Abstract

Artificial nanocomposite structures offer a pathway to the development of engineered materials with novel macroscopic properties. Manufacturing the composite materials in a highly efficient yet precise manner remains a challenge and self-assembly of functional nanomaterials offers an attractive solution. In this paper, shape-persistent three-dimensional cage molecules have been used, for the first time, for the self-assembly of gold nanoparticles. The modular construction of cage molecules allows for precise control of inter-particle spacing down to the molecular level. Furthermore, the ability to change the number and flexibility of binding sites provides a means to tune the self-assembly process. We have designed and synthesized two types of cage molecules equipped with different numbers of binding groups with different flexibility. A systematic analysis of the optical and structural characterizations show that the inter-particle spacing within the self-assembled structures are precisely controlled by the choice of the cage molecules. These results highlight that the new self-assembly approach based on molecular cage linkers provides nanometric control over the self-assembled structure.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Park and Y. Xia, “Assembly of Mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir15(1), 266–273 (1999).
    [CrossRef]
  2. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
    [CrossRef]
  3. J. H. Lee, Q. Wu, and W. Park, “Fabrication and optical characterization of gold nanoshell opal,” J. Mater. Res.21(12), 3215–3221 (2006).
    [CrossRef]
  4. S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
    [CrossRef] [PubMed]
  5. J. H. Lee and W. Park, “Three-dimensional metallic photonic crystal based on self-assembled gold nanoshells,” Funct. Mater. Lett.01(01), 65–69 (2008).
    [CrossRef]
  6. J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett.34(4), 443–445 (2009).
    [CrossRef] [PubMed]
  7. V. A. Tamma, J. H. Lee, Q. Wu, and W. Park, “Visible frequency magnetic activity in silver nanocluster metamaterial,” Appl. Opt.49(7), A11–A17 (2010).
    [CrossRef] [PubMed]
  8. R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express17(22), 19459–19469 (2009).
    [CrossRef] [PubMed]
  9. R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys.107(6), 063511 (2010).
    [CrossRef]
  10. S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
    [CrossRef] [PubMed]
  11. D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
    [CrossRef] [PubMed]
  12. Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
    [CrossRef] [PubMed]
  13. Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
    [CrossRef] [PubMed]
  14. Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
    [CrossRef]
  15. C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
    [CrossRef] [PubMed]
  16. C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.)48(49), 6172–6174 (2012).
    [CrossRef] [PubMed]
  17. J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
    [CrossRef] [PubMed]
  18. A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B106(26), 6740–6747 (2002).
    [CrossRef]
  19. S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
    [CrossRef] [PubMed]
  20. R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
    [CrossRef] [PubMed]
  21. W. Zhang and J. S. Moore, “Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks,” Angew. Chem. Int. Ed. Engl.45(27), 4416–4439 (2006).
    [CrossRef] [PubMed]
  22. A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
    [CrossRef]
  23. Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
    [CrossRef]
  24. A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
    [CrossRef]
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH & Co. KgaA, 2004).
  26. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
    [CrossRef]
  27. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter39(14), 9852–9858 (1989).
    [CrossRef] [PubMed]
  28. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter17(25), 3717–3734 (2005).
    [CrossRef] [PubMed]
  29. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A203(359-371), 385–420 (1904).
    [CrossRef]
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  31. See, for example, G. W. Milton, Theory of Composites (Cambridge University Press, 2004).
  32. B. Abeles and J. I. Gittleman, “Composite material films: optical properties and applications,” Appl. Opt.15(10), 2328–2332 (1976).
    [CrossRef] [PubMed]
  33. V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B60(8), 5359–5365 (1999).
    [CrossRef]
  34. N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter4(36), 7389–7400 (1992).
    [CrossRef]
  35. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun.132(1-2), 189–196 (2000).
    [CrossRef]
  36. A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter11(4), 997–1008 (1999).
    [CrossRef]
  37. V. Yannopapas, “Effective-medium description of disordered photonic alloys,” J. Opt. Soc. Am. B23(7), 1414–1419 (2006).
    [CrossRef]

2012

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.)48(49), 6172–6174 (2012).
[CrossRef] [PubMed]

J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
[CrossRef] [PubMed]

2011

C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
[CrossRef]

2010

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
[CrossRef] [PubMed]

R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys.107(6), 063511 (2010).
[CrossRef]

V. A. Tamma, J. H. Lee, Q. Wu, and W. Park, “Visible frequency magnetic activity in silver nanocluster metamaterial,” Appl. Opt.49(7), A11–A17 (2010).
[CrossRef] [PubMed]

2009

R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express17(22), 19459–19469 (2009).
[CrossRef] [PubMed]

J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett.34(4), 443–445 (2009).
[CrossRef] [PubMed]

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

2008

J. H. Lee and W. Park, “Three-dimensional metallic photonic crystal based on self-assembled gold nanoshells,” Funct. Mater. Lett.01(01), 65–69 (2008).
[CrossRef]

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
[CrossRef] [PubMed]

2007

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

2006

J. H. Lee, Q. Wu, and W. Park, “Fabrication and optical characterization of gold nanoshell opal,” J. Mater. Res.21(12), 3215–3221 (2006).
[CrossRef]

V. Yannopapas, “Effective-medium description of disordered photonic alloys,” J. Opt. Soc. Am. B23(7), 1414–1419 (2006).
[CrossRef]

W. Zhang and J. S. Moore, “Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks,” Angew. Chem. Int. Ed. Engl.45(27), 4416–4439 (2006).
[CrossRef] [PubMed]

2005

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter17(25), 3717–3734 (2005).
[CrossRef] [PubMed]

2004

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

2003

A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
[CrossRef]

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

2002

A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B106(26), 6740–6747 (2002).
[CrossRef]

2000

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun.132(1-2), 189–196 (2000).
[CrossRef]

1999

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter11(4), 997–1008 (1999).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B60(8), 5359–5365 (1999).
[CrossRef]

S. H. Park and Y. Xia, “Assembly of Mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir15(1), 266–273 (1999).
[CrossRef]

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
[CrossRef]

1992

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter4(36), 7389–7400 (1992).
[CrossRef]

1989

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter39(14), 9852–9858 (1989).
[CrossRef] [PubMed]

1976

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1904

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A203(359-371), 385–420 (1904).
[CrossRef]

Abeles, B.

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

Baggett, C. T.

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

Bertone, J. F.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
[CrossRef]

Besnard, I.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Bilic, A.

A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B106(26), 6740–6747 (2002).
[CrossRef]

Bürgi, T.

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
[CrossRef]

Caruso, F.

A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
[CrossRef]

Cho, J.

A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
[CrossRef]

Choi, H. J.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Colvin, V. L.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
[CrossRef]

Cunningham, A.

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
[CrossRef]

Diaz, A.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

Doyle, W. T.

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter39(14), 9852–9858 (1989).
[CrossRef] [PubMed]

Gang, O.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
[CrossRef] [PubMed]

Garnett, J. C. M.

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A203(359-371), 385–420 (1904).
[CrossRef]

Gittleman, J. I.

Guse, B.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Hush, N. S.

A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B106(26), 6740–6747 (2002).
[CrossRef]

Hwang, K. S.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
[CrossRef]

Hybertsen, M. S.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Iron, M. A.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Jiang, P.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
[CrossRef]

Jin, A.

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

Jin, Y.

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Joseph, Y.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Kamenetska, M.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Kaminker, R.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Karathanos, V.

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter4(36), 7389–7400 (1992).
[CrossRef]

Khoo, I. C.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

Knop-Gericke, A.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Kubo, S.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

Lahav, M.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Lee, B.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

Lee, J. H.

V. A. Tamma, J. H. Lee, Q. Wu, and W. Park, “Visible frequency magnetic activity in silver nanocluster metamaterial,” Appl. Opt.49(7), A11–A17 (2010).
[CrossRef] [PubMed]

J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett.34(4), 443–445 (2009).
[CrossRef] [PubMed]

J. H. Lee and W. Park, “Three-dimensional metallic photonic crystal based on self-assembled gold nanoshells,” Funct. Mater. Lett.01(01), 65–69 (2008).
[CrossRef]

J. H. Lee, Q. Wu, and W. Park, “Fabrication and optical characterization of gold nanoshell opal,” J. Mater. Res.21(12), 3215–3221 (2006).
[CrossRef]

Liang, Z.

A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
[CrossRef]

Lohrman, J.

J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
[CrossRef] [PubMed]

Long, H.

C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.)48(49), 6172–6174 (2012).
[CrossRef] [PubMed]

C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

Louie, S. G.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Lytton-Jean, A. K. R.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

Mallouk, T. E.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

Maye, M. M.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
[CrossRef] [PubMed]

Mayer, T. S.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

McCaffrey, R.

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

Mirkin, C. A.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

Modinos, A.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun.132(1-2), 189–196 (2000).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B60(8), 5359–5365 (1999).
[CrossRef]

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter4(36), 7389–7400 (1992).
[CrossRef]

Moore, J. S.

W. Zhang and J. S. Moore, “Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks,” Angew. Chem. Int. Ed. Engl.45(27), 4416–4439 (2006).
[CrossRef] [PubMed]

Moroz, A.

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter17(25), 3717–3734 (2005).
[CrossRef] [PubMed]

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter11(4), 997–1008 (1999).
[CrossRef]

Motiei, L.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Mühlig, S.

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
[CrossRef]

Neaton, J. B.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Noble, R. D.

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
[CrossRef] [PubMed]

Nothofer, H.-G.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

Nykypanchuk, D.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
[CrossRef] [PubMed]

Park, K.

Park, S. H.

S. H. Park and Y. Xia, “Assembly of Mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir15(1), 266–273 (1999).
[CrossRef]

Park, S. Y.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

Park, W.

V. A. Tamma, J. H. Lee, Q. Wu, and W. Park, “Visible frequency magnetic activity in silver nanocluster metamaterial,” Appl. Opt.49(7), A11–A17 (2010).
[CrossRef] [PubMed]

R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys.107(6), 063511 (2010).
[CrossRef]

J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett.34(4), 443–445 (2009).
[CrossRef] [PubMed]

R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express17(22), 19459–19469 (2009).
[CrossRef] [PubMed]

J. H. Lee and W. Park, “Three-dimensional metallic photonic crystal based on self-assembled gold nanoshells,” Funct. Mater. Lett.01(01), 65–69 (2008).
[CrossRef]

J. H. Lee, Q. Wu, and W. Park, “Fabrication and optical characterization of gold nanoshell opal,” J. Mater. Res.21(12), 3215–3221 (2006).
[CrossRef]

Popovitz-Biro, R.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Pratibha, R.

R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys.107(6), 063511 (2010).
[CrossRef]

R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express17(22), 19459–19469 (2009).
[CrossRef] [PubMed]

Quek, S. Y.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Reimers, J. R.

A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B106(26), 6740–6747 (2002).
[CrossRef]

Ren, S. Q.

J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
[CrossRef] [PubMed]

Rockstuhl, C.

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
[CrossRef]

Rosenberger, M.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Schatz, G. C.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

Schlogl, R.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Smalyukh, I. I.

R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys.107(6), 063511 (2010).
[CrossRef]

R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express17(22), 19459–19469 (2009).
[CrossRef] [PubMed]

Sommers, C.

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter11(4), 997–1008 (1999).
[CrossRef]

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

Stefanou, N.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun.132(1-2), 189–196 (2000).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B60(8), 5359–5365 (1999).
[CrossRef]

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter4(36), 7389–7400 (1992).
[CrossRef]

Steigerwald, M. L.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Su, D.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Tamma, V. A.

Tang, Y.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

van der Boom, M. E.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

van der Lelie, D.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
[CrossRef] [PubMed]

Vartanian, M.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Venkataraman, L.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Voss, B. A.

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
[CrossRef] [PubMed]

Vossmeyer, T.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Wang, Q.

C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
[CrossRef] [PubMed]

Weigand, S.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

Wessels, J. M.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Wild, U.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Wu, Q.

Xia, Y.

S. H. Park and Y. Xia, “Assembly of Mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir15(1), 266–273 (1999).
[CrossRef]

Yannopapas, V.

V. Yannopapas, “Effective-medium description of disordered photonic alloys,” J. Opt. Soc. Am. B23(7), 1414–1419 (2006).
[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter17(25), 3717–3734 (2005).
[CrossRef] [PubMed]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun.132(1-2), 189–196 (2000).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B60(8), 5359–5365 (1999).
[CrossRef]

Yasuda, A.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Yu, A.

A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
[CrossRef]

Zhang, C.

J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
[CrossRef] [PubMed]

Zhang, C.-X.

C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.)48(49), 6172–6174 (2012).
[CrossRef] [PubMed]

C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
[CrossRef] [PubMed]

Zhang, W.

C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.)48(49), 6172–6174 (2012).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
[CrossRef] [PubMed]

W. Zhang and J. S. Moore, “Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks,” Angew. Chem. Int. Ed. Engl.45(27), 4416–4439 (2006).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

W. Zhang and J. S. Moore, “Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks,” Angew. Chem. Int. Ed. Engl.45(27), 4416–4439 (2006).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
[CrossRef] [PubMed]

Appl. Opt.

Chem. Commun. (Camb.)

C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.)48(49), 6172–6174 (2012).
[CrossRef] [PubMed]

J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
[CrossRef] [PubMed]

Chem. Sci.

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

Chem. Mater.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
[CrossRef]

Comput. Phys. Commun.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun.132(1-2), 189–196 (2000).
[CrossRef]

Funct. Mater. Lett.

J. H. Lee and W. Park, “Three-dimensional metallic photonic crystal based on self-assembled gold nanoshells,” Funct. Mater. Lett.01(01), 65–69 (2008).
[CrossRef]

J. Am. Chem. Soc.

C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

J. Appl. Phys.

R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys.107(6), 063511 (2010).
[CrossRef]

J. Mater. Res.

J. H. Lee, Q. Wu, and W. Park, “Fabrication and optical characterization of gold nanoshell opal,” J. Mater. Res.21(12), 3215–3221 (2006).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B106(26), 6740–6747 (2002).
[CrossRef]

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

J. Phys. Chem. C

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
[CrossRef]

J. Phys. Condens. Matter

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter11(4), 997–1008 (1999).
[CrossRef]

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter4(36), 7389–7400 (1992).
[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter17(25), 3717–3734 (2005).
[CrossRef] [PubMed]

Langmuir

S. H. Park and Y. Xia, “Assembly of Mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir15(1), 266–273 (1999).
[CrossRef]

Nano Lett.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

Nano Lett.

A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
[CrossRef]

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Nature

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Philos. Trans. R. Soc. Lond. A

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A203(359-371), 385–420 (1904).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B60(8), 5359–5365 (1999).
[CrossRef]

Phys. Rev. B Condens. Matter

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter39(14), 9852–9858 (1989).
[CrossRef] [PubMed]

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH & Co. KgaA, 2004).

See, for example, G. W. Milton, Theory of Composites (Cambridge University Press, 2004).

Supplementary Material (2)

» Media 1: PDF (481 KB)     
» Media 2: PDF (209 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagrams of molecules used for self-assembly of gold nanoparticles.

Fig. 2
Fig. 2

Synthesis of COP-3P and COP-6VP (see Media 1).

Fig. 3
Fig. 3

Topography scans obtained by AFM for (a) monolayer of gold nanoparticles and (b) 4 layers of gold nanoparticles self-assembled by COP-3P molecules. (c) Thickness measured by AFM as a function of the number of gold nanoparticle layers for self-assembly mediated by various molecules.

Fig. 4
Fig. 4

Optical extinction spectra for self-assembled gold nanoparticles using linker molecules (a) TP, (b) COP-3P and (c) COP-6VP.

Fig. 5
Fig. 5

Transmission electron micrographs of gold nanoparticle clusters with various linker molecules: (a) bare nanoparticles, (b) TP, (c) COP-3P and (d) COP-6VP. The scale bars indicate 20 nm.

Fig. 6
Fig. 6

Experimental optical extinction spectra and the effective medium theory fitting for 3-layer and 4-layer self-assembled gold nanoparticle films using (a) TP, (b) COP-3P and (c) COP-6VP (see Media 2).

Fig. 7
Fig. 7

Real (εr) and imaginary (εi) parts of permittivity extracted from the effective medium theory fitting presented in Fig. 6. 3-layer samples are plotted with solid lines and 4-layer samples were plotted with symbols.

Fig. 8
Fig. 8

Real (n) and imaginary (κ) parts of refractive index calculated from the effective medium theory (solid lines) and the multiple scattering theory (symbols) for the 4-layer samples prepared with (a) COP-3P and (b) COP-6VP.

Metrics