Abstract

The THz optical properties and material structure of pyrolytic boron nitride (PBN), highly oriented pyrolytic boron nitride (HOPBN), and pressed boron nitride powder are investigated by THz time-domain spectroscopy. PBN, HOPBN and powder are confirmed as highly oriented structures; the degree of misalignment of hot-pressed boron nitride is indicated. Suitability of PBN for THz optical applications is discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Rumyantsev, M. Levinshtein, A. D. Jackson, S. N. Mohammad, G. L. Harris, M. G. Spencer, and M. Shur, “Boron Nitride (BN),” in Principles of Advanced Semiconductor Materials, M. Levinshtein, S. Rumyantsev, and M. Shur, eds. (John Wiley & Sons, 2001).
  2. O. Madelung, ed., Semiconductors: Group IV Elements and III–V Compounds, Series “Data in science and technology,” R. Poerschke, ed. (Springer-Verlag, 1991), Chap. 2.1.
  3. http://www.ioffe.rssi.ru/SVA/NSM/Semicond/BN/basic.html .
  4. L. Duclaux, B. Nysten, J.-P. Issi, and A. W. Moore, “Structure and low-temperature thermal conductivity of pyrolytic boron nitride,” Phys. Rev. B Condens. Matter46(6), 3362–3367 (1992).
    [CrossRef] [PubMed]
  5. L. N. Rusanova and L. I. Gorchakova, “Sintering of turbostratic-structure boron nitride powders,” Sov. Powder Metall. Met. Ceram.28(2), 108–111 (1989).
  6. A. W. Moore, “Characterization of pyrolytic boron nitride for semiconductor materials processing,” J. Cryst. Growth106(1), 6–15 (1990).
    [CrossRef]
  7. A. W. Moore, “Compression annealing of pyrolytic boron nitride,” Nature221(5186), 1133–1134 (1969).
    [CrossRef]
  8. Data sheet 81516 – PolarTherm grade PT110, Momentive Performance Materials (2007).
  9. M. Naftaly, J. Leist, and R. Dudley, “Investigation of ceramic boron nitride by terahertz time-domain spectroscopy,” J. Eur. Ceram. Soc.30(12), 2691–2697 (2010).
    [CrossRef]
  10. M. Hubácek and M. Ueki, “Effect of the orientation of boron nitride grains on the physical properties of hot-pressed ceramics,” J. Am. Ceram. Soc.82(1), 156–160 (1999).
    [CrossRef]
  11. T. Matsuda, N. Uno, H. Nakae, and T. Hirai, “Synthesis and structure of chemically vapour-deposited boron nitride,” J. Mater. Sci.21(2), 649–658 (1986).
    [CrossRef]
  12. U. Strom and P. C. Taylor, “Temperature and frequency dependences of the far-infrared and microwave optical absorption in amorphous materials,” Phys. Rev. B16(12), 5512–5522 (1977).
    [CrossRef]
  13. R. Syms and J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, 1992), Chap. 10.
  14. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B7(10), 2006–2015 (1990).
    [CrossRef]
  15. D. Grischkowsky and S. Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett.57(10), 1055–1057 (1990).
    [CrossRef]
  16. J. Kröll, J. Darmo, and K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Opt. Express15(11), 6552–6560 (2007).
    [CrossRef] [PubMed]
  17. A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B77(19), 195405 (2008).
    [CrossRef]

2010

M. Naftaly, J. Leist, and R. Dudley, “Investigation of ceramic boron nitride by terahertz time-domain spectroscopy,” J. Eur. Ceram. Soc.30(12), 2691–2697 (2010).
[CrossRef]

2008

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B77(19), 195405 (2008).
[CrossRef]

2007

1999

M. Hubácek and M. Ueki, “Effect of the orientation of boron nitride grains on the physical properties of hot-pressed ceramics,” J. Am. Ceram. Soc.82(1), 156–160 (1999).
[CrossRef]

1992

L. Duclaux, B. Nysten, J.-P. Issi, and A. W. Moore, “Structure and low-temperature thermal conductivity of pyrolytic boron nitride,” Phys. Rev. B Condens. Matter46(6), 3362–3367 (1992).
[CrossRef] [PubMed]

1990

A. W. Moore, “Characterization of pyrolytic boron nitride for semiconductor materials processing,” J. Cryst. Growth106(1), 6–15 (1990).
[CrossRef]

D. Grischkowsky and S. Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett.57(10), 1055–1057 (1990).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B7(10), 2006–2015 (1990).
[CrossRef]

1989

L. N. Rusanova and L. I. Gorchakova, “Sintering of turbostratic-structure boron nitride powders,” Sov. Powder Metall. Met. Ceram.28(2), 108–111 (1989).

1986

T. Matsuda, N. Uno, H. Nakae, and T. Hirai, “Synthesis and structure of chemically vapour-deposited boron nitride,” J. Mater. Sci.21(2), 649–658 (1986).
[CrossRef]

1977

U. Strom and P. C. Taylor, “Temperature and frequency dependences of the far-infrared and microwave optical absorption in amorphous materials,” Phys. Rev. B16(12), 5512–5522 (1977).
[CrossRef]

1969

A. W. Moore, “Compression annealing of pyrolytic boron nitride,” Nature221(5186), 1133–1134 (1969).
[CrossRef]

Darmo, J.

Duclaux, L.

L. Duclaux, B. Nysten, J.-P. Issi, and A. W. Moore, “Structure and low-temperature thermal conductivity of pyrolytic boron nitride,” Phys. Rev. B Condens. Matter46(6), 3362–3367 (1992).
[CrossRef] [PubMed]

Dudley, R.

M. Naftaly, J. Leist, and R. Dudley, “Investigation of ceramic boron nitride by terahertz time-domain spectroscopy,” J. Eur. Ceram. Soc.30(12), 2691–2697 (2010).
[CrossRef]

Fattinger, C.

Gorchakova, L. I.

L. N. Rusanova and L. I. Gorchakova, “Sintering of turbostratic-structure boron nitride powders,” Sov. Powder Metall. Met. Ceram.28(2), 108–111 (1989).

Grischkowsky, D.

Helm, H.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B77(19), 195405 (2008).
[CrossRef]

Hirai, T.

T. Matsuda, N. Uno, H. Nakae, and T. Hirai, “Synthesis and structure of chemically vapour-deposited boron nitride,” J. Mater. Sci.21(2), 649–658 (1986).
[CrossRef]

Hubácek, M.

M. Hubácek and M. Ueki, “Effect of the orientation of boron nitride grains on the physical properties of hot-pressed ceramics,” J. Am. Ceram. Soc.82(1), 156–160 (1999).
[CrossRef]

Issi, J.-P.

L. Duclaux, B. Nysten, J.-P. Issi, and A. W. Moore, “Structure and low-temperature thermal conductivity of pyrolytic boron nitride,” Phys. Rev. B Condens. Matter46(6), 3362–3367 (1992).
[CrossRef] [PubMed]

Keiding, S.

Kern, A.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B77(19), 195405 (2008).
[CrossRef]

Kröll, J.

Leist, J.

M. Naftaly, J. Leist, and R. Dudley, “Investigation of ceramic boron nitride by terahertz time-domain spectroscopy,” J. Eur. Ceram. Soc.30(12), 2691–2697 (2010).
[CrossRef]

Matsuda, T.

T. Matsuda, N. Uno, H. Nakae, and T. Hirai, “Synthesis and structure of chemically vapour-deposited boron nitride,” J. Mater. Sci.21(2), 649–658 (1986).
[CrossRef]

Moore, A. W.

L. Duclaux, B. Nysten, J.-P. Issi, and A. W. Moore, “Structure and low-temperature thermal conductivity of pyrolytic boron nitride,” Phys. Rev. B Condens. Matter46(6), 3362–3367 (1992).
[CrossRef] [PubMed]

A. W. Moore, “Characterization of pyrolytic boron nitride for semiconductor materials processing,” J. Cryst. Growth106(1), 6–15 (1990).
[CrossRef]

A. W. Moore, “Compression annealing of pyrolytic boron nitride,” Nature221(5186), 1133–1134 (1969).
[CrossRef]

Naftaly, M.

M. Naftaly, J. Leist, and R. Dudley, “Investigation of ceramic boron nitride by terahertz time-domain spectroscopy,” J. Eur. Ceram. Soc.30(12), 2691–2697 (2010).
[CrossRef]

Nakae, H.

T. Matsuda, N. Uno, H. Nakae, and T. Hirai, “Synthesis and structure of chemically vapour-deposited boron nitride,” J. Mater. Sci.21(2), 649–658 (1986).
[CrossRef]

Nysten, B.

L. Duclaux, B. Nysten, J.-P. Issi, and A. W. Moore, “Structure and low-temperature thermal conductivity of pyrolytic boron nitride,” Phys. Rev. B Condens. Matter46(6), 3362–3367 (1992).
[CrossRef] [PubMed]

Rusanova, L. N.

L. N. Rusanova and L. I. Gorchakova, “Sintering of turbostratic-structure boron nitride powders,” Sov. Powder Metall. Met. Ceram.28(2), 108–111 (1989).

Strom, U.

U. Strom and P. C. Taylor, “Temperature and frequency dependences of the far-infrared and microwave optical absorption in amorphous materials,” Phys. Rev. B16(12), 5512–5522 (1977).
[CrossRef]

Taylor, P. C.

U. Strom and P. C. Taylor, “Temperature and frequency dependences of the far-infrared and microwave optical absorption in amorphous materials,” Phys. Rev. B16(12), 5512–5522 (1977).
[CrossRef]

Thoman, A.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B77(19), 195405 (2008).
[CrossRef]

Ueki, M.

M. Hubácek and M. Ueki, “Effect of the orientation of boron nitride grains on the physical properties of hot-pressed ceramics,” J. Am. Ceram. Soc.82(1), 156–160 (1999).
[CrossRef]

Uno, N.

T. Matsuda, N. Uno, H. Nakae, and T. Hirai, “Synthesis and structure of chemically vapour-deposited boron nitride,” J. Mater. Sci.21(2), 649–658 (1986).
[CrossRef]

Unterrainer, K.

van Exter, M.

Walther, M.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B77(19), 195405 (2008).
[CrossRef]

Appl. Phys. Lett.

D. Grischkowsky and S. Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett.57(10), 1055–1057 (1990).
[CrossRef]

J. Am. Ceram. Soc.

M. Hubácek and M. Ueki, “Effect of the orientation of boron nitride grains on the physical properties of hot-pressed ceramics,” J. Am. Ceram. Soc.82(1), 156–160 (1999).
[CrossRef]

J. Cryst. Growth

A. W. Moore, “Characterization of pyrolytic boron nitride for semiconductor materials processing,” J. Cryst. Growth106(1), 6–15 (1990).
[CrossRef]

J. Eur. Ceram. Soc.

M. Naftaly, J. Leist, and R. Dudley, “Investigation of ceramic boron nitride by terahertz time-domain spectroscopy,” J. Eur. Ceram. Soc.30(12), 2691–2697 (2010).
[CrossRef]

J. Mater. Sci.

T. Matsuda, N. Uno, H. Nakae, and T. Hirai, “Synthesis and structure of chemically vapour-deposited boron nitride,” J. Mater. Sci.21(2), 649–658 (1986).
[CrossRef]

J. Opt. Soc. Am. B

Nature

A. W. Moore, “Compression annealing of pyrolytic boron nitride,” Nature221(5186), 1133–1134 (1969).
[CrossRef]

Opt. Express

Phys. Rev. B

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B77(19), 195405 (2008).
[CrossRef]

U. Strom and P. C. Taylor, “Temperature and frequency dependences of the far-infrared and microwave optical absorption in amorphous materials,” Phys. Rev. B16(12), 5512–5522 (1977).
[CrossRef]

Phys. Rev. B Condens. Matter

L. Duclaux, B. Nysten, J.-P. Issi, and A. W. Moore, “Structure and low-temperature thermal conductivity of pyrolytic boron nitride,” Phys. Rev. B Condens. Matter46(6), 3362–3367 (1992).
[CrossRef] [PubMed]

Sov. Powder Metall. Met. Ceram.

L. N. Rusanova and L. I. Gorchakova, “Sintering of turbostratic-structure boron nitride powders,” Sov. Powder Metall. Met. Ceram.28(2), 108–111 (1989).

Other

S. Rumyantsev, M. Levinshtein, A. D. Jackson, S. N. Mohammad, G. L. Harris, M. G. Spencer, and M. Shur, “Boron Nitride (BN),” in Principles of Advanced Semiconductor Materials, M. Levinshtein, S. Rumyantsev, and M. Shur, eds. (John Wiley & Sons, 2001).

O. Madelung, ed., Semiconductors: Group IV Elements and III–V Compounds, Series “Data in science and technology,” R. Poerschke, ed. (Springer-Verlag, 1991), Chap. 2.1.

http://www.ioffe.rssi.ru/SVA/NSM/Semicond/BN/basic.html .

R. Syms and J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, 1992), Chap. 10.

Data sheet 81516 – PolarTherm grade PT110, Momentive Performance Materials (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic structure of hexagonal boron nitride.

Fig. 2
Fig. 2

The ordinary and extraordinary refractive indices of PBN.

Fig. 3
Fig. 3

Schematic drawing of platelet growth in hot-pressed boron nitride.

Fig. 4
Fig. 4

SEM micrograph of fracture surface of hot-pressed BN grade HBN.

Fig. 5
Fig. 5

Loss coefficients of PBN. Symbols and || denote samples cut perpendicular to the c-axis (c-cut) and parallel to it. Dotted lines denote fits to Eq. (3); the Ai coefficients are listed in Table 2.

Fig. 6
Fig. 6

Schematic drawing of the growth structure of pyrolytic boron nitride.

Fig. 7
Fig. 7

The frequency-averaged refractive index of HOBN, obtained by plotting the THz optical thickness of the samples against their thickness.

Fig. 8
Fig. 8

Ordinary loss coefficient and refractive index of HOPBN. Dotted line denotes a fit to Eq. (3); the Ai coefficients are listed in Table 2.

Fig. 9
Fig. 9

Loss coefficient and refractive index of compressed BN powder. Dotted line denotes a fit to Eq. (3); the Ai coefficients are listed in Table 2.

Fig. 10
Fig. 10

Micrograph of a pressed BN powder tablet showing the flat stacking of BN flakes. Interference colours within the flakes indicate optical transparency consistent with single-crystal structure.

Tables (2)

Tables Icon

Table 1 Refractive Indices and Loss Coefficients of Different Types of Boron Nitride

Tables Icon

Table 2 The Ai Coefficients of Eq. (3) Fitted to the Loss Curves of PBN Shown in Fig. 5

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n o ( h.p.BN )=0.76  n o ( PBN )+0.24  n e ( PBN ) n e ( h.p.BN )=0.45  n e ( PBN )+0.55  n o ( PBN )
α( ν )= A 1 ν+ A 2 ν 2 + A 4 ν 4
n=1+( n porous 1)(ρ/ ρ porous )

Metrics