Abstract

We demonstrate increased intra-ensemble energy transfer (ET) in monodispersed semiconducting quantum dots (QDs), mediated by localized plasmons on metallic thin films with nano-scale wrinkles. The increased ET results in a net spectral red-shift, up to three-fold increase in emission intensity, and a faster radiative recombination rate of the ensemble. The extent of the red-shift is dependent on QD size, and is largest for the QDs where the absorption spectrum overlaps the plasmonic resonance of the film. This effect has a uniform, macroscopic manifestation and may provide an inexpensive option of improving performance of QD based photovoltaic devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001).
    [CrossRef] [PubMed]
  2. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89(11), 117401 (2002).
    [CrossRef] [PubMed]
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  4. F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
    [CrossRef]
  5. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76(12), 125308 (2007).
    [CrossRef]
  6. S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89(18), 186802 (2002).
    [CrossRef] [PubMed]
  7. M. Lunz, A. L. Bradley, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions,” Phys. Rev. B83(11), 115423 (2011).
    [CrossRef]
  8. M. Lunz, A. L. Bradley, W.-Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B81(20), 205316 (2010).
    [CrossRef]
  9. C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009).
    [CrossRef]
  10. M. I. Stockman, “Femtosecond optical responses of disordered clusters, composites, and rough surfaces: ‘the ninth wave’ effect,” Phys. Rev. Lett.84(5), 1011–1014 (2000).
    [CrossRef] [PubMed]
  11. Z. Fang, S. Huang, Y. Lu, A. Pan, F. Lin, and X. Zhu, “Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons,” Phys. Rev. B82(8), 085403 (2010).
    [CrossRef]
  12. H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
    [CrossRef]
  13. A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
    [CrossRef]
  14. H. Zhao, M. Chaker, and D. Ma, “Self-selective recovery of photoluminescence in amphiphilic polymer encapsulated PbS quantum dots,” Phys. Chem. Chem. Phys.12(44), 14754–14761 (2010).
    [CrossRef] [PubMed]
  15. G. V. Shcherbatyuk, R. H. Inman, and S. Ghosh, “Anomalous photo-induced spectral changes in CdSe/ZnS quantum dots,” J. Appl. Phys.110(5), 053518 (2011).
    [CrossRef]
  16. C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett.76(9), 1517–1520 (1996).
    [CrossRef] [PubMed]
  17. T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
    [CrossRef] [PubMed]
  18. H. Szmacinski, K. Ray, and J. R. Lakowicz, “Effect of plasmonic nanostructures and nanofilms on fluorescence resonance energy transfer,” J. Biophotonics2(4), 243–252 (2009).
    [CrossRef] [PubMed]
  19. G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infra-red PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
    [CrossRef]
  20. V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007).
    [CrossRef]

2011 (2)

M. Lunz, A. L. Bradley, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions,” Phys. Rev. B83(11), 115423 (2011).
[CrossRef]

G. V. Shcherbatyuk, R. H. Inman, and S. Ghosh, “Anomalous photo-induced spectral changes in CdSe/ZnS quantum dots,” J. Appl. Phys.110(5), 053518 (2011).
[CrossRef]

2010 (5)

H. Zhao, M. Chaker, and D. Ma, “Self-selective recovery of photoluminescence in amphiphilic polymer encapsulated PbS quantum dots,” Phys. Chem. Chem. Phys.12(44), 14754–14761 (2010).
[CrossRef] [PubMed]

Z. Fang, S. Huang, Y. Lu, A. Pan, F. Lin, and X. Zhu, “Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons,” Phys. Rev. B82(8), 085403 (2010).
[CrossRef]

M. Lunz, A. L. Bradley, W.-Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B81(20), 205316 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infra-red PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
[CrossRef]

2009 (2)

H. Szmacinski, K. Ray, and J. R. Lakowicz, “Effect of plasmonic nanostructures and nanofilms on fluorescence resonance energy transfer,” J. Biophotonics2(4), 243–252 (2009).
[CrossRef] [PubMed]

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009).
[CrossRef]

2008 (1)

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

2007 (3)

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76(12), 125308 (2007).
[CrossRef]

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007).
[CrossRef]

2002 (3)

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89(11), 117401 (2002).
[CrossRef] [PubMed]

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89(18), 186802 (2002).
[CrossRef] [PubMed]

2001 (1)

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001).
[CrossRef] [PubMed]

2000 (1)

M. I. Stockman, “Femtosecond optical responses of disordered clusters, composites, and rough surfaces: ‘the ninth wave’ effect,” Phys. Rev. Lett.84(5), 1011–1014 (2000).
[CrossRef] [PubMed]

1996 (1)

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett.76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

1988 (1)

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[CrossRef]

Alivisatos, A. P.

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[CrossRef]

Ballif, C.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

Bawendi, M. G.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89(11), 117401 (2002).
[CrossRef] [PubMed]

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett.76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Bradley, A. L.

M. Lunz, A. L. Bradley, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions,” Phys. Rev. B83(11), 115423 (2011).
[CrossRef]

M. Lunz, A. L. Bradley, W.-Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B81(20), 205316 (2010).
[CrossRef]

Brus, L. E.

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[CrossRef]

Byrne, S. J.

M. Lunz, A. L. Bradley, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions,” Phys. Rev. B83(11), 115423 (2011).
[CrossRef]

M. Lunz, A. L. Bradley, W.-Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B81(20), 205316 (2010).
[CrossRef]

Carter, S. A.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007).
[CrossRef]

Chaker, M.

H. Zhao, M. Chaker, and D. Ma, “Self-selective recovery of photoluminescence in amphiphilic polymer encapsulated PbS quantum dots,” Phys. Chem. Chem. Phys.12(44), 14754–14761 (2010).
[CrossRef] [PubMed]

Chen, C.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Chen, W.-Y.

M. Lunz, A. L. Bradley, W.-Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B81(20), 205316 (2010).
[CrossRef]

Crooker, S. A.

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89(18), 186802 (2002).
[CrossRef] [PubMed]

Cubero, O.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

Du, H.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Eisler, H. J.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89(11), 117401 (2002).
[CrossRef] [PubMed]

English, D. S.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Fang, Z.

Z. Fang, S. Huang, Y. Lu, A. Pan, F. Lin, and X. Zhu, “Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons,” Phys. Rev. B82(8), 085403 (2010).
[CrossRef]

Ferri, C. G. L.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009).
[CrossRef]

Fisher, B. R.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89(11), 117401 (2002).
[CrossRef] [PubMed]

Fu, C.-C.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009).
[CrossRef]

Gaponik, N.

M. Lunz, A. L. Bradley, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions,” Phys. Rev. B83(11), 115423 (2011).
[CrossRef]

M. Lunz, A. L. Bradley, W.-Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B81(20), 205316 (2010).
[CrossRef]

Gerard, V. A.

M. Lunz, A. L. Bradley, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions,” Phys. Rev. B83(11), 115423 (2011).
[CrossRef]

M. Lunz, A. L. Bradley, W.-Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B81(20), 205316 (2010).
[CrossRef]

Ghosh, S.

G. V. Shcherbatyuk, R. H. Inman, and S. Ghosh, “Anomalous photo-induced spectral changes in CdSe/ZnS quantum dots,” J. Appl. Phys.110(5), 053518 (2011).
[CrossRef]

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infra-red PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
[CrossRef]

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009).
[CrossRef]

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009).
[CrossRef]

Gopinathan, A.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009).
[CrossRef]

Govorov, A. O.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76(12), 125308 (2007).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Grimes, A.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009).
[CrossRef]

Grimes, A. F.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Gun’ko, Y. K.

M. Lunz, A. L. Bradley, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions,” Phys. Rev. B83(11), 115423 (2011).
[CrossRef]

M. Lunz, A. L. Bradley, W.-Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B81(20), 205316 (2010).
[CrossRef]

Harbold, J. M.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Harris, A. L.

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[CrossRef]

Haug, F.-J.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

Higashiya, S.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Hollingsworth, J. A.

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89(18), 186802 (2002).
[CrossRef] [PubMed]

Huang, S.

Z. Fang, S. Huang, Y. Lu, A. Pan, F. Lin, and X. Zhu, “Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons,” Phys. Rev. B82(8), 085403 (2010).
[CrossRef]

Inman, R. H.

G. V. Shcherbatyuk, R. H. Inman, and S. Ghosh, “Anomalous photo-induced spectral changes in CdSe/ZnS quantum dots,” J. Appl. Phys.110(5), 053518 (2011).
[CrossRef]

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infra-red PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
[CrossRef]

Kagan, C. R.

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett.76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Khine, M.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009).
[CrossRef]

Klimov, V. I.

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89(18), 186802 (2002).
[CrossRef] [PubMed]

Kotov, N. A.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76(12), 125308 (2007).
[CrossRef]

Krauss, T. D.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Krishnan, R.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Lakowicz, J. R.

H. Szmacinski, K. Ray, and J. R. Lakowicz, “Effect of plasmonic nanostructures and nanofilms on fluorescence resonance energy transfer,” J. Biophotonics2(4), 243–252 (2009).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001).
[CrossRef] [PubMed]

Lee, J.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76(12), 125308 (2007).
[CrossRef]

Lee, L. P.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009).
[CrossRef]

Lesnyak, V.

M. Lunz, A. L. Bradley, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions,” Phys. Rev. B83(11), 115423 (2011).
[CrossRef]

M. Lunz, A. L. Bradley, W.-Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B81(20), 205316 (2010).
[CrossRef]

Levinos, N. J.

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[CrossRef]

Lin, F.

Z. Fang, S. Huang, Y. Lu, A. Pan, F. Lin, and X. Zhu, “Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons,” Phys. Rev. B82(8), 085403 (2010).
[CrossRef]

Long, M.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009).
[CrossRef]

Lu, Y.

Z. Fang, S. Huang, Y. Lu, A. Pan, F. Lin, and X. Zhu, “Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons,” Phys. Rev. B82(8), 085403 (2010).
[CrossRef]

Lunz, M.

M. Lunz, A. L. Bradley, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions,” Phys. Rev. B83(11), 115423 (2011).
[CrossRef]

M. Lunz, A. L. Bradley, W.-Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B81(20), 205316 (2010).
[CrossRef]

Ma, D.

H. Zhao, M. Chaker, and D. Ma, “Self-selective recovery of photoluminescence in amphiphilic polymer encapsulated PbS quantum dots,” Phys. Chem. Chem. Phys.12(44), 14754–14761 (2010).
[CrossRef] [PubMed]

Mattoussi, H.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Medintz, I. L.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Murray, C. B.

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett.76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Nirmal, M.

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett.76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Olson, J. D.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007).
[CrossRef]

Pan, A.

Z. Fang, S. Huang, Y. Lu, A. Pan, F. Lin, and X. Zhu, “Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons,” Phys. Rev. B82(8), 085403 (2010).
[CrossRef]

Pons, T.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Ray, K.

H. Szmacinski, K. Ray, and J. R. Lakowicz, “Effect of plasmonic nanostructures and nanofilms on fluorescence resonance energy transfer,” J. Biophotonics2(4), 243–252 (2009).
[CrossRef] [PubMed]

Rich, B. D.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009).
[CrossRef]

Sapsford, K. E.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Shcherbatyuk, G. V.

G. V. Shcherbatyuk, R. H. Inman, and S. Ghosh, “Anomalous photo-induced spectral changes in CdSe/ZnS quantum dots,” J. Appl. Phys.110(5), 053518 (2011).
[CrossRef]

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infra-red PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
[CrossRef]

Shimizu, K. T.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89(11), 117401 (2002).
[CrossRef] [PubMed]

Sholin, V.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007).
[CrossRef]

Silcox, J.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Söderström, T.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

Steigerwald, M. L.

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Femtosecond optical responses of disordered clusters, composites, and rough surfaces: ‘the ninth wave’ effect,” Phys. Rev. Lett.84(5), 1011–1014 (2000).
[CrossRef] [PubMed]

Szmacinski, H.

H. Szmacinski, K. Ray, and J. R. Lakowicz, “Effect of plasmonic nanostructures and nanofilms on fluorescence resonance energy transfer,” J. Biophotonics2(4), 243–252 (2009).
[CrossRef] [PubMed]

Terrazzoni-Daudrix, V.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

Thomas, M. G.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Tretiak, S.

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89(18), 186802 (2002).
[CrossRef] [PubMed]

Wang, C.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infra-red PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
[CrossRef]

Winston, R.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infra-red PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
[CrossRef]

Wise, F. W.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

Woo, W. K.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89(11), 117401 (2002).
[CrossRef] [PubMed]

Zhao, H.

H. Zhao, M. Chaker, and D. Ma, “Self-selective recovery of photoluminescence in amphiphilic polymer encapsulated PbS quantum dots,” Phys. Chem. Chem. Phys.12(44), 14754–14761 (2010).
[CrossRef] [PubMed]

Zhu, X.

Z. Fang, S. Huang, Y. Lu, A. Pan, F. Lin, and X. Zhu, “Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons,” Phys. Rev. B82(8), 085403 (2010).
[CrossRef]

Adv. Mater. (1)

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infra-red PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
[CrossRef]

J. Appl. Phys. (3)

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007).
[CrossRef]

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

G. V. Shcherbatyuk, R. H. Inman, and S. Ghosh, “Anomalous photo-induced spectral changes in CdSe/ZnS quantum dots,” J. Appl. Phys.110(5), 053518 (2011).
[CrossRef]

J. Biophotonics (1)

H. Szmacinski, K. Ray, and J. R. Lakowicz, “Effect of plasmonic nanostructures and nanofilms on fluorescence resonance energy transfer,” J. Biophotonics2(4), 243–252 (2009).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988).
[CrossRef]

Nano Lett. (2)

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002).
[CrossRef]

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

H. Zhao, M. Chaker, and D. Ma, “Self-selective recovery of photoluminescence in amphiphilic polymer encapsulated PbS quantum dots,” Phys. Chem. Chem. Phys.12(44), 14754–14761 (2010).
[CrossRef] [PubMed]

Phys. Rev. B (4)

Z. Fang, S. Huang, Y. Lu, A. Pan, F. Lin, and X. Zhu, “Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons,” Phys. Rev. B82(8), 085403 (2010).
[CrossRef]

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76(12), 125308 (2007).
[CrossRef]

M. Lunz, A. L. Bradley, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions,” Phys. Rev. B83(11), 115423 (2011).
[CrossRef]

M. Lunz, A. L. Bradley, W.-Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B81(20), 205316 (2010).
[CrossRef]

Phys. Rev. Lett. (4)

M. I. Stockman, “Femtosecond optical responses of disordered clusters, composites, and rough surfaces: ‘the ninth wave’ effect,” Phys. Rev. Lett.84(5), 1011–1014 (2000).
[CrossRef] [PubMed]

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89(18), 186802 (2002).
[CrossRef] [PubMed]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89(11), 117401 (2002).
[CrossRef] [PubMed]

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett.76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) (inset, top) SEM image of a wrinkled 30 nm AuPd film. (inset, bottom) 2D FFT of SEM image (main) Distribution of length scales of wrinkles derived from 2D FFT of SEM image. (b) Absorption spectra comparing wrinkled and flat metallic surfaces. Arrow shows the plasmon absorption peak of the wrinkled sample.

Fig. 2
Fig. 2

(a, inset) Scanning PL image of QD (λS = 544 nm) peak emission wavelength (λPEAK) deposited on wrinkled surface. (main) QD spectra from two regions of the scanned surface. Symbols correspond to area on surface in inset. (b) spectral red-shifts (Δλ) observed in CdSe/ZnS and PbS QDs deposited on wrinkled films plotted as functions of QD diameter. Dashed and solid arrows indicate sizes of QDs with λS of 544, and 586 nm, respectively.

Fig. 3
Fig. 3

Scanning PL images of λPEAK of QDs (λS = 586 nm) spin coated on to (a) glass, (b) flat metal film, and (c) wrinkled metal film. Spectral emission from (d) glass, (e) flat, and (f) wrinkled surface. Open circles represent emission data. Lines are Gaussian fits (see text for details) with the short and long wavelength curves labelled D and A, respectively

Fig. 4
Fig. 4

Scanning PL images of λPEAK of QDs (λS = 586 nm) deposited on (a) wrinkled metal film and (b) glass, at 3 different QD concentrations.

Fig. 5
Fig. 5

(a) Time-resolved PL comparing the QD recombination on glass, flat metal and wrinkled metal surfaces. Lines are exponential fits. (inset) Normalized PL spectra of QDs deposited on glass (blue) and wrinkled (red) surfaces alongside the QD absorption (black) curve. The dashed lines indicate the spectral positions of the peaks, and the double headed arrows show the effective Stoke’s shifts for QDs on glass (blue) and wrinkled metal (red) surfaces. (b) The short (τ1) and long (τ2) QD recombination times for ten different flat (open circles) and wrinkled (filled circles) samples.

Metrics