Abstract

We report on the formation of KOTiPO4 optical ridge waveguide combined ion implantation and Ar-ion beam etching in this manuscript. We used 6 MeV silicon ion implanted into our samples with the fluence of 6 × 1014 ions/cm2, which is relative high values for both energy and fluence. The guided mode and light propagation properties were investigated by prism-coupling and end-face coupling method. Numerical simulation was performed based on the reconstructed 2D refractive index profile of waveguides cross section for comparison. We obtain non-leaky waveguide structure in nx direction after proper annealing treatment. The fabricated waveguide structures emerge as promising candidate for photonic design which will work at high temperature.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B6(4), 622–633 (1989).
    [CrossRef]
  2. D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett.92(16), 161908 (2008).
    [CrossRef]
  3. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron.13(3), 626–637 (2007).
    [CrossRef]
  4. C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B45(12), 124013 (2012).
    [CrossRef]
  5. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express1(2), 201–206 (2011).
    [CrossRef]
  6. S. Zhang, J. Yao, W. Liu, Z. Huang, and F. Lu, “Second-harmonic generation to green using ultrafast fibre source and femtosecond written periodically poled waveguide,” Electron. Lett.46(18), 1290–1291 (2010).
    [CrossRef]
  7. W. P. Risk, S. D. Lau, R. Fontana, L. Lane, and C. Nadler, “Type-II second-harmonic generation and sum-frequency mixing in uniform KTiOPO4 channel waveguides,” Appl. Phys. Lett.63(10), 1301–1303 (1993).
    [CrossRef]
  8. P. M. Lundquist, H. Zhou, D. N. Hahn, J. B. Ketterson, G. K. Wong, M. E. Hagerman, K. R. Poeppelmeier, H. C. Ong, F. Xiong, and R. P. H. Chang, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications,” Appl. Phys. Lett.66(19), 2469–2471 (1995).
    [CrossRef]
  9. Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol.26(10), 1304–1308 (2008).
    [CrossRef]
  10. J. J. Yin, F. Lu, X. B. Ming, Z. H. Qin, and Y. J. Ma, “Theoretical modeling and experiment of refractive index change in He+ ion-implanted KTP waveguide,” Appl. Opt.51(13), 2400–2406 (2012).
    [CrossRef] [PubMed]
  11. L. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Enhanced refractive index well-confined planar and channel waveguides in KTiOPO4 produced by MeV C3+ ion implantation with low dose,” Appl. Phys. B94(2), 295–299 (2009).
    [CrossRef]
  12. L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express15(25), 16880–16885 (2007).
    [CrossRef] [PubMed]
  13. T. Opfermann, T. Höche, S. Klaumünzer, and W. Wesch, “Formation of amorphous tracks in KTiOPO4 during swift heavy ion implantation,” Nucl. Instrum. Methods Phys. Res. B166–167, 954–958 (2000).
    [CrossRef]
  14. M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett.83(18), 3659–3661 (2003).
    [CrossRef]
  15. J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, and X. L. Wang, “Lithium niobate ridge waveguides fabricated by ion implantation followed by ion beam etching,” J. Lightwave Technol.28(13), 1913–1916 (2010).
    [CrossRef]
  16. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
    [CrossRef]

2012 (2)

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B45(12), 124013 (2012).
[CrossRef]

J. J. Yin, F. Lu, X. B. Ming, Z. H. Qin, and Y. J. Ma, “Theoretical modeling and experiment of refractive index change in He+ ion-implanted KTP waveguide,” Appl. Opt.51(13), 2400–2406 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (2)

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, and X. L. Wang, “Lithium niobate ridge waveguides fabricated by ion implantation followed by ion beam etching,” J. Lightwave Technol.28(13), 1913–1916 (2010).
[CrossRef]

S. Zhang, J. Yao, W. Liu, Z. Huang, and F. Lu, “Second-harmonic generation to green using ultrafast fibre source and femtosecond written periodically poled waveguide,” Electron. Lett.46(18), 1290–1291 (2010).
[CrossRef]

2009 (1)

L. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Enhanced refractive index well-confined planar and channel waveguides in KTiOPO4 produced by MeV C3+ ion implantation with low dose,” Appl. Phys. B94(2), 295–299 (2009).
[CrossRef]

2008 (2)

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett.92(16), 161908 (2008).
[CrossRef]

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol.26(10), 1304–1308 (2008).
[CrossRef]

2007 (3)

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express15(25), 16880–16885 (2007).
[CrossRef] [PubMed]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron.13(3), 626–637 (2007).
[CrossRef]

2003 (1)

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett.83(18), 3659–3661 (2003).
[CrossRef]

2000 (1)

T. Opfermann, T. Höche, S. Klaumünzer, and W. Wesch, “Formation of amorphous tracks in KTiOPO4 during swift heavy ion implantation,” Nucl. Instrum. Methods Phys. Res. B166–167, 954–958 (2000).
[CrossRef]

1995 (1)

P. M. Lundquist, H. Zhou, D. N. Hahn, J. B. Ketterson, G. K. Wong, M. E. Hagerman, K. R. Poeppelmeier, H. C. Ong, F. Xiong, and R. P. H. Chang, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications,” Appl. Phys. Lett.66(19), 2469–2471 (1995).
[CrossRef]

1993 (1)

W. P. Risk, S. D. Lau, R. Fontana, L. Lane, and C. Nadler, “Type-II second-harmonic generation and sum-frequency mixing in uniform KTiOPO4 channel waveguides,” Appl. Phys. Lett.63(10), 1301–1303 (1993).
[CrossRef]

1989 (1)

Bierlein, J. D.

Böttger, T.

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B45(12), 124013 (2012).
[CrossRef]

Canalias, C.

Chang, R. P. H.

P. M. Lundquist, H. Zhou, D. N. Hahn, J. B. Ketterson, G. K. Wong, M. E. Hagerman, K. R. Poeppelmeier, H. C. Ong, F. Xiong, and R. P. H. Chang, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications,” Appl. Phys. Lett.66(19), 2469–2471 (1995).
[CrossRef]

Chen, F.

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett.92(16), 161908 (2008).
[CrossRef]

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol.26(10), 1304–1308 (2008).
[CrossRef]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express15(25), 16880–16885 (2007).
[CrossRef] [PubMed]

Cone, R. L.

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B45(12), 124013 (2012).
[CrossRef]

Fontana, R.

W. P. Risk, S. D. Lau, R. Fontana, L. Lane, and C. Nadler, “Type-II second-harmonic generation and sum-frequency mixing in uniform KTiOPO4 channel waveguides,” Appl. Phys. Lett.63(10), 1301–1303 (1993).
[CrossRef]

Hagerman, M. E.

P. M. Lundquist, H. Zhou, D. N. Hahn, J. B. Ketterson, G. K. Wong, M. E. Hagerman, K. R. Poeppelmeier, H. C. Ong, F. Xiong, and R. P. H. Chang, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications,” Appl. Phys. Lett.66(19), 2469–2471 (1995).
[CrossRef]

Hahn, D. N.

P. M. Lundquist, H. Zhou, D. N. Hahn, J. B. Ketterson, G. K. Wong, M. E. Hagerman, K. R. Poeppelmeier, H. C. Ong, F. Xiong, and R. P. H. Chang, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications,” Appl. Phys. Lett.66(19), 2469–2471 (1995).
[CrossRef]

Höche, T.

T. Opfermann, T. Höche, S. Klaumünzer, and W. Wesch, “Formation of amorphous tracks in KTiOPO4 during swift heavy ion implantation,” Nucl. Instrum. Methods Phys. Res. B166–167, 954–958 (2000).
[CrossRef]

Huang, Q.

Huang, Z.

S. Zhang, J. Yao, W. Liu, Z. Huang, and F. Lu, “Second-harmonic generation to green using ultrafast fibre source and femtosecond written periodically poled waveguide,” Electron. Lett.46(18), 1290–1291 (2010).
[CrossRef]

Imaeda, M.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett.83(18), 3659–3661 (2003).
[CrossRef]

Iwai, M.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett.83(18), 3659–3661 (2003).
[CrossRef]

Jaque, D.

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett.92(16), 161908 (2008).
[CrossRef]

Jiao, Y.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

Ketterson, J. B.

P. M. Lundquist, H. Zhou, D. N. Hahn, J. B. Ketterson, G. K. Wong, M. E. Hagerman, K. R. Poeppelmeier, H. C. Ong, F. Xiong, and R. P. H. Chang, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications,” Appl. Phys. Lett.66(19), 2469–2471 (1995).
[CrossRef]

Klaumünzer, S.

T. Opfermann, T. Höche, S. Klaumünzer, and W. Wesch, “Formation of amorphous tracks in KTiOPO4 during swift heavy ion implantation,” Nucl. Instrum. Methods Phys. Res. B166–167, 954–958 (2000).
[CrossRef]

Lane, L.

W. P. Risk, S. D. Lau, R. Fontana, L. Lane, and C. Nadler, “Type-II second-harmonic generation and sum-frequency mixing in uniform KTiOPO4 channel waveguides,” Appl. Phys. Lett.63(10), 1301–1303 (1993).
[CrossRef]

Lau, S. D.

W. P. Risk, S. D. Lau, R. Fontana, L. Lane, and C. Nadler, “Type-II second-harmonic generation and sum-frequency mixing in uniform KTiOPO4 channel waveguides,” Appl. Phys. Lett.63(10), 1301–1303 (1993).
[CrossRef]

Laurell, F.

Li, X. S.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

Liu, H.

Liu, P.

Liu, W.

S. Zhang, J. Yao, W. Liu, Z. Huang, and F. Lu, “Second-harmonic generation to green using ultrafast fibre source and femtosecond written periodically poled waveguide,” Electron. Lett.46(18), 1290–1291 (2010).
[CrossRef]

Liu, X. H.

Lu, F.

J. J. Yin, F. Lu, X. B. Ming, Z. H. Qin, and Y. J. Ma, “Theoretical modeling and experiment of refractive index change in He+ ion-implanted KTP waveguide,” Appl. Opt.51(13), 2400–2406 (2012).
[CrossRef] [PubMed]

S. Zhang, J. Yao, W. Liu, Z. Huang, and F. Lu, “Second-harmonic generation to green using ultrafast fibre source and femtosecond written periodically poled waveguide,” Electron. Lett.46(18), 1290–1291 (2010).
[CrossRef]

Lu, Q. M.

L. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Enhanced refractive index well-confined planar and channel waveguides in KTiOPO4 produced by MeV C3+ ion implantation with low dose,” Appl. Phys. B94(2), 295–299 (2009).
[CrossRef]

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol.26(10), 1304–1308 (2008).
[CrossRef]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express15(25), 16880–16885 (2007).
[CrossRef] [PubMed]

Lundquist, P. M.

P. M. Lundquist, H. Zhou, D. N. Hahn, J. B. Ketterson, G. K. Wong, M. E. Hagerman, K. R. Poeppelmeier, H. C. Ong, F. Xiong, and R. P. H. Chang, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications,” Appl. Phys. Lett.66(19), 2469–2471 (1995).
[CrossRef]

Ma, H. J.

L. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Enhanced refractive index well-confined planar and channel waveguides in KTiOPO4 produced by MeV C3+ ion implantation with low dose,” Appl. Phys. B94(2), 295–299 (2009).
[CrossRef]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

Ma, Y. J.

Macfarlane, R. M.

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B45(12), 124013 (2012).
[CrossRef]

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron.13(3), 626–637 (2007).
[CrossRef]

Ming, X. B.

Nadler, C.

W. P. Risk, S. D. Lau, R. Fontana, L. Lane, and C. Nadler, “Type-II second-harmonic generation and sum-frequency mixing in uniform KTiOPO4 channel waveguides,” Appl. Phys. Lett.63(10), 1301–1303 (1993).
[CrossRef]

Nie, R.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

Ong, H. C.

P. M. Lundquist, H. Zhou, D. N. Hahn, J. B. Ketterson, G. K. Wong, M. E. Hagerman, K. R. Poeppelmeier, H. C. Ong, F. Xiong, and R. P. H. Chang, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications,” Appl. Phys. Lett.66(19), 2469–2471 (1995).
[CrossRef]

Opfermann, T.

T. Opfermann, T. Höche, S. Klaumünzer, and W. Wesch, “Formation of amorphous tracks in KTiOPO4 during swift heavy ion implantation,” Nucl. Instrum. Methods Phys. Res. B166–167, 954–958 (2000).
[CrossRef]

Pasiskevicius, V.

Pavel, N.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett.83(18), 3659–3661 (2003).
[CrossRef]

Poeppelmeier, K. R.

P. M. Lundquist, H. Zhou, D. N. Hahn, J. B. Ketterson, G. K. Wong, M. E. Hagerman, K. R. Poeppelmeier, H. C. Ong, F. Xiong, and R. P. H. Chang, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications,” Appl. Phys. Lett.66(19), 2469–2471 (1995).
[CrossRef]

Qin, Z. H.

Risk, W. P.

W. P. Risk, S. D. Lau, R. Fontana, L. Lane, and C. Nadler, “Type-II second-harmonic generation and sum-frequency mixing in uniform KTiOPO4 channel waveguides,” Appl. Phys. Lett.63(10), 1301–1303 (1993).
[CrossRef]

Shoji, I.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett.83(18), 3659–3661 (2003).
[CrossRef]

Sun, Y.

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B45(12), 124013 (2012).
[CrossRef]

Taira, T.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett.83(18), 3659–3661 (2003).
[CrossRef]

Tan, Y.

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett.92(16), 161908 (2008).
[CrossRef]

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol.26(10), 1304–1308 (2008).
[CrossRef]

Thiel, C. W.

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B45(12), 124013 (2012).
[CrossRef]

Thilmann, N.

Vanherzeele, H.

Wang, K. M.

L. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Enhanced refractive index well-confined planar and channel waveguides in KTiOPO4 produced by MeV C3+ ion implantation with low dose,” Appl. Phys. B94(2), 295–299 (2009).
[CrossRef]

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol.26(10), 1304–1308 (2008).
[CrossRef]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express15(25), 16880–16885 (2007).
[CrossRef] [PubMed]

Wang, L.

Wang, L. L.

L. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Enhanced refractive index well-confined planar and channel waveguides in KTiOPO4 produced by MeV C3+ ion implantation with low dose,” Appl. Phys. B94(2), 295–299 (2009).
[CrossRef]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express15(25), 16880–16885 (2007).
[CrossRef] [PubMed]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

Wang, X. L.

Wesch, W.

T. Opfermann, T. Höche, S. Klaumünzer, and W. Wesch, “Formation of amorphous tracks in KTiOPO4 during swift heavy ion implantation,” Nucl. Instrum. Methods Phys. Res. B166–167, 954–958 (2000).
[CrossRef]

Wong, G. K.

P. M. Lundquist, H. Zhou, D. N. Hahn, J. B. Ketterson, G. K. Wong, M. E. Hagerman, K. R. Poeppelmeier, H. C. Ong, F. Xiong, and R. P. H. Chang, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications,” Appl. Phys. Lett.66(19), 2469–2471 (1995).
[CrossRef]

Xiong, F.

P. M. Lundquist, H. Zhou, D. N. Hahn, J. B. Ketterson, G. K. Wong, M. E. Hagerman, K. R. Poeppelmeier, H. C. Ong, F. Xiong, and R. P. H. Chang, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications,” Appl. Phys. Lett.66(19), 2469–2471 (1995).
[CrossRef]

Yamaguchi, S.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett.83(18), 3659–3661 (2003).
[CrossRef]

Yao, J.

S. Zhang, J. Yao, W. Liu, Z. Huang, and F. Lu, “Second-harmonic generation to green using ultrafast fibre source and femtosecond written periodically poled waveguide,” Electron. Lett.46(18), 1290–1291 (2010).
[CrossRef]

Yin, J. J.

Yoshino, T.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett.83(18), 3659–3661 (2003).
[CrossRef]

Zhang, S.

S. Zhang, J. Yao, W. Liu, Z. Huang, and F. Lu, “Second-harmonic generation to green using ultrafast fibre source and femtosecond written periodically poled waveguide,” Electron. Lett.46(18), 1290–1291 (2010).
[CrossRef]

Zhao, J. H.

Zhou, H.

P. M. Lundquist, H. Zhou, D. N. Hahn, J. B. Ketterson, G. K. Wong, M. E. Hagerman, K. R. Poeppelmeier, H. C. Ong, F. Xiong, and R. P. H. Chang, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications,” Appl. Phys. Lett.66(19), 2469–2471 (1995).
[CrossRef]

Zukauskas, A.

Appl. Opt. (1)

Appl. Phys. B (1)

L. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Enhanced refractive index well-confined planar and channel waveguides in KTiOPO4 produced by MeV C3+ ion implantation with low dose,” Appl. Phys. B94(2), 295–299 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett.92(16), 161908 (2008).
[CrossRef]

W. P. Risk, S. D. Lau, R. Fontana, L. Lane, and C. Nadler, “Type-II second-harmonic generation and sum-frequency mixing in uniform KTiOPO4 channel waveguides,” Appl. Phys. Lett.63(10), 1301–1303 (1993).
[CrossRef]

P. M. Lundquist, H. Zhou, D. N. Hahn, J. B. Ketterson, G. K. Wong, M. E. Hagerman, K. R. Poeppelmeier, H. C. Ong, F. Xiong, and R. P. H. Chang, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications,” Appl. Phys. Lett.66(19), 2469–2471 (1995).
[CrossRef]

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser,” Appl. Phys. Lett.83(18), 3659–3661 (2003).
[CrossRef]

Electron. Lett. (1)

S. Zhang, J. Yao, W. Liu, Z. Huang, and F. Lu, “Second-harmonic generation to green using ultrafast fibre source and femtosecond written periodically poled waveguide,” Electron. Lett.46(18), 1290–1291 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron.13(3), 626–637 (2007).
[CrossRef]

J. Appl. Phys. (1)

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B45(12), 124013 (2012).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

T. Opfermann, T. Höche, S. Klaumünzer, and W. Wesch, “Formation of amorphous tracks in KTiOPO4 during swift heavy ion implantation,” Nucl. Instrum. Methods Phys. Res. B166–167, 954–958 (2000).
[CrossRef]

Opt. Express (1)

Opt. Mater. Express (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Measured relative intensity of the light reflected from a prism versus effective index profile of KTP planar waveguides (S1 and S10) at a wavelength of 633 nm: (a) TE polarized of nx, (b) TE polarized of ny, (c) TM polarized of nz.

Fig. 2
Fig. 2

Evolution of neff (TE0 of nx) versus annealing conditions for the Si ions implanted KTP planar waveguide.

Fig. 3
Fig. 3

(a) Normalized nuclear and electronic energy losses as a function of the depth for 6 MeV Si ions implanted into KTP based on the SRIM 2010 simulation. (b) Reconstructed RIPs of nx, ny and nz at a wavelength of 633 nm after S10 annealing treatment.

Fig. 4
Fig. 4

The near field light intensity profile of the KTP planar waveguide after S10 annealing treatment: (a) Intensity profile of TE0 mode collected by CCD camera. (b) Mode intensity profile simulated by the beam propagation method by use of the RIP of nx.

Fig. 5
Fig. 5

(a) The etching depth of KTP ridge waveguide measured by stylus profiler. (b)The 2D RIP of xz plane for KTP ridge waveguide after S10 annealing treatment.

Fig. 6
Fig. 6

(a) The measured near-field light intensity profile of the quasi-TE mode at 633 nm after S10 annealing treatment. (b) The numerical calculations of the mode profile using BPM software. The inset is 2D profile correspondingly.

Tables (2)

Tables Icon

Table 1 Continuous Annealing Treatment Conditions of the Si Implanted KTP Crystalsa

Tables Icon

Table 2 Measured neff of Guided Modes of Si Implanted waveguides at a Wavelength of 633 nm after Different Annealing Treatmentsa

Metrics