Abstract

UV laser irradiation (λ = 193 nm), below and above damage thresholds, is used to both alter and pattern the surface properties of borosilicate slides to tune and control the contact angle of a water drop over the surface. Large variation exceeding 25° using laser processing alone, spanning across both sides of the original contact angle of the surface, is reported. An asymmetric contact angle distribution, giving rise to an analogous ellipsoidal-like drop caplet, is shown to improve convective self-assembly of silica nanoparticles into straighter optical microwires.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ataka and J. Heberle, “Biochemical applications of surface-enhanced infrared absorption spectroscopy,” Anal. Bioanal. Chem. 388(1), 47–54 (2007).
    [CrossRef] [PubMed]
  2. X. Liu, P. K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. 47(3-4), 49–121 (2004).
    [CrossRef]
  3. M. Naqshbandi, J. Canning, B. C. Gibson, M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nat. Commun. 3, 1188 (2012), doi:.
    [CrossRef]
  4. M. Naqshbandi, J. Canning, A. Lau, and M. J. Crossley, “Controlled fabrication of macroscopic mesostructured silica spheres for potential diagnostics and sensing applications,” in the Int. Quantum Electronics Conf. (IQEC)/Conf. on Lasers & Electro-Optics (CLEO) Pacific Rim (IQEC/CLEO-Pacific Rim 2011), Sydney, Australia (2011).
  5. A. Grigoryev, I. Tokarev, K. G. Kornev, I. Luzinov, and S. Minko, “Superomniphobic magnetic microtextures with remote wetting control,” J. Am. Chem. Soc. 134(31), 12916–12919 (2012).
    [CrossRef] [PubMed]
  6. M. Naqshbandi, J. Canning, and M. J. Crossley, “Self-assembled silica microwire: a new platform for optical sensing,” in OSA Congress, Optical Sensors, Monterey, California, USA (2012), paper Stu4F.
  7. I. A. Larmour, S. E. J. Bell, and G. C. Saunders, “Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition,” Angew. Chem. 119(10), 1740–1742 (2007).
    [CrossRef]
  8. K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests,” Nano Lett. 3(12), 1701–1705 (2003).
    [CrossRef]
  9. K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
    [CrossRef] [PubMed]
  10. N. Amin, A. Y. Cheah, and I. Ahmad, “Effect of plasma cleaning process in the wettability of flip chip PBGA substrate of integrated circuit packages,” J. Appl. Sci. 10(9), 772–776 (2010).
    [CrossRef]
  11. D. Triantafyllidis, L. Li, and F. H. Stott, “The effects of laser-induced modification of surface roughness of Al2O3-based ceramics on fluid contact angle,” Mater. Sci. Eng. A 390(1-2), 271–277 (2005).
    [CrossRef]
  12. C. Sun, X. W. Zhao, Y. H. Han, and Z. Z. Gu, “Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment,” Thin Solid Films 516(12), 4059–4063 (2008).
    [CrossRef]
  13. J. Canning, I. Petermann, and K. Cook, “Surface treatment of silicate based glass: base Piranha treatment versus 193nm laser processing,” Proc. SPIE 851, 83512N (2012).
    [CrossRef]
  14. A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
    [CrossRef] [PubMed]
  15. Y.-W. Chen and H.-P. Cheng, “Interaction between water and defective silica surfaces,” J. Chem. Phys. 134(11), 114703 (2011).
    [CrossRef] [PubMed]
  16. E. F. Voronin, E. M. Pakhlov, and A. A. Chuiko, “Effect of dehydration of a silica surface on chemisorption of methanol,” J. Appl. Spectrosc. 64(3), 315–318 (1997) (and refs therein).
    [CrossRef]
  17. R. W. van Gemert and F. Petrus Cuperus, “Newly developed ceramic membranes for dehydration and separation of organic mixtures by pervaporation,” J. Membr. Sci. 105(3), 287–291 (1995).
    [CrossRef]
  18. J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
    [CrossRef] [PubMed]
  19. S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” ArXiv (2001), ArXiv:cond-mat/0105149x2 [cond-mat.soft].
  20. P. J. Bruna and F. Grein, “MRD-CI study on the isomers SiOH and HSiO 1. Relative stability and electronic spectra,” Mol. Phys. 63(2), 329–349 (1988).
    [CrossRef]
  21. Y. Yamaguchi and H. F. Schaefer, “The SiOH+- HSiO+ system: a high level ab initio quantum mechanical study,” J. Chem. Phys. 102(13), 5327–5334 (1995).
    [CrossRef]
  22. C. L. Darling and H. B. Schlegel, “Heats of formation of SiHnO and SiHnO2 calculated by ab initio molecular orbital methods at the G-2 level of theory,” J. Phys. Chem. 97(31), 8207–8211 (1993).
    [CrossRef]
  23. P. Gupta, A. C. Dillon, A. S. Bracker, and S. M. George, “FTIR studies of H2O and D2O decomposition on porous silicon surfaces,” Surf. Sci. 245(3), 360–372 (1991).
    [CrossRef]
  24. M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, “The adsorption and reactions of water on Si(100)-2 x 1 and Si(111)-7 x7 surfaces,” Surf. Sci. 351(1-3), 87–102 (1996).
    [CrossRef]
  25. A. Gray-Weale and J. K. Beattie, “An explanation for the charge on water’s surface,” Phys. Chem. Chem. Phys. 11(46), 10994–11005 (2009).
    [CrossRef] [PubMed]
  26. R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, “Comment on ‘An explanation for the charge on water’s surface’ by A. Gray-Weale and J. K. Beattie, Phys. Chem. Chem. Phys., 2009, 11, 10994,” Phys. Chem. Chem. Phys. 12(42), 14362–14363 (2010).
    [CrossRef] [PubMed]
  27. A. Gray-Weale and J. K. Beattie, “Reply to the ‘Comment on “An explanation for the charge on water’s surface”’ by R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, Phys. Chem, Chem. Phys., 12, 14362-14363 (2010),” Phys. Chem. Chem. Phys. 12(42), 14364–14366 (2010).
    [CrossRef]
  28. D. R. Halfpenny, D. M. Kane, R. N. Lamb, and B. Gong, “Surface modification of silica with ultraviolet laser radiation,” Appl. Phys., A Mater. Sci. Process. 71, 147–151 (2000).
  29. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
    [CrossRef]
  30. M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organisation in glass driven by ultrashort light pulses,” Appl. Phys. (Berl.) 101, 053120 (2012).
  31. J. Canning, M. Lancry, K. Cook, B. Poumellec, “Zeosil formation by femtosecond laser irradiation,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (online) (Optical Society of America, 2012), paper BW1D.5.

2012

M. Naqshbandi, J. Canning, B. C. Gibson, M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nat. Commun. 3, 1188 (2012), doi:.
[CrossRef]

A. Grigoryev, I. Tokarev, K. G. Kornev, I. Luzinov, and S. Minko, “Superomniphobic magnetic microtextures with remote wetting control,” J. Am. Chem. Soc. 134(31), 12916–12919 (2012).
[CrossRef] [PubMed]

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

J. Canning, I. Petermann, and K. Cook, “Surface treatment of silicate based glass: base Piranha treatment versus 193nm laser processing,” Proc. SPIE 851, 83512N (2012).
[CrossRef]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organisation in glass driven by ultrashort light pulses,” Appl. Phys. (Berl.) 101, 053120 (2012).

2011

Y.-W. Chen and H.-P. Cheng, “Interaction between water and defective silica surfaces,” J. Chem. Phys. 134(11), 114703 (2011).
[CrossRef] [PubMed]

2010

A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
[CrossRef] [PubMed]

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[CrossRef] [PubMed]

N. Amin, A. Y. Cheah, and I. Ahmad, “Effect of plasma cleaning process in the wettability of flip chip PBGA substrate of integrated circuit packages,” J. Appl. Sci. 10(9), 772–776 (2010).
[CrossRef]

R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, “Comment on ‘An explanation for the charge on water’s surface’ by A. Gray-Weale and J. K. Beattie, Phys. Chem. Chem. Phys., 2009, 11, 10994,” Phys. Chem. Chem. Phys. 12(42), 14362–14363 (2010).
[CrossRef] [PubMed]

A. Gray-Weale and J. K. Beattie, “Reply to the ‘Comment on “An explanation for the charge on water’s surface”’ by R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, Phys. Chem, Chem. Phys., 12, 14362-14363 (2010),” Phys. Chem. Chem. Phys. 12(42), 14364–14366 (2010).
[CrossRef]

2009

A. Gray-Weale and J. K. Beattie, “An explanation for the charge on water’s surface,” Phys. Chem. Chem. Phys. 11(46), 10994–11005 (2009).
[CrossRef] [PubMed]

2008

C. Sun, X. W. Zhao, Y. H. Han, and Z. Z. Gu, “Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment,” Thin Solid Films 516(12), 4059–4063 (2008).
[CrossRef]

2007

K. Ataka and J. Heberle, “Biochemical applications of surface-enhanced infrared absorption spectroscopy,” Anal. Bioanal. Chem. 388(1), 47–54 (2007).
[CrossRef] [PubMed]

I. A. Larmour, S. E. J. Bell, and G. C. Saunders, “Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition,” Angew. Chem. 119(10), 1740–1742 (2007).
[CrossRef]

2005

D. Triantafyllidis, L. Li, and F. H. Stott, “The effects of laser-induced modification of surface roughness of Al2O3-based ceramics on fluid contact angle,” Mater. Sci. Eng. A 390(1-2), 271–277 (2005).
[CrossRef]

2004

X. Liu, P. K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. 47(3-4), 49–121 (2004).
[CrossRef]

2003

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests,” Nano Lett. 3(12), 1701–1705 (2003).
[CrossRef]

2000

D. R. Halfpenny, D. M. Kane, R. N. Lamb, and B. Gong, “Surface modification of silica with ultraviolet laser radiation,” Appl. Phys., A Mater. Sci. Process. 71, 147–151 (2000).

1997

E. F. Voronin, E. M. Pakhlov, and A. A. Chuiko, “Effect of dehydration of a silica surface on chemisorption of methanol,” J. Appl. Spectrosc. 64(3), 315–318 (1997) (and refs therein).
[CrossRef]

1996

M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, “The adsorption and reactions of water on Si(100)-2 x 1 and Si(111)-7 x7 surfaces,” Surf. Sci. 351(1-3), 87–102 (1996).
[CrossRef]

1995

R. W. van Gemert and F. Petrus Cuperus, “Newly developed ceramic membranes for dehydration and separation of organic mixtures by pervaporation,” J. Membr. Sci. 105(3), 287–291 (1995).
[CrossRef]

Y. Yamaguchi and H. F. Schaefer, “The SiOH+- HSiO+ system: a high level ab initio quantum mechanical study,” J. Chem. Phys. 102(13), 5327–5334 (1995).
[CrossRef]

1993

C. L. Darling and H. B. Schlegel, “Heats of formation of SiHnO and SiHnO2 calculated by ab initio molecular orbital methods at the G-2 level of theory,” J. Phys. Chem. 97(31), 8207–8211 (1993).
[CrossRef]

1991

P. Gupta, A. C. Dillon, A. S. Bracker, and S. M. George, “FTIR studies of H2O and D2O decomposition on porous silicon surfaces,” Surf. Sci. 245(3), 360–372 (1991).
[CrossRef]

1988

P. J. Bruna and F. Grein, “MRD-CI study on the isomers SiOH and HSiO 1. Relative stability and electronic spectra,” Mol. Phys. 63(2), 329–349 (1988).
[CrossRef]

1965

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

Abate, A. R.

A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
[CrossRef] [PubMed]

Ahmad, I.

N. Amin, A. Y. Cheah, and I. Ahmad, “Effect of plasma cleaning process in the wettability of flip chip PBGA substrate of integrated circuit packages,” J. Appl. Sci. 10(9), 772–776 (2010).
[CrossRef]

Aktulga, H. M.

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[CrossRef] [PubMed]

Amaratunga, G. A. J.

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests,” Nano Lett. 3(12), 1701–1705 (2003).
[CrossRef]

Amin, N.

N. Amin, A. Y. Cheah, and I. Ahmad, “Effect of plasma cleaning process in the wettability of flip chip PBGA substrate of integrated circuit packages,” J. Appl. Sci. 10(9), 772–776 (2010).
[CrossRef]

Ataka, K.

K. Ataka and J. Heberle, “Biochemical applications of surface-enhanced infrared absorption spectroscopy,” Anal. Bioanal. Chem. 388(1), 47–54 (2007).
[CrossRef] [PubMed]

Barbastathis, G.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Beattie, J. K.

A. Gray-Weale and J. K. Beattie, “Reply to the ‘Comment on “An explanation for the charge on water’s surface”’ by R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, Phys. Chem, Chem. Phys., 12, 14362-14363 (2010),” Phys. Chem. Chem. Phys. 12(42), 14364–14366 (2010).
[CrossRef]

A. Gray-Weale and J. K. Beattie, “An explanation for the charge on water’s surface,” Phys. Chem. Chem. Phys. 11(46), 10994–11005 (2009).
[CrossRef] [PubMed]

Bell, S. E. J.

I. A. Larmour, S. E. J. Bell, and G. C. Saunders, “Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition,” Angew. Chem. 119(10), 1740–1742 (2007).
[CrossRef]

Beresna, M.

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organisation in glass driven by ultrashort light pulses,” Appl. Phys. (Berl.) 101, 053120 (2012).

Bico, J.

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests,” Nano Lett. 3(12), 1701–1705 (2003).
[CrossRef]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

Bracker, A. S.

P. Gupta, A. C. Dillon, A. S. Bracker, and S. M. George, “FTIR studies of H2O and D2O decomposition on porous silicon surfaces,” Surf. Sci. 245(3), 360–372 (1991).
[CrossRef]

Bruna, P. J.

P. J. Bruna and F. Grein, “MRD-CI study on the isomers SiOH and HSiO 1. Relative stability and electronic spectra,” Mol. Phys. 63(2), 329–349 (1988).
[CrossRef]

Buchner, R.

R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, “Comment on ‘An explanation for the charge on water’s surface’ by A. Gray-Weale and J. K. Beattie, Phys. Chem. Chem. Phys., 2009, 11, 10994,” Phys. Chem. Chem. Phys. 12(42), 14362–14363 (2010).
[CrossRef] [PubMed]

Canning, J.

J. Canning, I. Petermann, and K. Cook, “Surface treatment of silicate based glass: base Piranha treatment versus 193nm laser processing,” Proc. SPIE 851, 83512N (2012).
[CrossRef]

M. Naqshbandi, J. Canning, B. C. Gibson, M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nat. Commun. 3, 1188 (2012), doi:.
[CrossRef]

Chang, C.-H.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Cheah, A. Y.

N. Amin, A. Y. Cheah, and I. Ahmad, “Effect of plasma cleaning process in the wettability of flip chip PBGA substrate of integrated circuit packages,” J. Appl. Sci. 10(9), 772–776 (2010).
[CrossRef]

Chen, Y.-W.

Y.-W. Chen and H.-P. Cheng, “Interaction between water and defective silica surfaces,” J. Chem. Phys. 134(11), 114703 (2011).
[CrossRef] [PubMed]

Cheng, H.-P.

Y.-W. Chen and H.-P. Cheng, “Interaction between water and defective silica surfaces,” J. Chem. Phys. 134(11), 114703 (2011).
[CrossRef] [PubMed]

Chhowalla, M.

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests,” Nano Lett. 3(12), 1701–1705 (2003).
[CrossRef]

Choi, H. J.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Chu, P. K.

X. Liu, P. K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. 47(3-4), 49–121 (2004).
[CrossRef]

Chuiko, A. A.

E. F. Voronin, E. M. Pakhlov, and A. A. Chuiko, “Effect of dehydration of a silica surface on chemisorption of methanol,” J. Appl. Spectrosc. 64(3), 315–318 (1997) (and refs therein).
[CrossRef]

Cohen, R. E.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Cook, K.

J. Canning, I. Petermann, and K. Cook, “Surface treatment of silicate based glass: base Piranha treatment versus 193nm laser processing,” Proc. SPIE 851, 83512N (2012).
[CrossRef]

Crossley, M. J.

M. Naqshbandi, J. Canning, B. C. Gibson, M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nat. Commun. 3, 1188 (2012), doi:.
[CrossRef]

Darling, C. L.

C. L. Darling and H. B. Schlegel, “Heats of formation of SiHnO and SiHnO2 calculated by ab initio molecular orbital methods at the G-2 level of theory,” J. Phys. Chem. 97(31), 8207–8211 (1993).
[CrossRef]

Dillon, A. C.

P. Gupta, A. C. Dillon, A. S. Bracker, and S. M. George, “FTIR studies of H2O and D2O decomposition on porous silicon surfaces,” Surf. Sci. 245(3), 360–372 (1991).
[CrossRef]

Ding, C.

X. Liu, P. K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. 47(3-4), 49–121 (2004).
[CrossRef]

Flowers, M. C.

M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, “The adsorption and reactions of water on Si(100)-2 x 1 and Si(111)-7 x7 surfaces,” Surf. Sci. 351(1-3), 87–102 (1996).
[CrossRef]

Fogarty, J. C.

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[CrossRef] [PubMed]

Gecevicius, M.

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organisation in glass driven by ultrashort light pulses,” Appl. Phys. (Berl.) 101, 053120 (2012).

George, S. M.

P. Gupta, A. C. Dillon, A. S. Bracker, and S. M. George, “FTIR studies of H2O and D2O decomposition on porous silicon surfaces,” Surf. Sci. 245(3), 360–372 (1991).
[CrossRef]

Gibson, B. C.

M. Naqshbandi, J. Canning, B. C. Gibson, M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nat. Commun. 3, 1188 (2012), doi:.
[CrossRef]

Gleason, K. K.

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests,” Nano Lett. 3(12), 1701–1705 (2003).
[CrossRef]

Gong, B.

D. R. Halfpenny, D. M. Kane, R. N. Lamb, and B. Gong, “Surface modification of silica with ultraviolet laser radiation,” Appl. Phys., A Mater. Sci. Process. 71, 147–151 (2000).

Grama, A. Y.

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[CrossRef] [PubMed]

Gray-Weale, A.

A. Gray-Weale and J. K. Beattie, “Reply to the ‘Comment on “An explanation for the charge on water’s surface”’ by R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, Phys. Chem, Chem. Phys., 12, 14362-14363 (2010),” Phys. Chem. Chem. Phys. 12(42), 14364–14366 (2010).
[CrossRef]

A. Gray-Weale and J. K. Beattie, “An explanation for the charge on water’s surface,” Phys. Chem. Chem. Phys. 11(46), 10994–11005 (2009).
[CrossRef] [PubMed]

Grein, F.

P. J. Bruna and F. Grein, “MRD-CI study on the isomers SiOH and HSiO 1. Relative stability and electronic spectra,” Mol. Phys. 63(2), 329–349 (1988).
[CrossRef]

Grigoryev, A.

A. Grigoryev, I. Tokarev, K. G. Kornev, I. Luzinov, and S. Minko, “Superomniphobic magnetic microtextures with remote wetting control,” J. Am. Chem. Soc. 134(31), 12916–12919 (2012).
[CrossRef] [PubMed]

Gu, Z. Z.

C. Sun, X. W. Zhao, Y. H. Han, and Z. Z. Gu, “Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment,” Thin Solid Films 516(12), 4059–4063 (2008).
[CrossRef]

Gupta, P.

P. Gupta, A. C. Dillon, A. S. Bracker, and S. M. George, “FTIR studies of H2O and D2O decomposition on porous silicon surfaces,” Surf. Sci. 245(3), 360–372 (1991).
[CrossRef]

Halfpenny, D. R.

D. R. Halfpenny, D. M. Kane, R. N. Lamb, and B. Gong, “Surface modification of silica with ultraviolet laser radiation,” Appl. Phys., A Mater. Sci. Process. 71, 147–151 (2000).

Han, Y. H.

C. Sun, X. W. Zhao, Y. H. Han, and Z. Z. Gu, “Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment,” Thin Solid Films 516(12), 4059–4063 (2008).
[CrossRef]

Heberle, J.

K. Ataka and J. Heberle, “Biochemical applications of surface-enhanced infrared absorption spectroscopy,” Anal. Bioanal. Chem. 388(1), 47–54 (2007).
[CrossRef] [PubMed]

Horinek, D.

R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, “Comment on ‘An explanation for the charge on water’s surface’ by A. Gray-Weale and J. K. Beattie, Phys. Chem. Chem. Phys., 2009, 11, 10994,” Phys. Chem. Chem. Phys. 12(42), 14362–14363 (2010).
[CrossRef] [PubMed]

Jonathan, N. B. H.

M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, “The adsorption and reactions of water on Si(100)-2 x 1 and Si(111)-7 x7 surfaces,” Surf. Sci. 351(1-3), 87–102 (1996).
[CrossRef]

Jungwirth, P.

R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, “Comment on ‘An explanation for the charge on water’s surface’ by A. Gray-Weale and J. K. Beattie, Phys. Chem. Chem. Phys., 2009, 11, 10994,” Phys. Chem. Chem. Phys. 12(42), 14362–14363 (2010).
[CrossRef] [PubMed]

Kane, D. M.

D. R. Halfpenny, D. M. Kane, R. N. Lamb, and B. Gong, “Surface modification of silica with ultraviolet laser radiation,” Appl. Phys., A Mater. Sci. Process. 71, 147–151 (2000).

Kavokin, A. V.

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organisation in glass driven by ultrashort light pulses,” Appl. Phys. (Berl.) 101, 053120 (2012).

Kazansky, P. G.

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organisation in glass driven by ultrashort light pulses,” Appl. Phys. (Berl.) 101, 053120 (2012).

Kornev, K. G.

A. Grigoryev, I. Tokarev, K. G. Kornev, I. Luzinov, and S. Minko, “Superomniphobic magnetic microtextures with remote wetting control,” J. Am. Chem. Soc. 134(31), 12916–12919 (2012).
[CrossRef] [PubMed]

Lamb, R. N.

D. R. Halfpenny, D. M. Kane, R. N. Lamb, and B. Gong, “Surface modification of silica with ultraviolet laser radiation,” Appl. Phys., A Mater. Sci. Process. 71, 147–151 (2000).

Larmour, I. A.

I. A. Larmour, S. E. J. Bell, and G. C. Saunders, “Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition,” Angew. Chem. 119(10), 1740–1742 (2007).
[CrossRef]

Lau, K. K. S.

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests,” Nano Lett. 3(12), 1701–1705 (2003).
[CrossRef]

Li, L.

D. Triantafyllidis, L. Li, and F. H. Stott, “The effects of laser-induced modification of surface roughness of Al2O3-based ceramics on fluid contact angle,” Mater. Sci. Eng. A 390(1-2), 271–277 (2005).
[CrossRef]

Liu, X.

X. Liu, P. K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. 47(3-4), 49–121 (2004).
[CrossRef]

Luzinov, I.

A. Grigoryev, I. Tokarev, K. G. Kornev, I. Luzinov, and S. Minko, “Superomniphobic magnetic microtextures with remote wetting control,” J. Am. Chem. Soc. 134(31), 12916–12919 (2012).
[CrossRef] [PubMed]

McKinley, G. H.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests,” Nano Lett. 3(12), 1701–1705 (2003).
[CrossRef]

Milne, W. I.

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests,” Nano Lett. 3(12), 1701–1705 (2003).
[CrossRef]

Minko, S.

A. Grigoryev, I. Tokarev, K. G. Kornev, I. Luzinov, and S. Minko, “Superomniphobic magnetic microtextures with remote wetting control,” J. Am. Chem. Soc. 134(31), 12916–12919 (2012).
[CrossRef] [PubMed]

Morris, A.

M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, “The adsorption and reactions of water on Si(100)-2 x 1 and Si(111)-7 x7 surfaces,” Surf. Sci. 351(1-3), 87–102 (1996).
[CrossRef]

Naqshbandi, M.

M. Naqshbandi, J. Canning, B. C. Gibson, M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nat. Commun. 3, 1188 (2012), doi:.
[CrossRef]

Nash, M.

M. Naqshbandi, J. Canning, B. C. Gibson, M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nat. Commun. 3, 1188 (2012), doi:.
[CrossRef]

Pakhlov, E. M.

E. F. Voronin, E. M. Pakhlov, and A. A. Chuiko, “Effect of dehydration of a silica surface on chemisorption of methanol,” J. Appl. Spectrosc. 64(3), 315–318 (1997) (and refs therein).
[CrossRef]

Pandit, S. A.

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[CrossRef] [PubMed]

Park, K.-C.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Petermann, I.

J. Canning, I. Petermann, and K. Cook, “Surface treatment of silicate based glass: base Piranha treatment versus 193nm laser processing,” Proc. SPIE 851, 83512N (2012).
[CrossRef]

Petrus Cuperus, F.

R. W. van Gemert and F. Petrus Cuperus, “Newly developed ceramic membranes for dehydration and separation of organic mixtures by pervaporation,” J. Membr. Sci. 105(3), 287–291 (1995).
[CrossRef]

Saunders, G. C.

I. A. Larmour, S. E. J. Bell, and G. C. Saunders, “Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition,” Angew. Chem. 119(10), 1740–1742 (2007).
[CrossRef]

Schaefer, H. F.

Y. Yamaguchi and H. F. Schaefer, “The SiOH+- HSiO+ system: a high level ab initio quantum mechanical study,” J. Chem. Phys. 102(13), 5327–5334 (1995).
[CrossRef]

Schlegel, H. B.

C. L. Darling and H. B. Schlegel, “Heats of formation of SiHnO and SiHnO2 calculated by ab initio molecular orbital methods at the G-2 level of theory,” J. Phys. Chem. 97(31), 8207–8211 (1993).
[CrossRef]

Stott, F. H.

D. Triantafyllidis, L. Li, and F. H. Stott, “The effects of laser-induced modification of surface roughness of Al2O3-based ceramics on fluid contact angle,” Mater. Sci. Eng. A 390(1-2), 271–277 (2005).
[CrossRef]

Sun, C.

C. Sun, X. W. Zhao, Y. H. Han, and Z. Z. Gu, “Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment,” Thin Solid Films 516(12), 4059–4063 (2008).
[CrossRef]

Taylor, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organisation in glass driven by ultrashort light pulses,” Appl. Phys. (Berl.) 101, 053120 (2012).

Teo, K. B. K.

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests,” Nano Lett. 3(12), 1701–1705 (2003).
[CrossRef]

Thiele, J.

A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
[CrossRef] [PubMed]

Tokarev, I.

A. Grigoryev, I. Tokarev, K. G. Kornev, I. Luzinov, and S. Minko, “Superomniphobic magnetic microtextures with remote wetting control,” J. Am. Chem. Soc. 134(31), 12916–12919 (2012).
[CrossRef] [PubMed]

Triantafyllidis, D.

D. Triantafyllidis, L. Li, and F. H. Stott, “The effects of laser-induced modification of surface roughness of Al2O3-based ceramics on fluid contact angle,” Mater. Sci. Eng. A 390(1-2), 271–277 (2005).
[CrossRef]

Vácha, R.

R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, “Comment on ‘An explanation for the charge on water’s surface’ by A. Gray-Weale and J. K. Beattie, Phys. Chem. Chem. Phys., 2009, 11, 10994,” Phys. Chem. Chem. Phys. 12(42), 14362–14363 (2010).
[CrossRef] [PubMed]

van Duin, A. C.

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[CrossRef] [PubMed]

van Gemert, R. W.

R. W. van Gemert and F. Petrus Cuperus, “Newly developed ceramic membranes for dehydration and separation of organic mixtures by pervaporation,” J. Membr. Sci. 105(3), 287–291 (1995).
[CrossRef]

Voronin, E. F.

E. F. Voronin, E. M. Pakhlov, and A. A. Chuiko, “Effect of dehydration of a silica surface on chemisorption of methanol,” J. Appl. Spectrosc. 64(3), 315–318 (1997) (and refs therein).
[CrossRef]

Weinhart, M.

A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
[CrossRef] [PubMed]

Weitz, D. A.

A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
[CrossRef] [PubMed]

Winter, B.

R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, “Comment on ‘An explanation for the charge on water’s surface’ by A. Gray-Weale and J. K. Beattie, Phys. Chem. Chem. Phys., 2009, 11, 10994,” Phys. Chem. Chem. Phys. 12(42), 14362–14363 (2010).
[CrossRef] [PubMed]

Wright, S.

M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, “The adsorption and reactions of water on Si(100)-2 x 1 and Si(111)-7 x7 surfaces,” Surf. Sci. 351(1-3), 87–102 (1996).
[CrossRef]

Yamaguchi, Y.

Y. Yamaguchi and H. F. Schaefer, “The SiOH+- HSiO+ system: a high level ab initio quantum mechanical study,” J. Chem. Phys. 102(13), 5327–5334 (1995).
[CrossRef]

Zhao, X. W.

C. Sun, X. W. Zhao, Y. H. Han, and Z. Z. Gu, “Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment,” Thin Solid Films 516(12), 4059–4063 (2008).
[CrossRef]

ACS Nano

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Anal. Bioanal. Chem.

K. Ataka and J. Heberle, “Biochemical applications of surface-enhanced infrared absorption spectroscopy,” Anal. Bioanal. Chem. 388(1), 47–54 (2007).
[CrossRef] [PubMed]

Angew. Chem.

I. A. Larmour, S. E. J. Bell, and G. C. Saunders, “Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition,” Angew. Chem. 119(10), 1740–1742 (2007).
[CrossRef]

Appl. Phys. (Berl.)

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organisation in glass driven by ultrashort light pulses,” Appl. Phys. (Berl.) 101, 053120 (2012).

Appl. Phys., A Mater. Sci. Process.

D. R. Halfpenny, D. M. Kane, R. N. Lamb, and B. Gong, “Surface modification of silica with ultraviolet laser radiation,” Appl. Phys., A Mater. Sci. Process. 71, 147–151 (2000).

J. Am. Chem. Soc.

A. Grigoryev, I. Tokarev, K. G. Kornev, I. Luzinov, and S. Minko, “Superomniphobic magnetic microtextures with remote wetting control,” J. Am. Chem. Soc. 134(31), 12916–12919 (2012).
[CrossRef] [PubMed]

J. Appl. Phys.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

J. Appl. Sci.

N. Amin, A. Y. Cheah, and I. Ahmad, “Effect of plasma cleaning process in the wettability of flip chip PBGA substrate of integrated circuit packages,” J. Appl. Sci. 10(9), 772–776 (2010).
[CrossRef]

J. Appl. Spectrosc.

E. F. Voronin, E. M. Pakhlov, and A. A. Chuiko, “Effect of dehydration of a silica surface on chemisorption of methanol,” J. Appl. Spectrosc. 64(3), 315–318 (1997) (and refs therein).
[CrossRef]

J. Chem. Phys.

J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
[CrossRef] [PubMed]

Y.-W. Chen and H.-P. Cheng, “Interaction between water and defective silica surfaces,” J. Chem. Phys. 134(11), 114703 (2011).
[CrossRef] [PubMed]

Y. Yamaguchi and H. F. Schaefer, “The SiOH+- HSiO+ system: a high level ab initio quantum mechanical study,” J. Chem. Phys. 102(13), 5327–5334 (1995).
[CrossRef]

J. Membr. Sci.

R. W. van Gemert and F. Petrus Cuperus, “Newly developed ceramic membranes for dehydration and separation of organic mixtures by pervaporation,” J. Membr. Sci. 105(3), 287–291 (1995).
[CrossRef]

J. Phys. Chem.

C. L. Darling and H. B. Schlegel, “Heats of formation of SiHnO and SiHnO2 calculated by ab initio molecular orbital methods at the G-2 level of theory,” J. Phys. Chem. 97(31), 8207–8211 (1993).
[CrossRef]

Lab Chip

A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
[CrossRef] [PubMed]

Mater. Sci. Eng.

X. Liu, P. K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. 47(3-4), 49–121 (2004).
[CrossRef]

Mater. Sci. Eng. A

D. Triantafyllidis, L. Li, and F. H. Stott, “The effects of laser-induced modification of surface roughness of Al2O3-based ceramics on fluid contact angle,” Mater. Sci. Eng. A 390(1-2), 271–277 (2005).
[CrossRef]

Mol. Phys.

P. J. Bruna and F. Grein, “MRD-CI study on the isomers SiOH and HSiO 1. Relative stability and electronic spectra,” Mol. Phys. 63(2), 329–349 (1988).
[CrossRef]

Nano Lett.

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests,” Nano Lett. 3(12), 1701–1705 (2003).
[CrossRef]

Nat. Commun.

M. Naqshbandi, J. Canning, B. C. Gibson, M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nat. Commun. 3, 1188 (2012), doi:.
[CrossRef]

Phys. Chem. Chem. Phys.

A. Gray-Weale and J. K. Beattie, “An explanation for the charge on water’s surface,” Phys. Chem. Chem. Phys. 11(46), 10994–11005 (2009).
[CrossRef] [PubMed]

R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, “Comment on ‘An explanation for the charge on water’s surface’ by A. Gray-Weale and J. K. Beattie, Phys. Chem. Chem. Phys., 2009, 11, 10994,” Phys. Chem. Chem. Phys. 12(42), 14362–14363 (2010).
[CrossRef] [PubMed]

A. Gray-Weale and J. K. Beattie, “Reply to the ‘Comment on “An explanation for the charge on water’s surface”’ by R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, Phys. Chem, Chem. Phys., 12, 14362-14363 (2010),” Phys. Chem. Chem. Phys. 12(42), 14364–14366 (2010).
[CrossRef]

Proc. SPIE

J. Canning, I. Petermann, and K. Cook, “Surface treatment of silicate based glass: base Piranha treatment versus 193nm laser processing,” Proc. SPIE 851, 83512N (2012).
[CrossRef]

Surf. Sci.

P. Gupta, A. C. Dillon, A. S. Bracker, and S. M. George, “FTIR studies of H2O and D2O decomposition on porous silicon surfaces,” Surf. Sci. 245(3), 360–372 (1991).
[CrossRef]

M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, “The adsorption and reactions of water on Si(100)-2 x 1 and Si(111)-7 x7 surfaces,” Surf. Sci. 351(1-3), 87–102 (1996).
[CrossRef]

Thin Solid Films

C. Sun, X. W. Zhao, Y. H. Han, and Z. Z. Gu, “Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment,” Thin Solid Films 516(12), 4059–4063 (2008).
[CrossRef]

Other

M. Naqshbandi, J. Canning, A. Lau, and M. J. Crossley, “Controlled fabrication of macroscopic mesostructured silica spheres for potential diagnostics and sensing applications,” in the Int. Quantum Electronics Conf. (IQEC)/Conf. on Lasers & Electro-Optics (CLEO) Pacific Rim (IQEC/CLEO-Pacific Rim 2011), Sydney, Australia (2011).

M. Naqshbandi, J. Canning, and M. J. Crossley, “Self-assembled silica microwire: a new platform for optical sensing,” in OSA Congress, Optical Sensors, Monterey, California, USA (2012), paper Stu4F.

S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” ArXiv (2001), ArXiv:cond-mat/0105149x2 [cond-mat.soft].

J. Canning, M. Lancry, K. Cook, B. Poumellec, “Zeosil formation by femtosecond laser irradiation,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (online) (Optical Society of America, 2012), paper BW1D.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of contact angle measurements. Contact angles are measured before and after laser processing and are repeated 10 times to ensure reproducibility and consistency; (b) A summary of the difference in convective flow expected with a change in angle – a reduced contact angle implies greater surface pinning, spreading out and therefore a thinner interface. The behaviour of the droplet is no longer identical in all directions and this leads to preferential flow in one direction.

Fig. 2
Fig. 2

(a) Comparison in contact angle α between quartz and borosilicate as a function of laser beam energy. Fitted lines are shown for the region where a threhsold-like change is observed; (b) Contact angle α as a function of laser E on a set of parallel lines 0.5mm spacing; α|| denotes α measured orthogonal to the lines, α = denotes α measured parrallel to the lines. Inset images shows optical images of a section of the surface with laser treatment at different energies – damage varies from slight coloring at low energies to surface roughening along the lines at higher energies.

Fig. 3
Fig. 3

Scanning electron micrographs of the surface after fixed 193nm line exposure at two energies: (a), (b) 200m mJ/cm2 and (c), (d) 470 mJ/cm2.

Fig. 4
Fig. 4

Colloidal drops containing silica nanoparticles deposited on (a) untreated surface, (b) depicted & (c) actual partially laser treated surface (E = 466 mJ/cm2). Visible, roughened damage is observed in the exposed area when the lighting is turned down.

Fig. 5
Fig. 5

Self-assembled microwires and tapers: (a) The pristine spherical caplet produces tapered wires converging at the centre of the evaporated drop; (a1) & (a2) - dimensions are generally > 300 μm at one end and varying <100 μm at the other end; (b) The ellipsoidal caplet generated by an asymmetric contact angle leads to much more uniform wires where evaporation has occurred in the direction of the laser processed region to centre. (b1) & (b2) show uniform wires varying between 25 and 100 μm.

Tables (1)

Tables Icon

Table 1 Summary of Contact Angle Measurements for Three Sets of Experiments as Described in the Text

Metrics