Abstract

Fluoroindate glasses are attractive materials for the fabrication of mid-infrared transmitting fibers with extended spectral range. Preparation of fluoroindate glasses under different melting conditions and preform fabrication using the billet extrusion technique were investigated in this study. Experimental results showed that the fluorination of the raw materials using ammonium bifluoride reduced OH content and oxide impurities, and enhanced the crystallization stability of the glasses. In addition, a shift of the IR absorption edge to longer wavelength was observed by using ammonium bifluoride. Casting and extrusion methods were compared for application to preform fabrication. In this work, the fiber with the lowest loss (~2 dB/m at 1.55 μm) was obtained using preform extrusion at 322 °C. The significantly reduced loss of the fiber made from the extruded preform compared to the fiber made using a cast preform is attributed to the suppression of scattering centers and the better surface quality of extruded rods compared with the cast rod.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Reduction of scattering loss in fluoroindate glass fibers

Jiafang Bei, Tanya M. Monro, Alexander Hemming, and Heike Ebendorff-Heidepriem
Opt. Mater. Express 3(9) 1285-1301 (2013)

Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission

Heike Ebendorff-Heidepriem, Tze-Cheung Foo, Roger C. Moore, Wenqi Zhang, Yahua Li, Tanya M. Monro, Alexander Hemming, and David G. Lancaster
Opt. Lett. 33(23) 2861-2863 (2008)

3D-printed extrusion dies: a versatile approach to optical material processing

Heike Ebendorff-Heidepriem, Juliane Schuppich, Alastair Dowler, Luis Lima-Marques, and Tanya M. Monro
Opt. Mater. Express 4(8) 1494-1504 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Almeida, “Fluoride glasses,” in Handbook on the Physics and Chemistry of Rare Earths, A. G. Karl, Jr. and E. LeRoy, eds. (Elsevier, 1991), pp. 287–346.
  2. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
    [Crossref]
  3. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
    [Crossref]
  4. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
  5. P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids 355(28-30), 1461–1467 (2009).
    [Crossref]
  6. J. M. Reau and M. Poulain, “Ionic conductivity in fluorine-containing glasses,” Mater. Chem. Phys. 23(1-2), 189–209 (1989).
    [Crossref]
  7. D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids 161, 18–22 (1993).
    [Crossref]
  8. L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).
    [Crossref] [PubMed]
  9. A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
    [Crossref]
  10. N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
    [Crossref]
  11. Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids 221(2-3), 238–244 (1997).
    [Crossref]
  12. K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
    [Crossref]
  13. Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Fluoride glass fiber,” U.S. Patent No. 5,774,620 (dated Jun. 30, 1998).
  14. Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids 320(1-3), 231–237 (2003).
    [Crossref]
  15. M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE 7316, 73160N, 73160N-16 (2009).
    [Crossref]
  16. G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem. 110(2), 165–173 (2001).
    [Crossref]
  17. H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow druing extrusion of optical fiber preforms,” Opt. Mater. Express 2(3), 304–320 (2012).
    [Crossref]
  18. E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids 5(5), 377–388 (1971).
    [Crossref]
  19. H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fiber,” Electron. Lett. 43(24), 1343–1345 (2007).
    [Crossref]
  20. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
    [Crossref] [PubMed]
  21. H. Ebendorff-Heidepriem, T. C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett. 33(23), 2861–2863 (2008).
    [Crossref] [PubMed]
  22. A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses,” J. Mater. Res. 7(06), 1534–1540 (1992).
    [Crossref]
  23. S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol. 2(5), 587–592 (1984).
    [Crossref]
  24. S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum 32–33, 87–92 (1988).
    [Crossref]
  25. D. C. Tran and C. Fisher, “SF6 Process for dehydration of fluoride glasses,” U.S. Patent No. 4,539,032 (dated Sep. 3, 1985).
  26. H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
    [Crossref]
  27. P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci. 26(19), 5149–5154 (1991).
    [Crossref]
  28. A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B 28(4), 682–686 (2010).
    [Crossref]
  29. Y. D. West, E. R. Taylor, R. C. Moore, and D. N. Payne, “Chemical etching of AlF3-based glasses,” J. Non-Cryst. Solids 256-257, 200–206 (1999).
    [Crossref]
  30. P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett. 20(14), 607–608 (1984).
    [Crossref]
  31. M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull. 16(8), 943–947 (1981).
    [Crossref]
  32. B. Bendow, “Transparency of bulk halide glasses,” in Fluoride Glass Fiber Optics, I. D. Aggarwal and G. Lu, eds. (Academic Press, 1991), pp. 85–137.
  33. M. G. Drexhage, “Heavy metal fluoride glasses,” in Treatise on Materials Science and Technology, M. Tomozawa and R. H. Doremus, eds. (Academic Press, 1985), Vol. 26: Glass IV, pp. 228–229.
  34. H. Yinnon and D. R. Uhlmann, “Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory,” J. Non-Cryst. Solids 54(3), 253–275 (1983).
    [Crossref]
  35. N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc. 66(4), 233–238 (1983).
    [Crossref]
  36. S. Mitachi and P. A. Tick, “Oxygen effects on fluoride glass stability,” Mater. Sci. Forum 32-33, 197–202 (1991).
    [Crossref]
  37. K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys. 30(Part 2, No. 12B), L2113–L2115 (1991).
    [Crossref]
  38. R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids 56(1-3), 63–68 (1983).
    [Crossref]
  39. International Organisation for Standardisation, “Surface Roughness - Terminology - Part 1: Surface and Its Parameters,” ISO 4287–1 (1984).

2012 (1)

2010 (2)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B 28(4), 682–686 (2010).
[Crossref]

2009 (2)

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids 355(28-30), 1461–1467 (2009).
[Crossref]

M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE 7316, 73160N, 73160N-16 (2009).
[Crossref]

2008 (1)

2007 (2)

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fiber,” Electron. Lett. 43(24), 1343–1345 (2007).
[Crossref]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
[Crossref] [PubMed]

2006 (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

2004 (1)

2003 (1)

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids 320(1-3), 231–237 (2003).
[Crossref]

2002 (1)

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
[Crossref]

2001 (1)

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem. 110(2), 165–173 (2001).
[Crossref]

2000 (1)

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

1999 (2)

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
[Crossref]

Y. D. West, E. R. Taylor, R. C. Moore, and D. N. Payne, “Chemical etching of AlF3-based glasses,” J. Non-Cryst. Solids 256-257, 200–206 (1999).
[Crossref]

1997 (1)

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids 221(2-3), 238–244 (1997).
[Crossref]

1994 (1)

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).
[Crossref] [PubMed]

1993 (1)

D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids 161, 18–22 (1993).
[Crossref]

1992 (1)

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses,” J. Mater. Res. 7(06), 1534–1540 (1992).
[Crossref]

1991 (3)

S. Mitachi and P. A. Tick, “Oxygen effects on fluoride glass stability,” Mater. Sci. Forum 32-33, 197–202 (1991).
[Crossref]

K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys. 30(Part 2, No. 12B), L2113–L2115 (1991).
[Crossref]

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci. 26(19), 5149–5154 (1991).
[Crossref]

1989 (1)

J. M. Reau and M. Poulain, “Ionic conductivity in fluorine-containing glasses,” Mater. Chem. Phys. 23(1-2), 189–209 (1989).
[Crossref]

1988 (1)

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum 32–33, 87–92 (1988).
[Crossref]

1986 (1)

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
[Crossref]

1984 (2)

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol. 2(5), 587–592 (1984).
[Crossref]

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett. 20(14), 607–608 (1984).
[Crossref]

1983 (3)

H. Yinnon and D. R. Uhlmann, “Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory,” J. Non-Cryst. Solids 54(3), 253–275 (1983).
[Crossref]

N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc. 66(4), 233–238 (1983).
[Crossref]

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids 56(1-3), 63–68 (1983).
[Crossref]

1981 (1)

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull. 16(8), 943–947 (1981).
[Crossref]

1971 (1)

E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids 5(5), 377–388 (1971).
[Crossref]

Adam, J. L.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem. 110(2), 165–173 (2001).
[Crossref]

Aegerter, M. A.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).
[Crossref] [PubMed]

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
[Crossref]

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci. 26(19), 5149–5154 (1991).
[Crossref]

Almeida, R. M.

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids 56(1-3), 63–68 (1983).
[Crossref]

Aoki, H.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
[Crossref]

Bailey, R.

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids 355(28-30), 1461–1467 (2009).
[Crossref]

Baniel, P.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids 320(1-3), 231–237 (2003).
[Crossref]

Bansal, N. P.

N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc. 66(4), 233–238 (1983).
[Crossref]

Beales, K. J.

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett. 20(14), 607–608 (1984).
[Crossref]

Bendow, B.

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull. 16(8), 943–947 (1981).
[Crossref]

Boulard, B.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids 320(1-3), 231–237 (2003).
[Crossref]

Boulos, M.

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull. 16(8), 943–947 (1981).
[Crossref]

Bruce, A. J.

N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc. 66(4), 233–238 (1983).
[Crossref]

Carter, S. F.

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett. 20(14), 607–608 (1984).
[Crossref]

Chung, K. H.

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull. 16(8), 943–947 (1981).
[Crossref]

Davey, S. T.

D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids 161, 18–22 (1993).
[Crossref]

de Araujo, C. B.

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
[Crossref]

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

de Araujo, M. T.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

de Araújo, C. B.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).
[Crossref] [PubMed]

de Araújo, L. E. E.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).
[Crossref] [PubMed]

Doremus, R. H.

N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc. 66(4), 233–238 (1983).
[Crossref]

Drexhage, M. G.

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull. 16(8), 943–947 (1981).
[Crossref]

Ebendorff-Heidepriem, H.

Elyamani, A.

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses,” J. Mater. Res. 7(06), 1534–1540 (1992).
[Crossref]

Florea, C. M.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Florez, A.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).
[Crossref] [PubMed]

Foo, T. C.

France, P. W.

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett. 20(14), 607–608 (1984).
[Crossref]

Fujiura, K.

K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys. 30(Part 2, No. 12B), L2113–L2115 (1991).
[Crossref]

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum 32–33, 87–92 (1988).
[Crossref]

Gao, Y.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids 320(1-3), 231–237 (2003).
[Crossref]

Gboji, E.

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull. 16(8), 943–947 (1981).
[Crossref]

Gerndt, C.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
[Crossref]

Gomes, A. S. L.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).
[Crossref] [PubMed]

Gouveia, E. A.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

Gouveia-Neto, A. S.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

Hemming, A.

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids 355(28-30), 1461–1467 (2009).
[Crossref]

H. Ebendorff-Heidepriem, T. C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett. 33(23), 2861–2863 (2008).
[Crossref] [PubMed]

Henry, P.

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids 355(28-30), 1461–1467 (2009).
[Crossref]

Hodelin, J.

Ishikawa, E.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
[Crossref]

Itoh, K.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
[Crossref]

Jestin, Y.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids 320(1-3), 231–237 (2003).
[Crossref]

Kanamori, T.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids 221(2-3), 238–244 (1997).
[Crossref]

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum 32–33, 87–92 (1988).
[Crossref]

Klein, P. H.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci. 26(19), 5149–5154 (1991).
[Crossref]

Kobayashi, K.

K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys. 30(Part 2, No. 12B), L2113–L2115 (1991).
[Crossref]

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Lancaster, D. G.

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids 355(28-30), 1461–1467 (2009).
[Crossref]

H. Ebendorff-Heidepriem, T. C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett. 33(23), 2861–2863 (2008).
[Crossref] [PubMed]

Lenz, G.

Li, Y.

Lin, A.

A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B 28(4), 682–686 (2010).
[Crossref]

Lucas, J.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem. 110(2), 165–173 (2001).
[Crossref]

Maciel, G. S.

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
[Crossref]

Mackenzie, J. D.

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids 56(1-3), 63–68 (1983).
[Crossref]

Mailhot, A. M.

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses,” J. Mater. Res. 7(06), 1534–1540 (1992).
[Crossref]

Mair, R. H.

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids 355(28-30), 1461–1467 (2009).
[Crossref]

Matsumoto, Y.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
[Crossref]

Matsuoka, Y.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
[Crossref]

McNamara, P.

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids 355(28-30), 1461–1467 (2009).
[Crossref]

Messaddeq, Y.

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
[Crossref]

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).
[Crossref] [PubMed]

Mitachi, S.

S. Mitachi and P. A. Tick, “Oxygen effects on fluoride glass stability,” Mater. Sci. Forum 32-33, 197–202 (1991).
[Crossref]

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol. 2(5), 587–592 (1984).
[Crossref]

Monro, T. M.

Moore, M. W.

D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids 161, 18–22 (1993).
[Crossref]

Moore, R. C.

Moynihan, C. T.

N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc. 66(4), 233–238 (1983).
[Crossref]

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull. 16(8), 943–947 (1981).
[Crossref]

Nguyen, V. Q.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Nishida, Y.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids 221(2-3), 238–244 (1997).
[Crossref]

K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys. 30(Part 2, No. 12B), L2113–L2115 (1991).
[Crossref]

Ohishi, Y.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids 221(2-3), 238–244 (1997).
[Crossref]

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum 32–33, 87–92 (1988).
[Crossref]

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol. 2(5), 587–592 (1984).
[Crossref]

Okada, K.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
[Crossref]

Oliveira, A. S.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

Parker, J. M.

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett. 20(14), 607–608 (1984).
[Crossref]

Payne, D. N.

Y. D. West, E. R. Taylor, R. C. Moore, and D. N. Payne, “Chemical etching of AlF3-based glasses,” J. Non-Cryst. Solids 256-257, 200–206 (1999).
[Crossref]

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Poulain, M.

J. M. Reau and M. Poulain, “Ionic conductivity in fluorine-containing glasses,” Mater. Chem. Phys. 23(1-2), 189–209 (1989).
[Crossref]

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Pureza, P. C.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci. 26(19), 5149–5154 (1991).
[Crossref]

Rakov, N.

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
[Crossref]

Rault, G.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem. 110(2), 165–173 (2001).
[Crossref]

Reau, J. M.

J. M. Reau and M. Poulain, “Ionic conductivity in fluorine-containing glasses,” Mater. Chem. Phys. 23(1-2), 189–209 (1989).
[Crossref]

Riman, R. E.

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses,” J. Mater. Res. 7(06), 1534–1540 (1992).
[Crossref]

Roberts, W. I.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci. 26(19), 5149–5154 (1991).
[Crossref]

Roeder, E.

E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids 5(5), 377–388 (1971).
[Crossref]

Saad, M.

M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE 7316, 73160N, 73160N-16 (2009).
[Crossref]

Sakamoto, T.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids 221(2-3), 238–244 (1997).
[Crossref]

Sanghera, J.

Sanghera, J. S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Sauze, A. L.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids 320(1-3), 231–237 (2003).
[Crossref]

Schneider, H. W.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
[Crossref]

Schoberth, A.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
[Crossref]

Shaw, L. B.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
[Crossref]

Shirakawa, A.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
[Crossref]

Slusher, R. E.

Smektala, F.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem. 110(2), 165–173 (2001).
[Crossref]

Staudt, A.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
[Crossref]

Sudo, S.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids 221(2-3), 238–244 (1997).
[Crossref]

Szebesta, D.

D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids 161, 18–22 (1993).
[Crossref]

Takahashi, S.

K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys. 30(Part 2, No. 12B), L2113–L2115 (1991).
[Crossref]

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum 32–33, 87–92 (1988).
[Crossref]

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol. 2(5), 587–592 (1984).
[Crossref]

Tawarayama, H.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
[Crossref]

Taylor, E. R.

Y. D. West, E. R. Taylor, R. C. Moore, and D. N. Payne, “Chemical etching of AlF3-based glasses,” J. Non-Cryst. Solids 256-257, 200–206 (1999).
[Crossref]

Terunuma, Y.

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum 32–33, 87–92 (1988).
[Crossref]

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol. 2(5), 587–592 (1984).
[Crossref]

Tick, P. A.

S. Mitachi and P. A. Tick, “Oxygen effects on fluoride glass stability,” Mater. Sci. Forum 32-33, 197–202 (1991).
[Crossref]

Toratani, H.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
[Crossref]

Toulouse, J.

A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B 28(4), 682–686 (2010).
[Crossref]

Uhlmann, D. R.

H. Yinnon and D. R. Uhlmann, “Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory,” J. Non-Cryst. Solids 54(3), 253–275 (1983).
[Crossref]

Wang, J. S.

A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B 28(4), 682–686 (2010).
[Crossref]

West, Y. D.

Y. D. West, E. R. Taylor, R. C. Moore, and D. N. Payne, “Chemical etching of AlF3-based glasses,” J. Non-Cryst. Solids 256-257, 200–206 (1999).
[Crossref]

Williams, J. R.

D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids 161, 18–22 (1993).
[Crossref]

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett. 20(14), 607–608 (1984).
[Crossref]

Yamanaka, K.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
[Crossref]

Yanagita, H.

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
[Crossref]

Yinnon, H.

H. Yinnon and D. R. Uhlmann, “Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory,” J. Non-Cryst. Solids 54(3), 253–275 (1983).
[Crossref]

Zhang, A.

A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B 28(4), 682–686 (2010).
[Crossref]

Zhang, W.

Zhu, X.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Electron. Lett. (3)

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fiber,” Electron. Lett. 43(24), 1343–1345 (2007).
[Crossref]

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
[Crossref]

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett. 20(14), 607–608 (1984).
[Crossref]

J. Am. Ceram. Soc. (1)

N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc. 66(4), 233–238 (1983).
[Crossref]

J. Appl. Phys. (2)

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1276 (2002).
[Crossref]

J. Fluor. Chem. (1)

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem. 110(2), 165–173 (2001).
[Crossref]

J. Lightwave Technol. (1)

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol. 2(5), 587–592 (1984).
[Crossref]

J. Mater. Res. (1)

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses,” J. Mater. Res. 7(06), 1534–1540 (1992).
[Crossref]

J. Mater. Sci. (1)

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci. 26(19), 5149–5154 (1991).
[Crossref]

J. Non-Cryst. Solids (9)

Y. D. West, E. R. Taylor, R. C. Moore, and D. N. Payne, “Chemical etching of AlF3-based glasses,” J. Non-Cryst. Solids 256-257, 200–206 (1999).
[Crossref]

H. Yinnon and D. R. Uhlmann, “Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory,” J. Non-Cryst. Solids 54(3), 253–275 (1983).
[Crossref]

E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids 5(5), 377–388 (1971).
[Crossref]

D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids 161, 18–22 (1993).
[Crossref]

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids 320(1-3), 231–237 (2003).
[Crossref]

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids 221(2-3), 238–244 (1997).
[Crossref]

K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids 256-257, 1–5 (1999).
[Crossref]

P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids 355(28-30), 1461–1467 (2009).
[Crossref]

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids 56(1-3), 63–68 (1983).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

J. Vac. Sci. Technol. B (1)

A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B 28(4), 682–686 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys. 30(Part 2, No. 12B), L2113–L2115 (1991).
[Crossref]

Mater. Chem. Phys. (1)

J. M. Reau and M. Poulain, “Ionic conductivity in fluorine-containing glasses,” Mater. Chem. Phys. 23(1-2), 189–209 (1989).
[Crossref]

Mater. Res. Bull. (1)

M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull. 16(8), 943–947 (1981).
[Crossref]

Mater. Sci. Forum (2)

S. Mitachi and P. A. Tick, “Oxygen effects on fluoride glass stability,” Mater. Sci. Forum 32-33, 197–202 (1991).
[Crossref]

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum 32–33, 87–92 (1988).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE 7316, 73160N, 73160N-16 (2009).
[Crossref]

Other (6)

R. M. Almeida, “Fluoride glasses,” in Handbook on the Physics and Chemistry of Rare Earths, A. G. Karl, Jr. and E. LeRoy, eds. (Elsevier, 1991), pp. 287–346.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Fluoride glass fiber,” U.S. Patent No. 5,774,620 (dated Jun. 30, 1998).

D. C. Tran and C. Fisher, “SF6 Process for dehydration of fluoride glasses,” U.S. Patent No. 4,539,032 (dated Sep. 3, 1985).

B. Bendow, “Transparency of bulk halide glasses,” in Fluoride Glass Fiber Optics, I. D. Aggarwal and G. Lu, eds. (Academic Press, 1991), pp. 85–137.

M. G. Drexhage, “Heavy metal fluoride glasses,” in Treatise on Materials Science and Technology, M. Tomozawa and R. H. Doremus, eds. (Academic Press, 1985), Vol. 26: Glass IV, pp. 228–229.

International Organisation for Standardisation, “Surface Roughness - Terminology - Part 1: Surface and Its Parameters,” ISO 4287–1 (1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fluoroindate glass in the form of: (Left) Cast billets. (Top) Cast rod. (Centre) Preforms cast from cast billets.

Fig. 2
Fig. 2

Absorption coefficient for the glass samples prepared under the three different fabrication conditions (a) 2.75-6.00 μm; (b) 5.00-8.75μm.

Fig. 3
Fig. 3

DSC curves for the glass samples prepared under the three different fabrication conditions.

Fig. 4
Fig. 4

Glass surface images: (a) before annealing at 330 °C less than 8 hours; (b) the edge of the glass after annealing at 330 °C less than 8 hours; (c) before annealing at 322 °C for 24 hours; (d) after annealing at 322 °C for 24 hours.

Fig. 5
Fig. 5

AFM morphology of preform surface (a) before etching; (b) surface without white precipitate after etching by 15 wt% HCl(aq). Insets are optical microscope images of the preform surfaces before and after etching.

Fig. 6
Fig. 6

(a) SEM secondary electron image and (b) EDS analysis of the white precipitate formed after 15 wt% HCl(aq) etch.

Fig. 7
Fig. 7

Loss measurements at 1550 nm for fibers made using different conditions. Linear fits of the data are also shown in the figure.

Fig. 8
Fig. 8

Microscope image of the fiber drawn from the preform extruded at 322 °C.

Tables (3)

Tables Icon

Table 1 Glass blocks melting conditions

Tables Icon

Table 2 Electron probe microanalysis of sample C (glass block)

Tables Icon

Table 3 Glass rod / preform preparation conditions and results of the fiber loss

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S a = 1 MN k=0 M1 l=0 N1 |z (x k , y l ) |
S a = 1 MN k=0 M1 l=0 N1 [ z(x k , y l ) ] 2

Metrics