Abstract

We present a new organic photosensitive material for volume holographic recording. Advanced material composition and sample preparation eliminates the need for a protective layer and allows layer fabrication with variable thickness and a free surface. Optimized chemical formulation results in a high energetic sensitivity, high angular selectivity and high inducible refractive index contrast. We investigate the photoresponse and nonsinusoidal refractive index profiles. We demonstrate highly resolved optical structuring with up to 8000 lines per mm. Imaging of the holographic phase gratings is accomplished by optical microscopy.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
    [Crossref] [PubMed]
  2. S. Orlic, C. Müller, and A. Schlösser, “All optical fabrication of three-dimensional photonic crystals in photopolymers by multiplex-exposure holographic recording,” Appl. Phys. Lett. 99(13), 131105 (2011).
    [Crossref]
  3. S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
    [Crossref]
  4. A. V. Lukin, “Holographic optical elements,” J. Opt. Technol. 74(1), 65–70 (2007).
    [Crossref]
  5. T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett. 17(3), 618–620 (2005).
    [Crossref]
  6. R. T. Ingwall and D. A. Waldman, “Holographic filter with a wide angular field of view and a narrow spectral bandwidth,” U.S. patent 7,480,084-B2 (20 January 2009).
  7. M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp. 295(1), 107–113 (2010).
    [Crossref]
  8. H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE 8431, 84311R, 84311R-10 (2012).
    [Crossref]
  9. L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024011 (2009).
    [Crossref]
  10. E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express 1(2), 207–222 (2011).
    [Crossref]
  11. T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology 20(40), 405301 (2009).
    [Crossref] [PubMed]
  12. L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
    [Crossref]
  13. A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE 7390, 739002, 739002-17 (2009).
    [Crossref]
  14. R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys. 44(1), 015301 (2011).
    [Crossref]
  15. V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng. 21(1), 017003 (2011).
    [Crossref]
  16. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
    [Crossref]
  17. D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
    [Crossref]
  18. K. Yu, K. S. Yin, and J. E. Wreede, “Multiple layer holograms,” U.S. patent 5,282,066 (25 January 1994).
  19. M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50(17), 2594–2600 (2011).
    [Crossref] [PubMed]
  20. C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224(1-3), 27–34 (2003).
    [Crossref]
  21. G. J. Steckman and F. Havermeyer, “High spatial resolution measurement of volume holographic gratings,” Proc. SPIE 6136, 613602, 613602-9 (2006).
    [Crossref]
  22. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  23. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005).
    [Crossref] [PubMed]
  24. Y.-C. Jeong, S. Lee, and J.-K. Park, “Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers,” Opt. Express 15(4), 1497–1504 (2007).
    [Crossref] [PubMed]
  25. Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater. 17(25), 6263–6271 (2005).
    [Crossref]
  26. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
    [Crossref] [PubMed]
  27. S. F. Su and T. K. Gaylord, “Calculation of arbitrary-order diffraction efficiencies of thick gratings with arbitrary grating shape,” J. Opt. Soc. Am. 65(1), 59–64 (1975).
    [Crossref]
  28. M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express 19(23), 22423–22436 (2011).
    [Crossref] [PubMed]
  29. T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.) 10(15), 1219–1224 (1998).
    [Crossref]

2012 (1)

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE 8431, 84311R, 84311R-10 (2012).
[Crossref]

2011 (7)

S. Orlic, C. Müller, and A. Schlösser, “All optical fabrication of three-dimensional photonic crystals in photopolymers by multiplex-exposure holographic recording,” Appl. Phys. Lett. 99(13), 131105 (2011).
[Crossref]

E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express 1(2), 207–222 (2011).
[Crossref]

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys. 44(1), 015301 (2011).
[Crossref]

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng. 21(1), 017003 (2011).
[Crossref]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50(17), 2594–2600 (2011).
[Crossref] [PubMed]

M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express 19(23), 22423–22436 (2011).
[Crossref] [PubMed]

2010 (1)

M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp. 295(1), 107–113 (2010).
[Crossref]

2009 (4)

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024011 (2009).
[Crossref]

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[Crossref]

A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE 7390, 739002, 739002-17 (2009).
[Crossref]

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology 20(40), 405301 (2009).
[Crossref] [PubMed]

2007 (2)

2006 (1)

G. J. Steckman and F. Havermeyer, “High spatial resolution measurement of volume holographic gratings,” Proc. SPIE 6136, 613602, 613602-9 (2006).
[Crossref]

2005 (3)

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater. 17(25), 6263–6271 (2005).
[Crossref]

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005).
[Crossref] [PubMed]

T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett. 17(3), 618–620 (2005).
[Crossref]

2003 (2)

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
[Crossref] [PubMed]

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224(1-3), 27–34 (2003).
[Crossref]

2000 (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

1998 (1)

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.) 10(15), 1219–1224 (1998).
[Crossref]

1997 (1)

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]

1996 (1)

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[Crossref]

1981 (1)

1975 (1)

Bartolino, R.

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

Belendez, A.

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224(1-3), 27–34 (2003).
[Crossref]

Beléndez, A.

Boehm, H.-J.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE 8431, 84311R, 84311R-10 (2012).
[Crossref]

Brugger, J.

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng. 21(1), 017003 (2011).
[Crossref]

Bureau, J. B.

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng. 21(1), 017003 (2011).
[Crossref]

Cadarso, V. J.

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng. 21(1), 017003 (2011).
[Crossref]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Castagna, R.

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024011 (2009).
[Crossref]

Cho, Y. H.

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater. 17(25), 6263–6271 (2005).
[Crossref]

Chung, S.

T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett. 17(3), 618–620 (2005).
[Crossref]

Colvin, V. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]

Criante, L.

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024011 (2009).
[Crossref]

Dahl, P. K.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[Crossref]

Daiber, A. J.

de Sio, L.

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Dietz, E.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[Crossref]

Erdmann, A.

A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE 7390, 739002, 739002-17 (2009).
[Crossref]

Evanschitzky, P.

A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE 7390, 739002, 739002-17 (2009).
[Crossref]

Feid, T.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[Crossref]

Ferjani, S.

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

Fiala, P.

M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp. 295(1), 107–113 (2010).
[Crossref]

Frohmann, S.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[Crossref]

Fühner, T.

A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE 7390, 739002, 739002-17 (2009).
[Crossref]

Gallego, S.

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224(1-3), 27–34 (2003).
[Crossref]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
[Crossref] [PubMed]

Gambogi, W. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.) 10(15), 1219–1224 (1998).
[Crossref]

Gaylord, T. K.

Gleeson, M. R.

Gruetzner, G.

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng. 21(1), 017003 (2011).
[Crossref]

Guo, J.

Han, S.

T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett. 17(3), 618–620 (2005).
[Crossref]

Harris, A. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Hata, E.

Havermeyer, F.

G. J. Steckman and F. Havermeyer, “High spatial resolution measurement of volume holographic gratings,” Proc. SPIE 6136, 613602, 613602-9 (2006).
[Crossref]

Havranek, A.

M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp. 295(1), 107–113 (2010).
[Crossref]

Hesselink, L.

Hlubina, P.

Hollenbach, U.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE 8431, 84311R, 84311R-10 (2012).
[Crossref]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50(17), 2594–2600 (2011).
[Crossref] [PubMed]

Horner, M. G.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[Crossref]

Ingwall, R. T.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[Crossref]

Jeong, Y.-C.

Kawakami, Y.

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater. 17(25), 6263–6271 (2005).
[Crossref]

Kim, B. K.

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater. 17(25), 6263–6271 (2005).
[Crossref]

Kim, N.

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater. 17(25), 6263–6271 (2005).
[Crossref]

Kim, T.

T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett. 17(3), 618–620 (2005).
[Crossref]

Kokhtych, L. M.

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology 20(40), 405301 (2009).
[Crossref] [PubMed]

Kolb, E. S.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[Crossref]

Kustandi, T. S.

R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys. 44(1), 015301 (2011).
[Crossref]

Kutsenko, A. S.

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology 20(40), 405301 (2009).
[Crossref] [PubMed]

Kveton, M.

M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp. 295(1), 107–113 (2010).
[Crossref]

Larson, R. G.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]

Ledl, V.

M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp. 295(1), 107–113 (2010).
[Crossref]

Lee, B.

T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett. 17(3), 618–620 (2005).
[Crossref]

Lee, S.

Li, H.-Y. S.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[Crossref]

Lucchetta, D. E.

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024011 (2009).
[Crossref]

Lukin, A. V.

Marquez, A.

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224(1-3), 27–34 (2003).
[Crossref]

McDonald, M. E.

McLeod, R. R.

Minns, R. A.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[Crossref]

Mitsube, K.

Moharam, M. G.

Mohr, J.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE 8431, 84311R, 84311R-10 (2012).
[Crossref]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50(17), 2594–2600 (2011).
[Crossref] [PubMed]

Momose, K.

Müller, C.

S. Orlic, C. Müller, and A. Schlösser, “All optical fabrication of three-dimensional photonic crystals in photopolymers by multiplex-exposure holographic recording,” Appl. Phys. Lett. 99(13), 131105 (2011).
[Crossref]

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[Crossref]

Napiorkowski, M.

Neipp, C.

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
[Crossref] [PubMed]

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224(1-3), 27–34 (2003).
[Crossref]

Orlic, S.

S. Orlic, C. Müller, and A. Schlösser, “All optical fabrication of three-dimensional photonic crystals in photopolymers by multiplex-exposure holographic recording,” Appl. Phys. Lett. 99(13), 131105 (2011).
[Crossref]

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[Crossref]

Ortuno, M.

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224(1-3), 27–34 (2003).
[Crossref]

Ortuño, M.

Ostrzinski, U.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE 8431, 84311R, 84311R-10 (2012).
[Crossref]

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng. 21(1), 017003 (2011).
[Crossref]

Park, J.-K.

Pascual, I.

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
[Crossref] [PubMed]

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224(1-3), 27–34 (2003).
[Crossref]

Pfeiffer, K.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE 8431, 84311R, 84311R-10 (2012).
[Crossref]

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng. 21(1), 017003 (2011).
[Crossref]

Racine, G. A.

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng. 21(1), 017003 (2011).
[Crossref]

Robertson, T. L.

Sakhno, O. V.

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology 20(40), 405301 (2009).
[Crossref] [PubMed]

Satyanarayana, N.

R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys. 44(1), 015301 (2011).
[Crossref]

Schild, H. G.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[Crossref]

Schilling, M. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]

Schlösser, A.

S. Orlic, C. Müller, and A. Schlösser, “All optical fabrication of three-dimensional photonic crystals in photopolymers by multiplex-exposure holographic recording,” Appl. Phys. Lett. 99(13), 131105 (2011).
[Crossref]

Schmieg, J. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.) 10(15), 1219–1224 (1998).
[Crossref]

Shao, F.

A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE 7390, 739002, 739002-17 (2009).
[Crossref]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Sheridan, J.

Sheridan, J. T.

Shin, C. W.

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater. 17(25), 6263–6271 (2005).
[Crossref]

Sieber, H.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE 8431, 84311R, 84311R-10 (2012).
[Crossref]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50(17), 2594–2600 (2011).
[Crossref] [PubMed]

Simoni, F.

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024011 (2009).
[Crossref]

Singh, R. A.

R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys. 44(1), 015301 (2011).
[Crossref]

Sinha, S. K.

R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys. 44(1), 015301 (2011).
[Crossref]

Slagle, T.

Smirnova, T. N.

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology 20(40), 405301 (2009).
[Crossref] [PubMed]

Sochava, S. L.

Steckman, G. J.

G. J. Steckman and F. Havermeyer, “High spatial resolution measurement of volume holographic gratings,” Proc. SPIE 6136, 613602, 613602-9 (2006).
[Crossref]

Strangi, G.

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

Stumpe, J.

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology 20(40), 405301 (2009).
[Crossref] [PubMed]

Su, S. F.

Szczurowski, M.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE 8431, 84311R, 84311R-10 (2012).
[Crossref]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50(17), 2594–2600 (2011).
[Crossref] [PubMed]

Tomita, Y.

Trout, T. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.) 10(15), 1219–1224 (1998).
[Crossref]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Umeton, C.

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

Urbanczyk, W.

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE 8431, 84311R, 84311R-10 (2012).
[Crossref]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50(17), 2594–2600 (2011).
[Crossref] [PubMed]

Vita, F.

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024011 (2009).
[Crossref]

Voigt, A.

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng. 21(1), 017003 (2011).
[Crossref]

Waldmann, D. A.

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[Crossref]

Weber, A. M.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.) 10(15), 1219–1224 (1998).
[Crossref]

Adv. Mater. (Deerfield Beach Fla.) (1)

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.) 10(15), 1219–1224 (1998).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Orlic, C. Müller, and A. Schlösser, “All optical fabrication of three-dimensional photonic crystals in photopolymers by multiplex-exposure holographic recording,” Appl. Phys. Lett. 99(13), 131105 (2011).
[Crossref]

Chem. Mater. (1)

Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater. 17(25), 6263–6271 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett. 17(3), 618–620 (2005).
[Crossref]

J. Appl. Phys. (1)

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[Crossref]

J. Micromech. Microeng. (1)

V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng. 21(1), 017003 (2011).
[Crossref]

J. Opt. A, Pure Appl. Opt. (2)

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[Crossref]

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024011 (2009).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Technol. (1)

J. Phys. D Appl. Phys. (1)

R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys. 44(1), 015301 (2011).
[Crossref]

Macromol. Symp. (1)

M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp. 295(1), 107–113 (2010).
[Crossref]

Nanotechnology (1)

T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology 20(40), 405301 (2009).
[Crossref] [PubMed]

Nature (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224(1-3), 27–34 (2003).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Proc. SPIE (4)

H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE 8431, 84311R, 84311R-10 (2012).
[Crossref]

A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE 7390, 739002, 739002-17 (2009).
[Crossref]

D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[Crossref]

G. J. Steckman and F. Havermeyer, “High spatial resolution measurement of volume holographic gratings,” Proc. SPIE 6136, 613602, 613602-9 (2006).
[Crossref]

Soft Matter (1)

L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

Other (2)

K. Yu, K. S. Yin, and J. E. Wreede, “Multiple layer holograms,” U.S. patent 5,282,066 (25 January 1994).

R. T. Ingwall and D. A. Waldman, “Holographic filter with a wide angular field of view and a narrow spectral bandwidth,” U.S. patent 7,480,084-B2 (20 January 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The spectral optical attenuation of the material solution features excellent transmission in the visible spectrum.

Fig. 2
Fig. 2

Interdependency of index modulation and layer thickness: measurement (dots) and RCW theory (line). Within constant index contrast a variation in layer thickness has a strong impact on angular response.

Fig. 3
Fig. 3

Linear material response to deposited energy shows a rapid increase of the refractive index contrast with increasing energy density.

Fig. 4
Fig. 4

Refractive index contrast versus exposure time for various exposure fluences shows a constant material response at low energetic fluence.

Fig. 5
Fig. 5

Energetic sensitivity versus exposure time for various exposure fluence shows: Optimal exposure time is independent on the deposited energy.

Fig. 6
Fig. 6

Angular response shows high selectivity: measurement (dots) and RCW theory (line). Exposure time was 6s, fluence 260 mJ/cm2. Layer thickness is 280 μm, grating period Λ = 1.7 μm and index contrast Δn=1.8 10 3 .

Fig. 7
Fig. 7

Saturation effects. Left: angular resolved measurement (dots) and RCW theory (line). Exposure time was 4.5 s, fluence 700 mJ/cm2. Layer thickness is 140μm, grating period Λ = 2.7μm and index contrast Δ n ( 0 ) =4.5 10 3 , Δ n ( 1 ) =1.5 10 3 and Δ n ( 2 ) =0.5 10 3 . Right: corresponding nonsinusoidal refractive index profile (line) in comparison with sinusoidal interference pattern (dots).

Fig. 8
Fig. 8

Microscopic imaging: transmission grating (TG, left) and reflection grating (RG, right) in cross-sectional view. The grating periods are Λ = 1.3 μm (TG) and Λ = 130 nm (RG), respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Λ( λ,θ )= λ 2nsinθ .
η=si n 2 ( πdΔn 2λcos( ϑ p ) ).
S= Δn It .
R= | K | 2 D F ,
n(x)= n 0 +Δ n ( 0 ) cos( | K |x )+Δ n ( 1 ) cos( 2| K |x )+Δ n ( 2 ) cos( 3| K |x ).
Λ s = Λ sinφ .

Metrics