Abstract

This paper presents a new technique for fabricating thick (>10µm) chalcogenide multilayer structures. Films of arbitrary thicknesses are readily achieved through spin-coating, lamination and baking. For homogeneous systems, layer interfaces can be effectively removed by annealing above Tg. Alternatively, heterogeneous multilayer films can be realized by introducing layers of different chalcogenide materials or metals. In particular, photo-induced Ag dissolution is verified in a laminated multilayer film, with a refractive index increase greater than 0.2. The work presented here has great implications for chalcogenide deposition with potential applications in data storage, IR detection and IR beam combining.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249(2-3), 150–159 (1999).
    [Crossref]
  2. A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photoinduced structural and physicochemical changes in amorphous-chalcogenide semiconductors,” Philos. Mag. B 52(3), 347–362 (1985).
    [Crossref]
  3. K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter 42(18), 11857–11861 (1990).
    [Crossref] [PubMed]
  4. S. Song, S. S. Howard, Z. J. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
    [Crossref]
  5. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass-fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
    [Crossref]
  6. H. Zogg and M. Arnold, “Narrow spectral band monolithic lead-chalcogenide-on-Si mid-IR photodetectors,” Opto-Electron. Rev. 14(1), 33–36 (2006).
    [Crossref]
  7. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
    [Crossref] [PubMed]
  8. X. Xia, Q. Chen, C. Tsay, C. B. Arnold, and C. K. Madsen, “Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared,” Opt. Lett. 35(19), 3228–3230 (2010).
    [Crossref] [PubMed]
  9. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010).
    [Crossref] [PubMed]
  10. V. Lyubin, M. Klebanov, M. Mitkova, and T. Petkova, “Laser-induced polarization-dependent photocrystallization of amorphous chalcogenide films,” J. Non-Cryst. Solids 227-230, 739–742 (1998).
    [Crossref]
  11. F. Kyriazis and S. N. Yannopoulos, “Colossal photostructural changes in chalcogenide glasses: athermal photoinduced polymerization in AsxS100-x bulk glasses revealed by near-bandgap Raman scattering,” Appl. Phys. Lett. 94(10), 101901 (2009).
    [Crossref]
  12. A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40(5), 625–684 (1991).
    [Crossref]
  13. A. G. Steventon, “Microfilaments in amorphous-chalcogenide memory devices,” J. Phys. D Appl. Phys. 8(9), L120–L122 (1975).
    [Crossref]
  14. L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the photoresponse of chalcogenide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
    [Crossref]
  15. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29(7), 748–750 (2004).
    [Crossref] [PubMed]
  16. J. Teteris, “Holographic recording in amorphous chalcogenide semiconductor thin films,” J. Optoelectron. Adv. Mater. 4, 687–697 (2002).
  17. H. R. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
    [Crossref]
  18. H.-Y. Tsoi, J. P. Ellul, M. I. King, J. J. White, and W. C. Bradley, “A deep-depletion CCD imager for soft-X-ray, visible, and near-infrared sensing,” IEEE Trans. Electron. Dev. 32(8), 1525–1530 (1985).
    [Crossref]
  19. P. Abgrall, C. Lattes, V. Conédéra, X. Dollat, S. Colin, and A. M. Gué, “A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films,” J. Micromech. Microeng. 16(1), 113–121 (2006).
    [Crossref]
  20. Z. Y. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, “Nanostructured artificial nacre,” Nat. Mater. 2(6), 413–418 (2003).
    [Crossref] [PubMed]
  21. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
    [Crossref] [PubMed]
  22. Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express 2(12), 1723–1732 (2012).
    [Crossref]
  23. V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater. 6, 875–882 (2004).
  24. K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed-laser deposition of Ga-La-S chalcogenide glass thin-film optical wave-guides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
    [Crossref]
  25. T. Wagner and P. J. S. Ewen, “Photo-induced dissolution effect in Ag/AS33S67 multilayer structures and its potential application,” J. Non-Cryst. Solids 266-269, 979–984 (2000).
    [Crossref]
  26. G. C. Chern and I. Lauks, “Spin-coated amorphous-chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982).
    [Crossref]
  27. E. Skordeva, K. Christova, M. Tzolov, and Z. Dimitrova, “Photoinduced changes of mechanical stress in amorphous Ge-As-S(Se) film/Si substrate systems,” Appl. Phys., A Mater. Sci. Process. 66(1), 103–107 (1998).
    [Crossref]
  28. S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29(11), 829–832 (2004).
    [Crossref]
  29. G. Atwood and R. Bez, “Current status of Chalcogenide phase change memory,” in Device Research Conference (2005), pp. 29–33.
  30. K. A. Campbell and C. M. Anderson, “Phase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers,” Microelectron. J. 38(1), 52–59 (2007).
    [Crossref]
  31. Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
    [Crossref]
  32. T. Wagner, M. Frumar, S. O. Kasap, M. Vlcek, and M. Vlcek, “New Ag-containing amorphous chalcogenide thin films—prospective materials for rewriteable optical memories,” J. Optoelectron. Adv. Mater. 3, 227–232 (2001).
  33. M. Mitkova, Y. Sakaguchi, D. Tenne, S. K. Bhagat, and T. L. Alford, “Structural details of Ge-rich and silver-doped chalcogenide glasses for nanoionic nonvolatile memory,” Phys Status Solidi A 207(3), 621–626 (2010).
    [Crossref]
  34. S. Kokenyesi, “Amorphous chalcogenide nano-multilayers: research and development,” J. Optoelectron. Adv. Mater. 8, 2093–2096 (2006).
  35. S. Shtutina, M. Klebanov, V. Lyubin, S. Rosenwaks, and V. Volterra, “Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films,” Thin Solid Films 261(1-2), 263–265 (1995).
    [Crossref]
  36. Y. Zha, S. Fingerman, S. J. Cantrell, and C. B. Arnold, “Pore formation and removal in solution-processed amorphous arsenic sulfide films,” J. Non-Cryst. Solids (submitted).
  37. S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18(6), 5472–5480 (2010).
    [Crossref] [PubMed]
  38. S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009).
    [Crossref]
  39. C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express 18(25), 26744–26753 (2010).
    [Crossref] [PubMed]
  40. M. Frumar and T. Wagner, “Ag doped chalcogenide glasses and their applications,” Curr. Opin. Solid State Mater. Sci. 7(2), 117–126 (2003).
    [Crossref]
  41. T. Wágner, A. Mackova, V. Perina, E. Rauhala, A. Seppala, S. O. Kasap, M. Frumar, M. Vlcek, and M. Vlcek, “The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products,” J. Non-Cryst. Solids 299-302, 1028–1032 (2002).
    [Crossref]
  42. K. A. Campell and J. T. Moore, “Silver-selenide/chalcogenide glass stack for resistence variable memory,” US 2003/0155589 A1 (2012).

2012 (1)

2010 (6)

2009 (2)

S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009).
[Crossref]

F. Kyriazis and S. N. Yannopoulos, “Colossal photostructural changes in chalcogenide glasses: athermal photoinduced polymerization in AsxS100-x bulk glasses revealed by near-bandgap Raman scattering,” Appl. Phys. Lett. 94(10), 101901 (2009).
[Crossref]

2008 (2)

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the photoresponse of chalcogenide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

H. R. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

2007 (1)

K. A. Campbell and C. M. Anderson, “Phase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers,” Microelectron. J. 38(1), 52–59 (2007).
[Crossref]

2006 (5)

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[Crossref]

S. Kokenyesi, “Amorphous chalcogenide nano-multilayers: research and development,” J. Optoelectron. Adv. Mater. 8, 2093–2096 (2006).

P. Abgrall, C. Lattes, V. Conédéra, X. Dollat, S. Colin, and A. M. Gué, “A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films,” J. Micromech. Microeng. 16(1), 113–121 (2006).
[Crossref]

H. Zogg and M. Arnold, “Narrow spectral band monolithic lead-chalcogenide-on-Si mid-IR photodetectors,” Opto-Electron. Rev. 14(1), 33–36 (2006).
[Crossref]

S. Song, S. S. Howard, Z. J. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[Crossref]

2004 (3)

V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater. 6, 875–882 (2004).

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29(11), 829–832 (2004).
[Crossref]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29(7), 748–750 (2004).
[Crossref] [PubMed]

2003 (2)

Z. Y. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, “Nanostructured artificial nacre,” Nat. Mater. 2(6), 413–418 (2003).
[Crossref] [PubMed]

M. Frumar and T. Wagner, “Ag doped chalcogenide glasses and their applications,” Curr. Opin. Solid State Mater. Sci. 7(2), 117–126 (2003).
[Crossref]

2002 (3)

T. Wágner, A. Mackova, V. Perina, E. Rauhala, A. Seppala, S. O. Kasap, M. Frumar, M. Vlcek, and M. Vlcek, “The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products,” J. Non-Cryst. Solids 299-302, 1028–1032 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[Crossref] [PubMed]

J. Teteris, “Holographic recording in amorphous chalcogenide semiconductor thin films,” J. Optoelectron. Adv. Mater. 4, 687–697 (2002).

2001 (1)

T. Wagner, M. Frumar, S. O. Kasap, M. Vlcek, and M. Vlcek, “New Ag-containing amorphous chalcogenide thin films—prospective materials for rewriteable optical memories,” J. Optoelectron. Adv. Mater. 3, 227–232 (2001).

2000 (1)

T. Wagner and P. J. S. Ewen, “Photo-induced dissolution effect in Ag/AS33S67 multilayer structures and its potential application,” J. Non-Cryst. Solids 266-269, 979–984 (2000).
[Crossref]

1999 (1)

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249(2-3), 150–159 (1999).
[Crossref]

1998 (2)

V. Lyubin, M. Klebanov, M. Mitkova, and T. Petkova, “Laser-induced polarization-dependent photocrystallization of amorphous chalcogenide films,” J. Non-Cryst. Solids 227-230, 739–742 (1998).
[Crossref]

E. Skordeva, K. Christova, M. Tzolov, and Z. Dimitrova, “Photoinduced changes of mechanical stress in amorphous Ge-As-S(Se) film/Si substrate systems,” Appl. Phys., A Mater. Sci. Process. 66(1), 103–107 (1998).
[Crossref]

1995 (1)

S. Shtutina, M. Klebanov, V. Lyubin, S. Rosenwaks, and V. Volterra, “Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films,” Thin Solid Films 261(1-2), 263–265 (1995).
[Crossref]

1993 (1)

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed-laser deposition of Ga-La-S chalcogenide glass thin-film optical wave-guides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

1991 (1)

A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40(5), 625–684 (1991).
[Crossref]

1990 (1)

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter 42(18), 11857–11861 (1990).
[Crossref] [PubMed]

1985 (2)

A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photoinduced structural and physicochemical changes in amorphous-chalcogenide semiconductors,” Philos. Mag. B 52(3), 347–362 (1985).
[Crossref]

H.-Y. Tsoi, J. P. Ellul, M. I. King, J. J. White, and W. C. Bradley, “A deep-depletion CCD imager for soft-X-ray, visible, and near-infrared sensing,” IEEE Trans. Electron. Dev. 32(8), 1525–1530 (1985).
[Crossref]

1984 (1)

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass-fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

1982 (1)

G. C. Chern and I. Lauks, “Spin-coated amorphous-chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982).
[Crossref]

1975 (1)

A. G. Steventon, “Microfilaments in amorphous-chalcogenide memory devices,” J. Phys. D Appl. Phys. 8(9), L120–L122 (1975).
[Crossref]

Abgrall, P.

P. Abgrall, C. Lattes, V. Conédéra, X. Dollat, S. Colin, and A. M. Gué, “A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films,” J. Micromech. Microeng. 16(1), 113–121 (2006).
[Crossref]

Agarwal, A.

Aggarwal, I. D.

Alford, T. L.

M. Mitkova, Y. Sakaguchi, D. Tenne, S. K. Bhagat, and T. L. Alford, “Structural details of Ge-rich and silver-doped chalcogenide glasses for nanoionic nonvolatile memory,” Phys Status Solidi A 207(3), 621–626 (2010).
[Crossref]

Anderson, C. M.

K. A. Campbell and C. M. Anderson, “Phase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers,” Microelectron. J. 38(1), 52–59 (2007).
[Crossref]

Anderson, T.

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the photoresponse of chalcogenide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

Arnold, C. B.

S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18(6), 5472–5480 (2010).
[Crossref] [PubMed]

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010).
[Crossref] [PubMed]

X. Xia, Q. Chen, C. Tsay, C. B. Arnold, and C. K. Madsen, “Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared,” Opt. Lett. 35(19), 3228–3230 (2010).
[Crossref] [PubMed]

C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express 18(25), 26744–26753 (2010).
[Crossref] [PubMed]

S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009).
[Crossref]

S. Song, S. S. Howard, Z. J. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[Crossref]

Y. Zha, S. Fingerman, S. J. Cantrell, and C. B. Arnold, “Pore formation and removal in solution-processed amorphous arsenic sulfide films,” J. Non-Cryst. Solids (submitted).

Arnold, M.

H. Zogg and M. Arnold, “Narrow spectral band monolithic lead-chalcogenide-on-Si mid-IR photodetectors,” Opto-Electron. Rev. 14(1), 33–36 (2006).
[Crossref]

Balan, V.

V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater. 6, 875–882 (2004).

Bhagat, S. K.

M. Mitkova, Y. Sakaguchi, D. Tenne, S. K. Bhagat, and T. L. Alford, “Structural details of Ge-rich and silver-doped chalcogenide glasses for nanoionic nonvolatile memory,” Phys Status Solidi A 207(3), 621–626 (2010).
[Crossref]

Boudies, J.

S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009).
[Crossref]

Bradley, W. C.

H.-Y. Tsoi, J. P. Ellul, M. I. King, J. J. White, and W. C. Bradley, “A deep-depletion CCD imager for soft-X-ray, visible, and near-infrared sensing,” IEEE Trans. Electron. Dev. 32(8), 1525–1530 (1985).
[Crossref]

Cai, B. C.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[Crossref]

Cai, Y. F.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[Crossref]

Campbell, K. A.

K. A. Campbell and C. M. Anderson, “Phase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers,” Microelectron. J. 38(1), 52–59 (2007).
[Crossref]

Canciamilla, A.

Cantrell, S. J.

Y. Zha, S. Fingerman, S. J. Cantrell, and C. B. Arnold, “Pore formation and removal in solution-processed amorphous arsenic sulfide films,” J. Non-Cryst. Solids (submitted).

Carlie, N.

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[Crossref] [PubMed]

S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009).
[Crossref]

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the photoresponse of chalcogenide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

Chen, B.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[Crossref]

Chen, Q.

Chern, G. C.

G. C. Chern and I. Lauks, “Spin-coated amorphous-chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982).
[Crossref]

Choi, J.

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the photoresponse of chalcogenide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

Christova, K.

E. Skordeva, K. Christova, M. Tzolov, and Z. Dimitrova, “Photoinduced changes of mechanical stress in amorphous Ge-As-S(Se) film/Si substrate systems,” Appl. Phys., A Mater. Sci. Process. 66(1), 103–107 (1998).
[Crossref]

Colin, S.

P. Abgrall, C. Lattes, V. Conédéra, X. Dollat, S. Colin, and A. M. Gué, “A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films,” J. Micromech. Microeng. 16(1), 113–121 (2006).
[Crossref]

Conédéra, V.

P. Abgrall, C. Lattes, V. Conédéra, X. Dollat, S. Colin, and A. M. Gué, “A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films,” J. Micromech. Microeng. 16(1), 113–121 (2006).
[Crossref]

Danto, S.

Deol, R. S.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed-laser deposition of Ga-La-S chalcogenide glass thin-film optical wave-guides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Dimitrova, Z.

E. Skordeva, K. Christova, M. Tzolov, and Z. Dimitrova, “Photoinduced changes of mechanical stress in amorphous Ge-As-S(Se) film/Si substrate systems,” Appl. Phys., A Mater. Sci. Process. 66(1), 103–107 (1998).
[Crossref]

Dirisu, A. O.

S. Song, S. S. Howard, Z. J. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[Crossref]

Dollat, X.

P. Abgrall, C. Lattes, V. Conédéra, X. Dollat, S. Colin, and A. M. Gué, “A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films,” J. Micromech. Microeng. 16(1), 113–121 (2006).
[Crossref]

Dua, J.

Eason, R. W.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed-laser deposition of Ga-La-S chalcogenide glass thin-film optical wave-guides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Elliott, S. R.

A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40(5), 625–684 (1991).
[Crossref]

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter 42(18), 11857–11861 (1990).
[Crossref] [PubMed]

Ellul, J. P.

H.-Y. Tsoi, J. P. Ellul, M. I. King, J. J. White, and W. C. Bradley, “A deep-depletion CCD imager for soft-X-ray, visible, and near-infrared sensing,” IEEE Trans. Electron. Dev. 32(8), 1525–1530 (1985).
[Crossref]

Ewen, P. J. S.

T. Wagner and P. J. S. Ewen, “Photo-induced dissolution effect in Ag/AS33S67 multilayer structures and its potential application,” J. Non-Cryst. Solids 266-269, 979–984 (2000).
[Crossref]

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249(2-3), 150–159 (1999).
[Crossref]

A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photoinduced structural and physicochemical changes in amorphous-chalcogenide semiconductors,” Philos. Mag. B 52(3), 347–362 (1985).
[Crossref]

Feng, J.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[Crossref]

Fingerman, S.

Y. Zha, S. Fingerman, S. J. Cantrell, and C. B. Arnold, “Pore formation and removal in solution-processed amorphous arsenic sulfide films,” J. Non-Cryst. Solids (submitted).

Firth, A. P.

A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photoinduced structural and physicochemical changes in amorphous-chalcogenide semiconductors,” Philos. Mag. B 52(3), 347–362 (1985).
[Crossref]

Frumar, M.

M. Frumar and T. Wagner, “Ag doped chalcogenide glasses and their applications,” Curr. Opin. Solid State Mater. Sci. 7(2), 117–126 (2003).
[Crossref]

T. Wágner, A. Mackova, V. Perina, E. Rauhala, A. Seppala, S. O. Kasap, M. Frumar, M. Vlcek, and M. Vlcek, “The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products,” J. Non-Cryst. Solids 299-302, 1028–1032 (2002).
[Crossref]

T. Wagner, M. Frumar, S. O. Kasap, M. Vlcek, and M. Vlcek, “New Ag-containing amorphous chalcogenide thin films—prospective materials for rewriteable optical memories,” J. Optoelectron. Adv. Mater. 3, 227–232 (2001).

Gmachl, C. F.

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010).
[Crossref] [PubMed]

S. Song, S. S. Howard, Z. J. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[Crossref]

Grevatt, T.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed-laser deposition of Ga-La-S chalcogenide glass thin-film optical wave-guides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Gué, A. M.

P. Abgrall, C. Lattes, V. Conédéra, X. Dollat, S. Colin, and A. M. Gué, “A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films,” J. Micromech. Microeng. 16(1), 113–121 (2006).
[Crossref]

Harbold, J. M.

Hirao, K.

H. R. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

Hô, N.

Howard, S. S.

S. Song, S. S. Howard, Z. J. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[Crossref]

Hu, J.

Hu, J. J.

Hudgens, S.

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29(11), 829–832 (2004).
[Crossref]

Ilday, F. O.

Inami, S.

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter 42(18), 11857–11861 (1990).
[Crossref] [PubMed]

Johnson, B.

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29(11), 829–832 (2004).
[Crossref]

Kanamori, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass-fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

Kasap, S. O.

T. Wágner, A. Mackova, V. Perina, E. Rauhala, A. Seppala, S. O. Kasap, M. Frumar, M. Vlcek, and M. Vlcek, “The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products,” J. Non-Cryst. Solids 299-302, 1028–1032 (2002).
[Crossref]

T. Wagner, M. Frumar, S. O. Kasap, M. Vlcek, and M. Vlcek, “New Ag-containing amorphous chalcogenide thin films—prospective materials for rewriteable optical memories,” J. Optoelectron. Adv. Mater. 3, 227–232 (2001).

Kimerling, L. C.

King, M. I.

H.-Y. Tsoi, J. P. Ellul, M. I. King, J. J. White, and W. C. Bradley, “A deep-depletion CCD imager for soft-X-ray, visible, and near-infrared sensing,” IEEE Trans. Electron. Dev. 32(8), 1525–1530 (1985).
[Crossref]

Klebanov, M.

V. Lyubin, M. Klebanov, M. Mitkova, and T. Petkova, “Laser-induced polarization-dependent photocrystallization of amorphous chalcogenide films,” J. Non-Cryst. Solids 227-230, 739–742 (1998).
[Crossref]

S. Shtutina, M. Klebanov, V. Lyubin, S. Rosenwaks, and V. Volterra, “Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films,” Thin Solid Films 261(1-2), 263–265 (1995).
[Crossref]

Kokenyesi, S.

S. Kokenyesi, “Amorphous chalcogenide nano-multilayers: research and development,” J. Optoelectron. Adv. Mater. 8, 2093–2096 (2006).

Kolobov, A. V.

A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40(5), 625–684 (1991).
[Crossref]

Kotov, N. A.

Z. Y. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, “Nanostructured artificial nacre,” Nat. Mater. 2(6), 413–418 (2003).
[Crossref] [PubMed]

Kyriazis, F.

F. Kyriazis and S. N. Yannopoulos, “Colossal photostructural changes in chalcogenide glasses: athermal photoinduced polymerization in AsxS100-x bulk glasses revealed by near-bandgap Raman scattering,” Appl. Phys. Lett. 94(10), 101901 (2009).
[Crossref]

Lai, Y. F.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[Crossref]

Lattes, C.

P. Abgrall, C. Lattes, V. Conédéra, X. Dollat, S. Colin, and A. M. Gué, “A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films,” J. Micromech. Microeng. 16(1), 113–121 (2006).
[Crossref]

Lauks, I.

G. C. Chern and I. Lauks, “Spin-coated amorphous-chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982).
[Crossref]

Li, L.

Lin, H.

Lin, Y. Y.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[Crossref]

Liu, Z. J.

S. Song, S. S. Howard, Z. J. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[Crossref]

Lopez, C.

Luzinov, I.

Lyubin, V.

V. Lyubin, M. Klebanov, M. Mitkova, and T. Petkova, “Laser-induced polarization-dependent photocrystallization of amorphous chalcogenide films,” J. Non-Cryst. Solids 227-230, 739–742 (1998).
[Crossref]

S. Shtutina, M. Klebanov, V. Lyubin, S. Rosenwaks, and V. Volterra, “Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films,” Thin Solid Films 261(1-2), 263–265 (1995).
[Crossref]

Mackova, A.

T. Wágner, A. Mackova, V. Perina, E. Rauhala, A. Seppala, S. O. Kasap, M. Frumar, M. Vlcek, and M. Vlcek, “The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products,” J. Non-Cryst. Solids 299-302, 1028–1032 (2002).
[Crossref]

Madsen, C. K.

Magonov, S.

Z. Y. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, “Nanostructured artificial nacre,” Nat. Mater. 2(6), 413–418 (2003).
[Crossref] [PubMed]

Melloni, A.

Mitkova, M.

M. Mitkova, Y. Sakaguchi, D. Tenne, S. K. Bhagat, and T. L. Alford, “Structural details of Ge-rich and silver-doped chalcogenide glasses for nanoionic nonvolatile memory,” Phys Status Solidi A 207(3), 621–626 (2010).
[Crossref]

V. Lyubin, M. Klebanov, M. Mitkova, and T. Petkova, “Laser-induced polarization-dependent photocrystallization of amorphous chalcogenide films,” J. Non-Cryst. Solids 227-230, 739–742 (1998).
[Crossref]

Miura, K.

H. R. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

Miyashita, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass-fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

Morichetti, F.

Mujagic, E.

Musgraves, J. D.

Nguyen, V. Q.

Novak, J.

Novak, S.

Ogbuu, O.

Owen, A. E.

A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photoinduced structural and physicochemical changes in amorphous-chalcogenide semiconductors,” Philos. Mag. B 52(3), 347–362 (1985).
[Crossref]

Ozturk, B.

Z. Y. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, “Nanostructured artificial nacre,” Nat. Mater. 2(6), 413–418 (2003).
[Crossref] [PubMed]

Perina, V.

T. Wágner, A. Mackova, V. Perina, E. Rauhala, A. Seppala, S. O. Kasap, M. Frumar, M. Vlcek, and M. Vlcek, “The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products,” J. Non-Cryst. Solids 299-302, 1028–1032 (2002).
[Crossref]

Petit, L.

S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009).
[Crossref]

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the photoresponse of chalcogenide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

Petkov, K.

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249(2-3), 150–159 (1999).
[Crossref]

Petkova, T.

V. Lyubin, M. Klebanov, M. Mitkova, and T. Petkova, “Laser-induced polarization-dependent photocrystallization of amorphous chalcogenide films,” J. Non-Cryst. Solids 227-230, 739–742 (1998).
[Crossref]

Pradel, A.

V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater. 6, 875–882 (2004).

Qiao, B. W.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[Crossref]

Qiu, H. R.

H. R. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

Rauhala, E.

T. Wágner, A. Mackova, V. Perina, E. Rauhala, A. Seppala, S. O. Kasap, M. Frumar, M. Vlcek, and M. Vlcek, “The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products,” J. Non-Cryst. Solids 299-302, 1028–1032 (2002).
[Crossref]

Richardson, K.

Richardson, K. C.

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the photoresponse of chalcogenide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

Richardson, M.

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the photoresponse of chalcogenide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29(7), 748–750 (2004).
[Crossref] [PubMed]

Rivero, C.

Rosenwaks, S.

S. Shtutina, M. Klebanov, V. Lyubin, S. Rosenwaks, and V. Volterra, “Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films,” Thin Solid Films 261(1-2), 263–265 (1995).
[Crossref]

Rutt, H. N.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed-laser deposition of Ga-La-S chalcogenide glass thin-film optical wave-guides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Sakaguchi, Y.

M. Mitkova, Y. Sakaguchi, D. Tenne, S. K. Bhagat, and T. L. Alford, “Structural details of Ge-rich and silver-doped chalcogenide glasses for nanoionic nonvolatile memory,” Phys Status Solidi A 207(3), 621–626 (2010).
[Crossref]

Sanghera, J. S.

Schulte, A.

Seppala, A.

T. Wágner, A. Mackova, V. Perina, E. Rauhala, A. Seppala, S. O. Kasap, M. Frumar, M. Vlcek, and M. Vlcek, “The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products,” J. Non-Cryst. Solids 299-302, 1028–1032 (2002).
[Crossref]

Shaw, L. B.

Shimakawa, K.

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter 42(18), 11857–11861 (1990).
[Crossref] [PubMed]

Shtutina, S.

S. Shtutina, M. Klebanov, V. Lyubin, S. Rosenwaks, and V. Volterra, “Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films,” Thin Solid Films 261(1-2), 263–265 (1995).
[Crossref]

Singh, V.

Skordeva, E.

E. Skordeva, K. Christova, M. Tzolov, and Z. Dimitrova, “Photoinduced changes of mechanical stress in amorphous Ge-As-S(Se) film/Si substrate systems,” Appl. Phys., A Mater. Sci. Process. 66(1), 103–107 (1998).
[Crossref]

Song, S.

S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18(6), 5472–5480 (2010).
[Crossref] [PubMed]

S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009).
[Crossref]

S. Song, S. S. Howard, Z. J. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[Crossref]

Steventon, A. G.

A. G. Steventon, “Microfilaments in amorphous-chalcogenide memory devices,” J. Phys. D Appl. Phys. 8(9), L120–L122 (1975).
[Crossref]

Takahashi, S.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass-fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

Tang, T. A.

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[Crossref]

Tang, Z. Y.

Z. Y. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, “Nanostructured artificial nacre,” Nat. Mater. 2(6), 413–418 (2003).
[Crossref] [PubMed]

Tenne, D.

M. Mitkova, Y. Sakaguchi, D. Tenne, S. K. Bhagat, and T. L. Alford, “Structural details of Ge-rich and silver-doped chalcogenide glasses for nanoionic nonvolatile memory,” Phys Status Solidi A 207(3), 621–626 (2010).
[Crossref]

Terunuma, Y.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass-fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

Teteris, J.

J. Teteris, “Holographic recording in amorphous chalcogenide semiconductor thin films,” J. Optoelectron. Adv. Mater. 4, 687–697 (2002).

Tsay, C.

Tsoi, H.-Y.

H.-Y. Tsoi, J. P. Ellul, M. I. King, J. J. White, and W. C. Bradley, “A deep-depletion CCD imager for soft-X-ray, visible, and near-infrared sensing,” IEEE Trans. Electron. Dev. 32(8), 1525–1530 (1985).
[Crossref]

Tzolov, M.

E. Skordeva, K. Christova, M. Tzolov, and Z. Dimitrova, “Photoinduced changes of mechanical stress in amorphous Ge-As-S(Se) film/Si substrate systems,” Appl. Phys., A Mater. Sci. Process. 66(1), 103–107 (1998).
[Crossref]

Vallée, R.

Vigreux, C.

V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater. 6, 875–882 (2004).

Vlcek, M.

T. Wágner, A. Mackova, V. Perina, E. Rauhala, A. Seppala, S. O. Kasap, M. Frumar, M. Vlcek, and M. Vlcek, “The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products,” J. Non-Cryst. Solids 299-302, 1028–1032 (2002).
[Crossref]

T. Wágner, A. Mackova, V. Perina, E. Rauhala, A. Seppala, S. O. Kasap, M. Frumar, M. Vlcek, and M. Vlcek, “The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products,” J. Non-Cryst. Solids 299-302, 1028–1032 (2002).
[Crossref]

T. Wagner, M. Frumar, S. O. Kasap, M. Vlcek, and M. Vlcek, “New Ag-containing amorphous chalcogenide thin films—prospective materials for rewriteable optical memories,” J. Optoelectron. Adv. Mater. 3, 227–232 (2001).

T. Wagner, M. Frumar, S. O. Kasap, M. Vlcek, and M. Vlcek, “New Ag-containing amorphous chalcogenide thin films—prospective materials for rewriteable optical memories,” J. Optoelectron. Adv. Mater. 3, 227–232 (2001).

Volterra, V.

S. Shtutina, M. Klebanov, V. Lyubin, S. Rosenwaks, and V. Volterra, “Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films,” Thin Solid Films 261(1-2), 263–265 (1995).
[Crossref]

Wagner, T.

M. Frumar and T. Wagner, “Ag doped chalcogenide glasses and their applications,” Curr. Opin. Solid State Mater. Sci. 7(2), 117–126 (2003).
[Crossref]

T. Wagner, M. Frumar, S. O. Kasap, M. Vlcek, and M. Vlcek, “New Ag-containing amorphous chalcogenide thin films—prospective materials for rewriteable optical memories,” J. Optoelectron. Adv. Mater. 3, 227–232 (2001).

T. Wagner and P. J. S. Ewen, “Photo-induced dissolution effect in Ag/AS33S67 multilayer structures and its potential application,” J. Non-Cryst. Solids 266-269, 979–984 (2000).
[Crossref]

Wágner, T.

T. Wágner, A. Mackova, V. Perina, E. Rauhala, A. Seppala, S. O. Kasap, M. Frumar, M. Vlcek, and M. Vlcek, “The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products,” J. Non-Cryst. Solids 299-302, 1028–1032 (2002).
[Crossref]

White, J. J.

H.-Y. Tsoi, J. P. Ellul, M. I. King, J. J. White, and W. C. Bradley, “A deep-depletion CCD imager for soft-X-ray, visible, and near-infrared sensing,” IEEE Trans. Electron. Dev. 32(8), 1525–1530 (1985).
[Crossref]

Wise, F. W.

Wylangowski, G.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed-laser deposition of Ga-La-S chalcogenide glass thin-film optical wave-guides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Xia, X.

Yannopoulos, S. N.

F. Kyriazis and S. N. Yannopoulos, “Colossal photostructural changes in chalcogenide glasses: athermal photoinduced polymerization in AsxS100-x bulk glasses revealed by near-bandgap Raman scattering,” Appl. Phys. Lett. 94(10), 101901 (2009).
[Crossref]

Youden, K. E.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed-laser deposition of Ga-La-S chalcogenide glass thin-film optical wave-guides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Zdyrko, B.

Zha, Y.

C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express 18(25), 26744–26753 (2010).
[Crossref] [PubMed]

Y. Zha, S. Fingerman, S. J. Cantrell, and C. B. Arnold, “Pore formation and removal in solution-processed amorphous arsenic sulfide films,” J. Non-Cryst. Solids (submitted).

Zogg, H.

H. Zogg and M. Arnold, “Narrow spectral band monolithic lead-chalcogenide-on-Si mid-IR photodetectors,” Opto-Electron. Rev. 14(1), 33–36 (2006).
[Crossref]

Zou, Y.

Zoubir, A.

Adv. Phys. (1)

A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40(5), 625–684 (1991).
[Crossref]

Appl. Phys. Lett. (3)

S. Song, S. S. Howard, Z. J. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[Crossref]

F. Kyriazis and S. N. Yannopoulos, “Colossal photostructural changes in chalcogenide glasses: athermal photoinduced polymerization in AsxS100-x bulk glasses revealed by near-bandgap Raman scattering,” Appl. Phys. Lett. 94(10), 101901 (2009).
[Crossref]

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed-laser deposition of Ga-La-S chalcogenide glass thin-film optical wave-guides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

E. Skordeva, K. Christova, M. Tzolov, and Z. Dimitrova, “Photoinduced changes of mechanical stress in amorphous Ge-As-S(Se) film/Si substrate systems,” Appl. Phys., A Mater. Sci. Process. 66(1), 103–107 (1998).
[Crossref]

Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006).
[Crossref]

Curr. Opin. Solid State Mater. Sci. (1)

M. Frumar and T. Wagner, “Ag doped chalcogenide glasses and their applications,” Curr. Opin. Solid State Mater. Sci. 7(2), 117–126 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the photoresponse of chalcogenide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

IEEE Trans. Electron. Dev. (1)

H.-Y. Tsoi, J. P. Ellul, M. I. King, J. J. White, and W. C. Bradley, “A deep-depletion CCD imager for soft-X-ray, visible, and near-infrared sensing,” IEEE Trans. Electron. Dev. 32(8), 1525–1530 (1985).
[Crossref]

J. Appl. Phys. (1)

G. C. Chern and I. Lauks, “Spin-coated amorphous-chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982).
[Crossref]

J. Lightwave Technol. (1)

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass-fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

J. Micromech. Microeng. (1)

P. Abgrall, C. Lattes, V. Conédéra, X. Dollat, S. Colin, and A. M. Gué, “A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films,” J. Micromech. Microeng. 16(1), 113–121 (2006).
[Crossref]

J. Non-Cryst. Solids (7)

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249(2-3), 150–159 (1999).
[Crossref]

V. Lyubin, M. Klebanov, M. Mitkova, and T. Petkova, “Laser-induced polarization-dependent photocrystallization of amorphous chalcogenide films,” J. Non-Cryst. Solids 227-230, 739–742 (1998).
[Crossref]

Y. Zha, S. Fingerman, S. J. Cantrell, and C. B. Arnold, “Pore formation and removal in solution-processed amorphous arsenic sulfide films,” J. Non-Cryst. Solids (submitted).

T. Wagner and P. J. S. Ewen, “Photo-induced dissolution effect in Ag/AS33S67 multilayer structures and its potential application,” J. Non-Cryst. Solids 266-269, 979–984 (2000).
[Crossref]

H. R. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[Crossref]

T. Wágner, A. Mackova, V. Perina, E. Rauhala, A. Seppala, S. O. Kasap, M. Frumar, M. Vlcek, and M. Vlcek, “The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products,” J. Non-Cryst. Solids 299-302, 1028–1032 (2002).
[Crossref]

S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009).
[Crossref]

J. Optoelectron. Adv. Mater. (4)

V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater. 6, 875–882 (2004).

J. Teteris, “Holographic recording in amorphous chalcogenide semiconductor thin films,” J. Optoelectron. Adv. Mater. 4, 687–697 (2002).

S. Kokenyesi, “Amorphous chalcogenide nano-multilayers: research and development,” J. Optoelectron. Adv. Mater. 8, 2093–2096 (2006).

T. Wagner, M. Frumar, S. O. Kasap, M. Vlcek, and M. Vlcek, “New Ag-containing amorphous chalcogenide thin films—prospective materials for rewriteable optical memories,” J. Optoelectron. Adv. Mater. 3, 227–232 (2001).

J. Phys. D Appl. Phys. (1)

A. G. Steventon, “Microfilaments in amorphous-chalcogenide memory devices,” J. Phys. D Appl. Phys. 8(9), L120–L122 (1975).
[Crossref]

Microelectron. J. (1)

K. A. Campbell and C. M. Anderson, “Phase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers,” Microelectron. J. 38(1), 52–59 (2007).
[Crossref]

MRS Bull. (1)

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29(11), 829–832 (2004).
[Crossref]

Nat. Mater. (1)

Z. Y. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, “Nanostructured artificial nacre,” Nat. Mater. 2(6), 413–418 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Opto-Electron. Rev. (1)

H. Zogg and M. Arnold, “Narrow spectral band monolithic lead-chalcogenide-on-Si mid-IR photodetectors,” Opto-Electron. Rev. 14(1), 33–36 (2006).
[Crossref]

Philos. Mag. B (1)

A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photoinduced structural and physicochemical changes in amorphous-chalcogenide semiconductors,” Philos. Mag. B 52(3), 347–362 (1985).
[Crossref]

Phys Status Solidi A (1)

M. Mitkova, Y. Sakaguchi, D. Tenne, S. K. Bhagat, and T. L. Alford, “Structural details of Ge-rich and silver-doped chalcogenide glasses for nanoionic nonvolatile memory,” Phys Status Solidi A 207(3), 621–626 (2010).
[Crossref]

Phys. Rev. B Condens. Matter (1)

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter 42(18), 11857–11861 (1990).
[Crossref] [PubMed]

Thin Solid Films (1)

S. Shtutina, M. Klebanov, V. Lyubin, S. Rosenwaks, and V. Volterra, “Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films,” Thin Solid Films 261(1-2), 263–265 (1995).
[Crossref]

Other (2)

G. Atwood and R. Bez, “Current status of Chalcogenide phase change memory,” in Device Research Conference (2005), pp. 29–33.

K. A. Campell and J. T. Moore, “Silver-selenide/chalcogenide glass stack for resistence variable memory,” US 2003/0155589 A1 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spin-coating and lamination steps for fabricating chalcogenide multilayer structures (a) Spin-coat solution-dissolved chalcogenide onto a piece of NaCl substrate (b) Soft and hard baking to remove solvents (c) [optional] Evaporate a metal layer onto the solidified chalcogenide film (d) Dissolve the NaCl substrate in water to detach films (e) Stack films on top of each other to obtain multilayer structures (f) Post-bake or anneal at a high temperature.

Fig. 2
Fig. 2

Thickness steps measured of a four-layer As2S3 structure before annealing.

Fig. 3
Fig. 3

FTIR spectra of multilayer films and extracted transmission valleys. Films are annealed at 150°C for 13 hrs. (a) Lowest transmission of single and multilayer structures plotted against total film thicknesses. Dashed line is a linear fit and solid line is an exponential fit. (b) Full FTIR spectra of multilayer structures.

Fig. 4
Fig. 4

Left: Films with no annealing shows an interface in the middle; Right: Interface removed with annealing at 200°C.

Fig. 5
Fig. 5

Left: An As2S3 and As2Se3 double-layer; Right: Normalized EDX analysis of material composition across the interface.

Fig. 6
Fig. 6

Cross-sectional SEM of 200 nm thick Ag (thin white layers in the middle) and As2S3.

Fig. 7
Fig. 7

Left: Visible transmission spectrums of Ag dissolving into laminated As2S3 layers at different exposure intervals; Right: Transmission level at 700 nm extracted from the left graph and plotted against exposure time.

Metrics