), 328–376 (2011).
[CrossRef]

T. W. H. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express19(3), 2014–2028 (2011).
[CrossRef] [PubMed]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27(2), 985–1009 (1983).
[CrossRef]

Azzam, R. M. A.

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Bagnall, D. M.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

Barron, L. D.

L. D. Barron and A. D. Buckingham, “Vibrational optical activity,” Chem. Phys. Lett.492(4-6), 199–213 (2010).
[CrossRef]

Bashara, N. M.

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Bergmair, I.

T. W. H. Oates, B. Dastmalchi, G. Isic, S. Tollabimazraehno, C. Helgert, T. Pertsch, E. B. Kley, M. A. Verschuuren, I. Bergmair, K. Hingerl, and K. Hinrichs, “Oblique incidence ellipsometric characterization and the substrate dependence of visible frequency fishnet metamaterials,” Opt. Express20(10), 11166–11177 (2012).
[CrossRef] [PubMed]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Bergmair, M.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Berry, M. V.

Confusingly, a similar related phenomenon, termed internal conical diffraction, describes the refraction of a Gaussian beam in a biaxial transparent crystal into a light cone, which forms a cylindrical beam upon exit into an isotropic medium (seeM. V. Berry, M. R. Jeffrey, and J. G. Lunney, “Conical diffraction: observations and theory,” Proc. R. Soc. Lond.462, 1629–1642 (2006)).

Bertin, F.

M. Foldyna, A. De Martino, E. Garcia-Caurel, R. Ossikovski, F. Bertin, J. Hazart, K. Postava, and B. Drevillon, “Monitoring critical dimensions of bidimensional gratings by spectroscopic ellipsometry and Mueller polarimetry,” Phys. Status Solidi A205, 806–809 (2008).

Bose, J. C.

J. C. Bose, “On the rotation of plane of polarization of electric waves by a twisted structure,” Proc. R. Soc. London63(1), 146–152 (1898).
[CrossRef]

Braun, J.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106(18), 185501 (2011).
[CrossRef] [PubMed]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Bryan-Brown, G. P.

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt.37(7), 1227–1232 (1990).
[CrossRef]

Buckingham, A. D.

L. D. Barron and A. D. Buckingham, “Vibrational optical activity,” Chem. Phys. Lett.492(4-6), 199–213 (2010).
[CrossRef]

Chen, Y.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

Chipman, R. A.

Dastmalchi, B.

T. W. H. Oates, B. Dastmalchi, G. Isic, S. Tollabimazraehno, C. Helgert, T. Pertsch, E. B. Kley, M. A. Verschuuren, I. Bergmair, K. Hingerl, and K. Hinrichs, “Oblique incidence ellipsometric characterization and the substrate dependence of visible frequency fishnet metamaterials,” Opt. Express20(10), 11166–11177 (2012).
[CrossRef] [PubMed]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

De Martino, A.

M. Foldyna, A. De Martino, E. Garcia-Caurel, R. Ossikovski, F. Bertin, J. Hazart, K. Postava, and B. Drevillon, “Monitoring critical dimensions of bidimensional gratings by spectroscopic ellipsometry and Mueller polarimetry,” Phys. Status Solidi A205, 806–809 (2008).

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Detlefs, C.

C. Detlefs, M. Sanchez del Rio, and C. Mazzoli, “X-ray polarization: general formalism and polarization analysis,” Eur. Phys. J. Spec. Top.208(1), 359–371 (2012).
[CrossRef]

Dressel, M.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106(18), 185501 (2011).
[CrossRef] [PubMed]

Drevillon, B.

M. Foldyna, A. De Martino, E. Garcia-Caurel, R. Ossikovski, F. Bertin, J. Hazart, K. Postava, and B. Drevillon, “Monitoring critical dimensions of bidimensional gratings by spectroscopic ellipsometry and Mueller polarimetry,” Phys. Status Solidi A205, 806–809 (2008).

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Facsko, S.

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt.11(7), 074009 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

Foldyna, M.

M. Foldyna, A. De Martino, E. Garcia-Caurel, R. Ossikovski, F. Bertin, J. Hazart, K. Postava, and B. Drevillon, “Monitoring critical dimensions of bidimensional gratings by spectroscopic ellipsometry and Mueller polarimetry,” Phys. Status Solidi A205, 806–809 (2008).

Freudenthal, J. H.

J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality21(Suppl 1), E20–E27 (2009).
[CrossRef] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Gao, H. W.

H. W. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater.20(4), 529–539 (2010).
[CrossRef]

Garcia-Caurel, E.

M. Foldyna, A. De Martino, E. Garcia-Caurel, R. Ossikovski, F. Bertin, J. Hazart, K. Postava, and B. Drevillon, “Monitoring critical dimensions of bidimensional gratings by spectroscopic ellipsometry and Mueller polarimetry,” Phys. Status Solidi A205, 806–809 (2008).

Garcia-Meca, C.

R. Ortuño, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Giardina, K. A.

Giessen, H.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106(18), 185501 (2011).
[CrossRef] [PubMed]

Gompf, B.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106(18), 185501 (2011).
[CrossRef] [PubMed]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Haggans, C. W.

Hazart, J.

M. Foldyna, A. De Martino, E. Garcia-Caurel, R. Ossikovski, F. Bertin, J. Hazart, K. Postava, and B. Drevillon, “Monitoring critical dimensions of bidimensional gratings by spectroscopic ellipsometry and Mueller polarimetry,” Phys. Status Solidi A205, 806–809 (2008).

Helgert, C.

T. W. H. Oates, B. Dastmalchi, G. Isic, S. Tollabimazraehno, C. Helgert, T. Pertsch, E. B. Kley, M. A. Verschuuren, I. Bergmair, K. Hingerl, and K. Hinrichs, “Oblique incidence ellipsometric characterization and the substrate dependence of visible frequency fishnet metamaterials,” Opt. Express20(10), 11166–11177 (2012).
[CrossRef] [PubMed]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Hesser, G.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Hilber, W.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Hingerl, K.

T. W. H. Oates, B. Dastmalchi, G. Isic, S. Tollabimazraehno, C. Helgert, T. Pertsch, E. B. Kley, M. A. Verschuuren, I. Bergmair, K. Hingerl, and K. Hinrichs, “Oblique incidence ellipsometric characterization and the substrate dependence of visible frequency fishnet metamaterials,” Opt. Express20(10), 11166–11177 (2012).
[CrossRef] [PubMed]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Hinrichs, K.

Hollis, E.

J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality21(Suppl 1), E20–E27 (2009).
[CrossRef] [PubMed]

Hübner, U.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106(18), 185501 (2011).
[CrossRef] [PubMed]

Hunter, W. R.

Hutley, M. C.

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt.37(7), 1227–1232 (1990).
[CrossRef]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Isic, G.

Jarrendahl, K.

H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag.92(12), 1583–1599 (2012).
[CrossRef]

Jeffrey, M. R.

Confusingly, a similar related phenomenon, termed internal conical diffraction, describes the refraction of a Gaussian beam in a biaxial transparent crystal into a light cone, which forms a cylindrical beam upon exit into an isotropic medium (seeM. V. Berry, M. R. Jeffrey, and J. G. Lunney, “Conical diffraction: observations and theory,” Proc. R. Soc. Lond.462, 1629–1642 (2006)).

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Jensen, H. P.

J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev.87(6), 1359–1399 (1987).
[CrossRef]

Kafesaki, M.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Kahr, B.

J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality21(Suppl 1), E20–E27 (2009).
[CrossRef] [PubMed]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Kley, E. B.

T. W. H. Oates, B. Dastmalchi, G. Isic, S. Tollabimazraehno, C. Helgert, T. Pertsch, E. B. Kley, M. A. Verschuuren, I. Bergmair, K. Hingerl, and K. Hinrichs, “Oblique incidence ellipsometric characterization and the substrate dependence of visible frequency fishnet metamaterials,” Opt. Express20(10), 11166–11177 (2012).
[CrossRef] [PubMed]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Kostuk, R. K.

Krasavin, A.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Lakhtakia, A.

M. D. Pickett and A. Lakhtakia, “On gyrotropic chiral sculptured thin films for magneto-optics,” Optik (Stuttg.)113(8), 367–371 (2002).
[CrossRef]

A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun.168(5-6), 457–465 (1999).
[CrossRef]

Landin, J.

H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag.92(12), 1583–1599 (2012).
[CrossRef]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Lee, J. K.

J. K. Lee, J. T. Shen, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun.277(1), 63–66 (2007).
[CrossRef]

Lekner, J.

J. Lekner, “Reflection and refraction by uniaxial crystals,” J. Phys. Condens. Matter3(32), 6121–6133 (1991).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, L. F.

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Lindman, K. F.

K. F. Lindman, “Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarisation der elekromagnetischen Wellen,” Ann. Phys.368 (23), 621–644 (1920).
[CrossRef]

Lu, S. Y.

Lunney, J. G.

Confusingly, a similar related phenomenon, termed internal conical diffraction, describes the refraction of a Gaussian beam in a biaxial transparent crystal into a light cone, which forms a cylindrical beam upon exit into an isotropic medium (seeM. V. Berry, M. R. Jeffrey, and J. G. Lunney, “Conical diffraction: observations and theory,” Proc. R. Soc. Lond.462, 1629–1642 (2006)).

Magnusson, R.

H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag.92(12), 1583–1599 (2012).
[CrossRef]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

Marti, J.

R. Ortuño, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

Martinez, A.

R. Ortuño, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

Maystre, D.

M. Neviere, D. Maystre, and W. R. Hunter, “Use of classical and conical diffraction mountings for XUV gratings,” J. Opt. Soc. Am.68(8), 1106–1113 (1978).
[CrossRef]

R. C. McPhedran and D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. (Berl.)14(1), 1–20 (1977).
[CrossRef]

Mazzoli, C.

C. Detlefs, M. Sanchez del Rio, and C. Mazzoli, “X-ray polarization: general formalism and polarization analysis,” Eur. Phys. J. Spec. Top.208(1), 359–371 (2012).
[CrossRef]

McCall, M.

A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun.168(5-6), 457–465 (1999).
[CrossRef]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

McPhedran, R. C.

R. C. McPhedran and D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. (Berl.)14(1), 1–20 (1977).
[CrossRef]

Muehlberger, M.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Neviere, M.

Oates, T. W. H.

Odom, T. W.

H. W. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater.20(4), 529–539 (2010).
[CrossRef]

Ortuño, R.

R. Ortuño, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

Ossikovski, R.

M. Foldyna, A. De Martino, E. Garcia-Caurel, R. Ossikovski, F. Bertin, J. Hazart, K. Postava, and B. Drevillon, “Monitoring critical dimensions of bidimensional gratings by spectroscopic ellipsometry and Mueller polarimetry,” Phys. Status Solidi A205, 806–809 (2008).

Penciu, R.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Pertsch, T.

T. W. H. Oates, B. Dastmalchi, G. Isic, S. Tollabimazraehno, C. Helgert, T. Pertsch, E. B. Kley, M. A. Verschuuren, I. Bergmair, K. Hingerl, and K. Hinrichs, “Oblique incidence ellipsometric characterization and the substrate dependence of visible frequency fishnet metamaterials,” Opt. Express20(10), 11166–11177 (2012).
[CrossRef] [PubMed]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Pickett, M. D.

M. D. Pickett and A. Lakhtakia, “On gyrotropic chiral sculptured thin films for magneto-optics,” Optik (Stuttg.)113(8), 367–371 (2002).
[CrossRef]

Plum, E.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt.11(7), 074009 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

Postava, K.

M. Foldyna, A. De Martino, E. Garcia-Caurel, R. Ossikovski, F. Bertin, J. Hazart, K. Postava, and B. Drevillon, “Monitoring critical dimensions of bidimensional gratings by spectroscopic ellipsometry and Mueller polarimetry,” Phys. Status Solidi A205, 806–809 (2008).

Potton, R. J.

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67(5), 717–754 (2004).
[CrossRef]

Potts, A.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

Pshenay-Severin, E.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Ranjan, M.

Ribo, J. M.

H. Takechi, O. Arteaga, J. M. Ribo, and H. Watarai, “Chiroptical measurement of chiral aggregates at liquid-liquid interface in centrifugal liquid membrane cell by Mueller matrix and conventional circular dichroism methods,” Molecules16(12), 3636–3647 (2011).
[CrossRef]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Rodriguez-Fortuno, F. J.

R. Ortuño, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

Saeed, A.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Sambles, J. R.

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt.37(7), 1227–1232 (1990).
[CrossRef]

Sanchez del Rio, M.

C. Detlefs, M. Sanchez del Rio, and C. Mazzoli, “X-ray polarization: general formalism and polarization analysis,” Eur. Phys. J. Spec. Top.208(1), 359–371 (2012).
[CrossRef]

Schellman, J.

J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev.87(6), 1359–1399 (1987).
[CrossRef]

Schoeftner, R.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Schubert, M.

M. Schubert, “Generalized ellipsometry and complex optical systems,” Thin Solid Films313-314, 323–332 (1998).
[CrossRef]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

Shahriar, M. S.

J. K. Lee, J. T. Shen, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun.277(1), 63–66 (2007).
[CrossRef]

Shen, J. T.

J. K. Lee, J. T. Shen, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun.277(1), 63–66 (2007).
[CrossRef]

Shen, N. H.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Simovski, C. R.

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt.13(1), 013001 (2011).
[CrossRef]

Smith, D. R.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

Soukoulis, C. M.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27(2), 985–1009 (1983).
[CrossRef]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Takechi, H.

H. Takechi, O. Arteaga, J. M. Ribo, and H. Watarai, “Chiroptical measurement of chiral aggregates at liquid-liquid interface in centrifugal liquid membrane cell by Mueller matrix and conventional circular dichroism methods,” Molecules16(12), 3636–3647 (2011).
[CrossRef]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Tollabimazraehno, S.

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Verschuuren, M. A.

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Watarai, H.

H. Takechi, O. Arteaga, J. M. Ribo, and H. Watarai, “Chiroptical measurement of chiral aggregates at liquid-liquid interface in centrifugal liquid membrane cell by Mueller matrix and conventional circular dichroism methods,” Molecules16(12), 3636–3647 (2011).
[CrossRef]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Weiss, T.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106(18), 185501 (2011).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Wormeester, H.

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86(11-12), 328–376 (2011).
[CrossRef]

Zayats, A. V.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt.11(7), 074009 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

Zhou, W.

H. W. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater.20(4), 529–539 (2010).
[CrossRef]

Adv. Funct. Mater. (1)

H. W. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater.20(4), 529–539 (2010).
[CrossRef]

Ann. Phys. (1)

K. F. Lindman, “Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarisation der elekromagnetischen Wellen,” Ann. Phys.368 (23), 621–644 (1920).
[CrossRef]

Appl. Phys. (Berl.) (1)

R. C. McPhedran and D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. (Berl.)14(1), 1–20 (1977).
[CrossRef]

Appl. Phys. Lett. (1)

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

L. D. Barron and A. D. Buckingham, “Vibrational optical activity,” Chem. Phys. Lett.492(4-6), 199–213 (2010).
[CrossRef]

Chem. Rev. (1)

J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev.87(6), 1359–1399 (1987).
[CrossRef]

Chirality (1)

J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality21(Suppl 1), E20–E27 (2009).
[CrossRef] [PubMed]

Eur. Phys. J. Spec. Top. (1)

C. Detlefs, M. Sanchez del Rio, and C. Mazzoli, “X-ray polarization: general formalism and polarization analysis,” Eur. Phys. J. Spec. Top.208(1), 359–371 (2012).
[CrossRef]

J. Mod. Opt. (1)

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt.37(7), 1227–1232 (1990).
[CrossRef]

J. Opt. (2)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011).
[CrossRef]

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt.13(1), 013001 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt.11(7), 074009 (2009).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (3)

J. Phys. Condens. Matter (1)

J. Lekner, “Reflection and refraction by uniaxial crystals,” J. Phys. Condens. Matter3(32), 6121–6133 (1991).
[CrossRef]

Molecules (1)

H. Takechi, O. Arteaga, J. M. Ribo, and H. Watarai, “Chiroptical measurement of chiral aggregates at liquid-liquid interface in centrifugal liquid membrane cell by Mueller matrix and conventional circular dichroism methods,” Molecules16(12), 3636–3647 (2011).
[CrossRef]

Nanotechnology (1)

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011).
[CrossRef] [PubMed]

Nat. Commun. (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun. (2)

A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun.168(5-6), 457–465 (1999).
[CrossRef]

J. K. Lee, J. T. Shen, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun.277(1), 63–66 (2007).
[CrossRef]

Opt. Express (2)

Optik (Stuttg.) (1)

M. D. Pickett and A. Lakhtakia, “On gyrotropic chiral sculptured thin films for magneto-optics,” Optik (Stuttg.)113(8), 367–371 (2002).
[CrossRef]

Philos. Mag. (1)

H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag.92(12), 1583–1599 (2012).
[CrossRef]

Phys. Rev. B (3)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

R. Ortuño, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27(2), 985–1009 (1983).
[CrossRef]

Phys. Rev. Lett. (4)

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106(18), 185501 (2011).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

M. Foldyna, A. De Martino, E. Garcia-Caurel, R. Ossikovski, F. Bertin, J. Hazart, K. Postava, and B. Drevillon, “Monitoring critical dimensions of bidimensional gratings by spectroscopic ellipsometry and Mueller polarimetry,” Phys. Status Solidi A205, 806–809 (2008).

Proc. R. Soc. Lond. (1)

Confusingly, a similar related phenomenon, termed internal conical diffraction, describes the refraction of a Gaussian beam in a biaxial transparent crystal into a light cone, which forms a cylindrical beam upon exit into an isotropic medium (seeM. V. Berry, M. R. Jeffrey, and J. G. Lunney, “Conical diffraction: observations and theory,” Proc. R. Soc. Lond.462, 1629–1642 (2006)).

Proc. R. Soc. London (1)

J. C. Bose, “On the rotation of plane of polarization of electric waves by a twisted structure,” Proc. R. Soc. London63(1), 146–152 (1898).
[CrossRef]

Prog. Surf. Sci. (1)

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86(11-12), 328–376 (2011).
[CrossRef]

Rep. Prog. Phys. (1)

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67(5), 717–754 (2004).
[CrossRef]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Thin Solid Films (1)

M. Schubert, “Generalized ellipsometry and complex optical systems,” Thin Solid Films313-314, 323–332 (1998).
[CrossRef]

Other (2)

W. A. Shurcliff, Polarized Light: Production and Use (Harvard University Press, 1962).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of (a) the silver meshed grid and (b) the fishnet metamaterial. Both are supported by a Si substrate. (c) Scanning electron micrograph of the fishnet metamaterial. The scale bar is 500 nm.

Fig. 2
Fig. 2

Generalized ellipsometry parameters (a) tanΨpp/ss and (b) tanΨps/ss measured under azimuthal rotation for the meshed grid. The grey scale values are displayed at the top of each element. The predictions of Eqs. (4) and (5) are also shown as dashed lines in (a) for the Ag-Si interface (bottom modes below 1.5 eV) and Ag-air interface (top modes, above 1.5 eV).

Fig. 3
Fig. 3

Comparison of RCWA simulations of the tanΨ spectra (black line) with the measured values (red line) at azimuths of a) 0° and c) 45° for the meshed grid. The reflectances of the p- and s-polarizations are shown from the RCWA simulation for b) 0° and d) 45°.

Fig. 4
Fig. 4

Generalized ellipsometry parameters (a) tanΨpp/ss and (b) tanΨps/ss measured under azimuthal rotation for the fishnet metamaterial. The grey scale values are displayed at the top of each element. The predictions of Eqs. (4) and (5) are also shown in (a) for the Ag-Si interface (bottom modes below 1.125 eV) and gap-SPP (top modes above 1.125 eV).

Fig. 5
Fig. 5

Comparison of RCWA simulations of the tanΨ spectra (black line) with the measured values (red line) at azimuths of a) 0° and c) 45° for the fishnet metamaterial. The reflectances of the p- and s-polarizations are shown from the RCWA simulation for b) 0° and d) 45°.

Fig. 6
Fig. 6

Simulated difference in the reflectance of incident plane waves from the meshed grid for (a) orthogonal linear polarizations and (b) left- and right-circular polarizations. Note the difference in scale of the ordinate axes.

Fig. 7
Fig. 7

Simulated MM for the meshed grid using RCWA at polar 45° and azimuth 20° showing the symmetry of the elements.

Fig. 8
Fig. 8

Reflected Stokes parameters for incident unpolarized light, calculated from the measured Mueller matrix for the fishnet metamaterial at a polar angle of 45° and azimuth of 20°.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ E rp E rs ]=[ r pp r ps r sp r ss ][ E ip E is ]
r pp r ss tan Ψ pp/ss exp( i Δ pp/ss )
S r =[ m 11 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 ] S i
k SPP = k 0 ε a ε m ε a + ε m
| k SPP |=| k x ± G i,j |=| k 0 sinθ±i G x ±j G y |

Metrics