Abstract

Ridge waveguides have been fabricated in Nd:YAG crystals by using ion irradiation and precise diamond blade dicing. Continuous-wave lasers at ~1064 nm have been realized in the ridge waveguides through optical pumping at 808 nm at room temperature. The ridge guiding structure shows superior lasing performance with respect to the planar counterpart with a slope efficiency of 43% and a maximum output power of 84 mW.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
    [CrossRef]
  2. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
    [CrossRef]
  3. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci.33(3–4), 165–182 (2008).
    [CrossRef]
  4. N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett.82(23), 4038–4040 (2003).
    [CrossRef]
  5. T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H. C. Luan, “Low threshold 1.2 µm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
    [CrossRef]
  6. N. Tansu and L. J. Mawst, “Low-threshold strain-compensated InGaAs(N) (λ = 1.19-1.31 μm) quantum-well lasers,” IEEE Photon. Technol. Lett.14(4), 444–446 (2002).
    [CrossRef]
  7. N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
    [CrossRef]
  8. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
    [CrossRef]
  9. M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon-implanted Nd:YAG waveguides,” Appl. Phys. Lett.83(20), 4110 (2003).
    [CrossRef]
  10. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express12(10), 2264–2269 (2004).
    [CrossRef] [PubMed]
  11. Y. C. Yao, Y. Tan, N. N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express18(24), 24516–24521 (2010).
    [CrossRef] [PubMed]
  12. Y. Y. Ren, N. N. Dong, F. Chen, A. A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett.35(19), 3276–3278 (2010).
    [CrossRef] [PubMed]
  13. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30(17), 2248–2250 (2005).
    [CrossRef] [PubMed]
  14. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
    [CrossRef]
  15. Y. C. Jia, N. N. Dong, F. Chen, J. R. Vázquez de Aldana, S. Akhmadaliev, and S. Q. Zhou, “Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals,” Opt. Mater. Express2(5), 657–662 (2012).
    [CrossRef]
  16. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express17(20), 17792–17800 (2009).
    [CrossRef] [PubMed]
  17. J. Sun, Y. Gan, and C. Q. Xu, “Efficient green-light generation by proton-exchanged periodically poled MgO:LiNbO3 ridge waveguide,” Opt. Lett.36(4), 549–551 (2011).
    [CrossRef] [PubMed]
  18. J. Sun and C. Q. Xu, “466 mW green light generation using annealed proton-exchanged periodically poled MgO: LiNbO3 ridge waveguides,” Opt. Lett.37(11), 2028–2030 (2012).
    [CrossRef] [PubMed]
  19. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002).
    [CrossRef]
  20. J. F. Ziegler, computer code, SRIM http://www.srim.org .
  21. Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett.35(19), 3276–3278 (2010).
    [CrossRef] [PubMed]
  22. Y. Y. Ren, N. N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express19(6), 5522–5527 (2011).
    [CrossRef] [PubMed]
  23. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010).
    [CrossRef] [PubMed]
  24. J. Lamela, A. Ródenas, D. Jaque, F. Jaque, G. A. Torchia, C. Mendez, and L. Roso, “Field optical and micro-luminescence investigations of femtosecond laser micro-structured Nd:YAG crystals,” Opt. Express15(6), 3285–3290 (2007).
    [CrossRef] [PubMed]

2012

2011

2010

2009

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express17(20), 17792–17800 (2009).
[CrossRef] [PubMed]

2008

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci.33(3–4), 165–182 (2008).
[CrossRef]

2007

2005

2004

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express12(10), 2264–2269 (2004).
[CrossRef] [PubMed]

2003

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett.82(23), 4038–4040 (2003).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon-implanted Nd:YAG waveguides,” Appl. Phys. Lett.83(20), 4110 (2003).
[CrossRef]

2002

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002).
[CrossRef]

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H. C. Luan, “Low threshold 1.2 µm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

N. Tansu and L. J. Mawst, “Low-threshold strain-compensated InGaAs(N) (λ = 1.19-1.31 μm) quantum-well lasers,” IEEE Photon. Technol. Lett.14(4), 444–446 (2002).
[CrossRef]

Akhmadaliev, S.

Asobe, M.

Benayas, A.

Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett.35(19), 3276–3278 (2010).
[CrossRef] [PubMed]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Benayas, A. A.

Bettiol, A. A.

Bour, D.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H. C. Luan, “Low threshold 1.2 µm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Calmano, T.

Cantelar, E.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon-implanted Nd:YAG waveguides,” Appl. Phys. Lett.83(20), 4110 (2003).
[CrossRef]

Chang, Y. L.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H. C. Luan, “Low threshold 1.2 µm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Chen, F.

Y. C. Jia, N. N. Dong, F. Chen, J. R. Vázquez de Aldana, S. Akhmadaliev, and S. Q. Zhou, “Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals,” Opt. Mater. Express2(5), 657–662 (2012).
[CrossRef]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
[CrossRef]

Y. Y. Ren, N. N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express19(6), 5522–5527 (2011).
[CrossRef] [PubMed]

Y. C. Yao, Y. Tan, N. N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express18(24), 24516–24521 (2010).
[CrossRef] [PubMed]

Y. Y. Ren, N. N. Dong, F. Chen, A. A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett.35(19), 3276–3278 (2010).
[CrossRef] [PubMed]

Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett.35(19), 3276–3278 (2010).
[CrossRef] [PubMed]

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci.33(3–4), 165–182 (2008).
[CrossRef]

Corzine, S.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H. C. Luan, “Low threshold 1.2 µm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Domenech, M.

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon-implanted Nd:YAG waveguides,” Appl. Phys. Lett.83(20), 4110 (2003).
[CrossRef]

Dong, N. N.

Flores-Romero, E.

Gan, Y.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

Hänsch, T. W.

Hong, F. L.

Huber, G.

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Jaque, D.

Jaque, F.

Jia, Y. C.

Khrushchev, I.

Lamela, J.

Lifante, G.

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon-implanted Nd:YAG waveguides,” Appl. Phys. Lett.83(20), 4110 (2003).
[CrossRef]

Luan, H. C.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H. C. Luan, “Low threshold 1.2 µm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Marangoni, M.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002).
[CrossRef]

Márquez, H.

Mawst, L. J.

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett.82(23), 4038–4040 (2003).
[CrossRef]

N. Tansu and L. J. Mawst, “Low-threshold strain-compensated InGaAs(N) (λ = 1.19-1.31 μm) quantum-well lasers,” IEEE Photon. Technol. Lett.14(4), 444–446 (2002).
[CrossRef]

Mendez, C.

Mitchell, J.

Narusawa, T.

Nishida, Y.

Nishikawa, T.

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Okhrimchuk, A. G.

Osellame, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002).
[CrossRef]

Ozawa, A.

Petermann, K.

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Qiu, F.

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Ramponi, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002).
[CrossRef]

Rangel-Rojo, R.

Ren, Y. Y.

Rickards, J.

Rodenas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Ródenas, A.

Roso, L.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

J. Lamela, A. Ródenas, D. Jaque, F. Jaque, G. A. Torchia, C. Mendez, and L. Roso, “Field optical and micro-luminescence investigations of femtosecond laser micro-structured Nd:YAG crystals,” Opt. Express15(6), 3285–3290 (2007).
[CrossRef] [PubMed]

Shestakov, A. V.

Siebenmorgen, J.

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Sun, J.

Takeuchi, T.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H. C. Luan, “Low threshold 1.2 µm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Tan, M.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H. C. Luan, “Low threshold 1.2 µm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Tan, Y.

Tandon, A.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H. C. Luan, “Low threshold 1.2 µm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Tansu, N.

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett.82(23), 4038–4040 (2003).
[CrossRef]

N. Tansu and L. J. Mawst, “Low-threshold strain-compensated InGaAs(N) (λ = 1.19-1.31 μm) quantum-well lasers,” IEEE Photon. Technol. Lett.14(4), 444–446 (2002).
[CrossRef]

Torchia, G. A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

J. Lamela, A. Ródenas, D. Jaque, F. Jaque, G. A. Torchia, C. Mendez, and L. Roso, “Field optical and micro-luminescence investigations of femtosecond laser micro-structured Nd:YAG crystals,” Opt. Express15(6), 3285–3290 (2007).
[CrossRef] [PubMed]

Trejo-Luna, R.

Tünnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Twist, R.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H. C. Luan, “Low threshold 1.2 µm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

Vázquez, G. V.

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express12(10), 2264–2269 (2004).
[CrossRef] [PubMed]

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon-implanted Nd:YAG waveguides,” Appl. Phys. Lett.83(20), 4110 (2003).
[CrossRef]

Vázquez de Aldana, J. R.

Xu, C. Q.

Yao, Y. C.

Yeh, J. Y.

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett.82(23), 4038–4040 (2003).
[CrossRef]

Yeh, J.-Y.

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

Zhou, S. Q.

Appl. Phys. B

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Appl. Phys. Lett.

N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215-1233 nm,” Appl. Phys. Lett.82(23), 4038–4040 (2003).
[CrossRef]

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H. C. Luan, “Low threshold 1.2 µm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett.80(14), 2445–2447 (2002).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon-implanted Nd:YAG waveguides,” Appl. Phys. Lett.83(20), 4110 (2003).
[CrossRef]

Crit. Rev. Solid State Mater. Sci.

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci.33(3–4), 165–182 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Tansu and L. J. Mawst, “Low-threshold strain-compensated InGaAs(N) (λ = 1.19-1.31 μm) quantum-well lasers,” IEEE Photon. Technol. Lett.14(4), 444–446 (2002).
[CrossRef]

J. Phys. Condens. Matter

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004).
[CrossRef]

Laser Photon. Rev.

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Prog. Quantum Electron.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

Rev. Sci. Instrum.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002).
[CrossRef]

Other

J. F. Ziegler, computer code, SRIM http://www.srim.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The schematic of (a) 15 MeV C5+ ions irradiation and (b) diamond blade dicing processes for the Nd:YAG ridge waveguides fabrication.

Fig. 2
Fig. 2

(a) SEM image of the cross section of a diced Nd:YAG ridge waveguide; (b) magnification of region marked by dashed line from (a); (c) measured near-field profile of TE00 mode of the ridge waveguide at wavelength 632.8 nm.

Fig. 3
Fig. 3

The schematic of the experimental setup for propagation loss measurement.

Fig. 4
Fig. 4

The electronic stopping power (red dashed line), nuclear stopping power (green dashed line) curves as well as the refractive index profile (blue solid line) of the Nd:YAG waveguide as a function of the depth from the sample surface.

Fig. 5
Fig. 5

Laser emission spectrum from the Nd:YAG ridge waveguides. The inset depicts the laser modal profile at the lasing wavelength of ~1064 nm.

Fig. 6
Fig. 6

The cw waveguide laser output powers at 1064 nm as a function of the absorbed light power at 808 nm. The triangular and rectangular symbols stand for the data of ridge and channel waveguides, respectively. The solid lines represent the linear fit of the experimental data.

Metrics