Abstract

We present a new organic photosensitive material for volume holographic recording. Advanced material composition and sample preparation eliminates the need for a protective layer and allows layer fabrication with variable thickness and a free surface. Optimized chemical formulation results in a high energetic sensitivity, high angular selectivity and high inducible refractive index contrast. We investigate the photoresponse and nonsinusoidal refractive index profiles. We demonstrate highly resolved optical structuring with up to 8000 lines per mm. Imaging of the holographic phase gratings is accomplished by optical microscopy.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
    [CrossRef] [PubMed]
  2. S. Orlic, C. Müller, and A. Schlösser, “All optical fabrication of three-dimensional photonic crystals in photopolymers by multiplex-exposure holographic recording,” Appl. Phys. Lett.99(13), 131105 (2011).
    [CrossRef]
  3. S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt.11(2), 024014 (2009).
    [CrossRef]
  4. A. V. Lukin, “Holographic optical elements,” J. Opt. Technol.74(1), 65–70 (2007).
    [CrossRef]
  5. T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett.17(3), 618–620 (2005).
    [CrossRef]
  6. R. T. Ingwall and D. A. Waldman, “Holographic filter with a wide angular field of view and a narrow spectral bandwidth,” U.S. patent 7,480,084-B2 (20 January 2009).
  7. M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp.295(1), 107–113 (2010).
    [CrossRef]
  8. H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE8431, 84311R, 84311R-10 (2012).
    [CrossRef]
  9. L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt.11(2), 024011 (2009).
    [CrossRef]
  10. E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express1(2), 207–222 (2011).
    [CrossRef]
  11. T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology20(40), 405301 (2009).
    [CrossRef] [PubMed]
  12. L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter7(8), 3739–3743 (2011).
    [CrossRef]
  13. A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE7390, 739002, 739002-17 (2009).
    [CrossRef]
  14. R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys.44(1), 015301 (2011).
    [CrossRef]
  15. V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng.21(1), 017003 (2011).
    [CrossRef]
  16. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys.81(9), 5913–5923 (1997).
    [CrossRef]
  17. D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE2689, 127–141 (1996).
    [CrossRef]
  18. K. Yu, K. S. Yin, and J. E. Wreede, “Multiple layer holograms,” U.S. patent 5,282,066 (25 January 1994).
  19. M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt.50(17), 2594–2600 (2011).
    [CrossRef] [PubMed]
  20. C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun.224(1-3), 27–34 (2003).
    [CrossRef]
  21. G. J. Steckman and F. Havermeyer, “High spatial resolution measurement of volume holographic gratings,” Proc. SPIE6136, 613602, 613602-9 (2006).
    [CrossRef]
  22. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
    [CrossRef]
  23. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt.44(16), 3197–3207 (2005).
    [CrossRef] [PubMed]
  24. Y.-C. Jeong, S. Lee, and J.-K. Park, “Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers,” Opt. Express15(4), 1497–1504 (2007).
    [CrossRef] [PubMed]
  25. Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater.17(25), 6263–6271 (2005).
    [CrossRef]
  26. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003).
    [CrossRef] [PubMed]
  27. S. F. Su and T. K. Gaylord, “Calculation of arbitrary-order diffraction efficiencies of thick gratings with arbitrary grating shape,” J. Opt. Soc. Am.65(1), 59–64 (1975).
    [CrossRef]
  28. M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express19(23), 22423–22436 (2011).
    [CrossRef] [PubMed]
  29. T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.)10(15), 1219–1224 (1998).
    [CrossRef]

2012 (1)

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE8431, 84311R, 84311R-10 (2012).
[CrossRef]

2011 (7)

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter7(8), 3739–3743 (2011).
[CrossRef]

S. Orlic, C. Müller, and A. Schlösser, “All optical fabrication of three-dimensional photonic crystals in photopolymers by multiplex-exposure holographic recording,” Appl. Phys. Lett.99(13), 131105 (2011).
[CrossRef]

R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys.44(1), 015301 (2011).
[CrossRef]

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng.21(1), 017003 (2011).
[CrossRef]

E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express1(2), 207–222 (2011).
[CrossRef]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt.50(17), 2594–2600 (2011).
[CrossRef] [PubMed]

M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express19(23), 22423–22436 (2011).
[CrossRef] [PubMed]

2010 (1)

M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp.295(1), 107–113 (2010).
[CrossRef]

2009 (4)

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt.11(2), 024014 (2009).
[CrossRef]

A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE7390, 739002, 739002-17 (2009).
[CrossRef]

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt.11(2), 024011 (2009).
[CrossRef]

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology20(40), 405301 (2009).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

G. J. Steckman and F. Havermeyer, “High spatial resolution measurement of volume holographic gratings,” Proc. SPIE6136, 613602, 613602-9 (2006).
[CrossRef]

2005 (3)

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater.17(25), 6263–6271 (2005).
[CrossRef]

T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett.17(3), 618–620 (2005).
[CrossRef]

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt.44(16), 3197–3207 (2005).
[CrossRef] [PubMed]

2003 (2)

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003).
[CrossRef] [PubMed]

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun.224(1-3), 27–34 (2003).
[CrossRef]

2000 (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

1998 (1)

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.)10(15), 1219–1224 (1998).
[CrossRef]

1997 (1)

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys.81(9), 5913–5923 (1997).
[CrossRef]

1996 (1)

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE2689, 127–141 (1996).
[CrossRef]

1981 (1)

1975 (1)

Bartolino, R.

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter7(8), 3739–3743 (2011).
[CrossRef]

Belendez, A.

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun.224(1-3), 27–34 (2003).
[CrossRef]

Beléndez, A.

Boehm, H.-J.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE8431, 84311R, 84311R-10 (2012).
[CrossRef]

Brugger, J.

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng.21(1), 017003 (2011).
[CrossRef]

Bureau, J. B.

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng.21(1), 017003 (2011).
[CrossRef]

Cadarso, V. J.

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng.21(1), 017003 (2011).
[CrossRef]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Castagna, R.

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt.11(2), 024011 (2009).
[CrossRef]

Cho, Y. H.

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater.17(25), 6263–6271 (2005).
[CrossRef]

Chung, S.

T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett.17(3), 618–620 (2005).
[CrossRef]

Colvin, V. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys.81(9), 5913–5923 (1997).
[CrossRef]

Criante, L.

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt.11(2), 024011 (2009).
[CrossRef]

Dahl, P. K.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Daiber, A. J.

de Sio, L.

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter7(8), 3739–3743 (2011).
[CrossRef]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Dietz, E.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt.11(2), 024014 (2009).
[CrossRef]

Erdmann, A.

A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE7390, 739002, 739002-17 (2009).
[CrossRef]

Evanschitzky, P.

A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE7390, 739002, 739002-17 (2009).
[CrossRef]

Feid, T.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt.11(2), 024014 (2009).
[CrossRef]

Ferjani, S.

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter7(8), 3739–3743 (2011).
[CrossRef]

Fiala, P.

M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp.295(1), 107–113 (2010).
[CrossRef]

Frohmann, S.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt.11(2), 024014 (2009).
[CrossRef]

Fühner, T.

A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE7390, 739002, 739002-17 (2009).
[CrossRef]

Gallego, S.

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003).
[CrossRef] [PubMed]

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun.224(1-3), 27–34 (2003).
[CrossRef]

Gambogi, W. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.)10(15), 1219–1224 (1998).
[CrossRef]

Gaylord, T. K.

Gleeson, M. R.

Gruetzner, G.

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng.21(1), 017003 (2011).
[CrossRef]

Guo, J.

Han, S.

T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett.17(3), 618–620 (2005).
[CrossRef]

Harris, A. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys.81(9), 5913–5923 (1997).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Hata, E.

Havermeyer, F.

G. J. Steckman and F. Havermeyer, “High spatial resolution measurement of volume holographic gratings,” Proc. SPIE6136, 613602, 613602-9 (2006).
[CrossRef]

Havranek, A.

M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp.295(1), 107–113 (2010).
[CrossRef]

Hesselink, L.

Hlubina, P.

Hollenbach, U.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE8431, 84311R, 84311R-10 (2012).
[CrossRef]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt.50(17), 2594–2600 (2011).
[CrossRef] [PubMed]

Horner, M. G.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Ingwall, R. T.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Jeong, Y.-C.

Kawakami, Y.

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater.17(25), 6263–6271 (2005).
[CrossRef]

Kim, B. K.

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater.17(25), 6263–6271 (2005).
[CrossRef]

Kim, N.

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater.17(25), 6263–6271 (2005).
[CrossRef]

Kim, T.

T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett.17(3), 618–620 (2005).
[CrossRef]

Kokhtych, L. M.

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology20(40), 405301 (2009).
[CrossRef] [PubMed]

Kolb, E. S.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Kustandi, T. S.

R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys.44(1), 015301 (2011).
[CrossRef]

Kutsenko, A. S.

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology20(40), 405301 (2009).
[CrossRef] [PubMed]

Kveton, M.

M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp.295(1), 107–113 (2010).
[CrossRef]

Larson, R. G.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys.81(9), 5913–5923 (1997).
[CrossRef]

Ledl, V.

M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp.295(1), 107–113 (2010).
[CrossRef]

Lee, B.

T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett.17(3), 618–620 (2005).
[CrossRef]

Lee, S.

Li, H.-Y. S.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Lucchetta, D. E.

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt.11(2), 024011 (2009).
[CrossRef]

Lukin, A. V.

Marquez, A.

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun.224(1-3), 27–34 (2003).
[CrossRef]

McDonald, M. E.

McLeod, R. R.

Minns, R. A.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Mitsube, K.

Moharam, M. G.

Mohr, J.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE8431, 84311R, 84311R-10 (2012).
[CrossRef]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt.50(17), 2594–2600 (2011).
[CrossRef] [PubMed]

Momose, K.

Müller, C.

S. Orlic, C. Müller, and A. Schlösser, “All optical fabrication of three-dimensional photonic crystals in photopolymers by multiplex-exposure holographic recording,” Appl. Phys. Lett.99(13), 131105 (2011).
[CrossRef]

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt.11(2), 024014 (2009).
[CrossRef]

Napiorkowski, M.

Neipp, C.

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003).
[CrossRef] [PubMed]

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun.224(1-3), 27–34 (2003).
[CrossRef]

Orlic, S.

S. Orlic, C. Müller, and A. Schlösser, “All optical fabrication of three-dimensional photonic crystals in photopolymers by multiplex-exposure holographic recording,” Appl. Phys. Lett.99(13), 131105 (2011).
[CrossRef]

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt.11(2), 024014 (2009).
[CrossRef]

Ortuno, M.

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun.224(1-3), 27–34 (2003).
[CrossRef]

Ortuño, M.

Ostrzinski, U.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE8431, 84311R, 84311R-10 (2012).
[CrossRef]

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng.21(1), 017003 (2011).
[CrossRef]

Park, J.-K.

Pascual, I.

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun.224(1-3), 27–34 (2003).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003).
[CrossRef] [PubMed]

Pfeiffer, K.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE8431, 84311R, 84311R-10 (2012).
[CrossRef]

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng.21(1), 017003 (2011).
[CrossRef]

Racine, G. A.

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng.21(1), 017003 (2011).
[CrossRef]

Robertson, T. L.

Sakhno, O. V.

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology20(40), 405301 (2009).
[CrossRef] [PubMed]

Satyanarayana, N.

R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys.44(1), 015301 (2011).
[CrossRef]

Schild, H. G.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Schilling, M. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys.81(9), 5913–5923 (1997).
[CrossRef]

Schlösser, A.

S. Orlic, C. Müller, and A. Schlösser, “All optical fabrication of three-dimensional photonic crystals in photopolymers by multiplex-exposure holographic recording,” Appl. Phys. Lett.99(13), 131105 (2011).
[CrossRef]

Schmieg, J. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.)10(15), 1219–1224 (1998).
[CrossRef]

Shao, F.

A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE7390, 739002, 739002-17 (2009).
[CrossRef]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Sheridan, J.

Sheridan, J. T.

Shin, C. W.

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater.17(25), 6263–6271 (2005).
[CrossRef]

Sieber, H.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE8431, 84311R, 84311R-10 (2012).
[CrossRef]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt.50(17), 2594–2600 (2011).
[CrossRef] [PubMed]

Simoni, F.

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt.11(2), 024011 (2009).
[CrossRef]

Singh, R. A.

R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys.44(1), 015301 (2011).
[CrossRef]

Sinha, S. K.

R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys.44(1), 015301 (2011).
[CrossRef]

Slagle, T.

Smirnova, T. N.

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology20(40), 405301 (2009).
[CrossRef] [PubMed]

Sochava, S. L.

Steckman, G. J.

G. J. Steckman and F. Havermeyer, “High spatial resolution measurement of volume holographic gratings,” Proc. SPIE6136, 613602, 613602-9 (2006).
[CrossRef]

Strangi, G.

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter7(8), 3739–3743 (2011).
[CrossRef]

Stumpe, J.

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology20(40), 405301 (2009).
[CrossRef] [PubMed]

Su, S. F.

Szczurowski, M.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE8431, 84311R, 84311R-10 (2012).
[CrossRef]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt.50(17), 2594–2600 (2011).
[CrossRef] [PubMed]

Tomita, Y.

Trout, T. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.)10(15), 1219–1224 (1998).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Umeton, C.

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter7(8), 3739–3743 (2011).
[CrossRef]

Urbanczyk, W.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE8431, 84311R, 84311R-10 (2012).
[CrossRef]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt.50(17), 2594–2600 (2011).
[CrossRef] [PubMed]

Vita, F.

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt.11(2), 024011 (2009).
[CrossRef]

Voigt, A.

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng.21(1), 017003 (2011).
[CrossRef]

Waldmann, D. A.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Weber, A. M.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.)10(15), 1219–1224 (1998).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.)10(15), 1219–1224 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Orlic, C. Müller, and A. Schlösser, “All optical fabrication of three-dimensional photonic crystals in photopolymers by multiplex-exposure holographic recording,” Appl. Phys. Lett.99(13), 131105 (2011).
[CrossRef]

Chem. Mater. (1)

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater.17(25), 6263–6271 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett.17(3), 618–620 (2005).
[CrossRef]

J. Appl. Phys. (1)

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys.81(9), 5913–5923 (1997).
[CrossRef]

J. Micromech. Microeng. (1)

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng.21(1), 017003 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt.11(2), 024014 (2009).
[CrossRef]

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt.11(2), 024011 (2009).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Technol. (1)

J. Phys. D Appl. Phys. (1)

R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys.44(1), 015301 (2011).
[CrossRef]

Macromol. Symp. (1)

M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp.295(1), 107–113 (2010).
[CrossRef]

Nanotechnology (1)

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology20(40), 405301 (2009).
[CrossRef] [PubMed]

Nature (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun.224(1-3), 27–34 (2003).
[CrossRef]

Opt. Express (3)

Opt. Mater. Express (1)

Proc. SPIE (4)

G. J. Steckman and F. Havermeyer, “High spatial resolution measurement of volume holographic gratings,” Proc. SPIE6136, 613602, 613602-9 (2006).
[CrossRef]

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE2689, 127–141 (1996).
[CrossRef]

A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE7390, 739002, 739002-17 (2009).
[CrossRef]

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE8431, 84311R, 84311R-10 (2012).
[CrossRef]

Soft Matter (1)

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter7(8), 3739–3743 (2011).
[CrossRef]

Other (2)

R. T. Ingwall and D. A. Waldman, “Holographic filter with a wide angular field of view and a narrow spectral bandwidth,” U.S. patent 7,480,084-B2 (20 January 2009).

K. Yu, K. S. Yin, and J. E. Wreede, “Multiple layer holograms,” U.S. patent 5,282,066 (25 January 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The spectral optical attenuation of the material solution features excellent transmission in the visible spectrum.

Fig. 2
Fig. 2

Interdependency of index modulation and layer thickness: measurement (dots) and RCW theory (line). Within constant index contrast a variation in layer thickness has a strong impact on angular response.

Fig. 3
Fig. 3

Linear material response to deposited energy shows a rapid increase of the refractive index contrast with increasing energy density.

Fig. 4
Fig. 4

Refractive index contrast versus exposure time for various exposure fluences shows a constant material response at low energetic fluence.

Fig. 5
Fig. 5

Energetic sensitivity versus exposure time for various exposure fluence shows: Optimal exposure time is independent on the deposited energy.

Fig. 6
Fig. 6

Angular response shows high selectivity: measurement (dots) and RCW theory (line). Exposure time was 6s, fluence 260 mJ/cm2. Layer thickness is 280 μm, grating period Λ = 1.7 μm and index contrast Δn=1.8 10 3 .

Fig. 7
Fig. 7

Saturation effects. Left: angular resolved measurement (dots) and RCW theory (line). Exposure time was 4.5 s, fluence 700 mJ/cm2. Layer thickness is 140μm, grating period Λ = 2.7μm and index contrast Δ n ( 0 ) =4.5 10 3 , Δ n ( 1 ) =1.5 10 3 and Δ n ( 2 ) =0.5 10 3 . Right: corresponding nonsinusoidal refractive index profile (line) in comparison with sinusoidal interference pattern (dots).

Fig. 8
Fig. 8

Microscopic imaging: transmission grating (TG, left) and reflection grating (RG, right) in cross-sectional view. The grating periods are Λ = 1.3 μm (TG) and Λ = 130 nm (RG), respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Λ( λ,θ )= λ 2nsinθ .
η=si n 2 ( πdΔn 2λcos( ϑ p ) ).
S= Δn It .
R= | K | 2 D F ,
n(x)= n 0 +Δ n ( 0 ) cos( | K |x )+Δ n ( 1 ) cos( 2| K |x )+Δ n ( 2 ) cos( 3| K |x ).
Λ s = Λ sinφ .

Metrics