Abstract

Artificial nanocomposite structures offer a pathway to the development of engineered materials with novel macroscopic properties. Manufacturing the composite materials in a highly efficient yet precise manner remains a challenge and self-assembly of functional nanomaterials offers an attractive solution. In this paper, shape-persistent three-dimensional cage molecules have been used, for the first time, for the self-assembly of gold nanoparticles. The modular construction of cage molecules allows for precise control of inter-particle spacing down to the molecular level. Furthermore, the ability to change the number and flexibility of binding sites provides a means to tune the self-assembly process. We have designed and synthesized two types of cage molecules equipped with different numbers of binding groups with different flexibility. A systematic analysis of the optical and structural characterizations show that the inter-particle spacing within the self-assembled structures are precisely controlled by the choice of the cage molecules. These results highlight that the new self-assembly approach based on molecular cage linkers provides nanometric control over the self-assembled structure.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Park and Y. Xia, “Assembly of Mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir15(1), 266–273 (1999).
    [CrossRef]
  2. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
    [CrossRef]
  3. J. H. Lee, Q. Wu, and W. Park, “Fabrication and optical characterization of gold nanoshell opal,” J. Mater. Res.21(12), 3215–3221 (2006).
    [CrossRef]
  4. S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
    [CrossRef] [PubMed]
  5. J. H. Lee and W. Park, “Three-dimensional metallic photonic crystal based on self-assembled gold nanoshells,” Funct. Mater. Lett.01(01), 65–69 (2008).
    [CrossRef]
  6. J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett.34(4), 443–445 (2009).
    [CrossRef] [PubMed]
  7. V. A. Tamma, J. H. Lee, Q. Wu, and W. Park, “Visible frequency magnetic activity in silver nanocluster metamaterial,” Appl. Opt.49(7), A11–A17 (2010).
    [CrossRef] [PubMed]
  8. R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express17(22), 19459–19469 (2009).
    [CrossRef] [PubMed]
  9. R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys.107(6), 063511 (2010).
    [CrossRef]
  10. S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
    [CrossRef] [PubMed]
  11. D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
    [CrossRef] [PubMed]
  12. Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
    [CrossRef] [PubMed]
  13. Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
    [CrossRef] [PubMed]
  14. Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
    [CrossRef]
  15. C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
    [CrossRef] [PubMed]
  16. C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.)48(49), 6172–6174 (2012).
    [CrossRef] [PubMed]
  17. J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
    [CrossRef] [PubMed]
  18. A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B106(26), 6740–6747 (2002).
    [CrossRef]
  19. S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
    [CrossRef] [PubMed]
  20. R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
    [CrossRef] [PubMed]
  21. W. Zhang and J. S. Moore, “Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks,” Angew. Chem. Int. Ed. Engl.45(27), 4416–4439 (2006).
    [CrossRef] [PubMed]
  22. A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
    [CrossRef]
  23. Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
    [CrossRef]
  24. A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
    [CrossRef]
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH & Co. KgaA, 2004).
  26. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
    [CrossRef]
  27. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter39(14), 9852–9858 (1989).
    [CrossRef] [PubMed]
  28. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter17(25), 3717–3734 (2005).
    [CrossRef] [PubMed]
  29. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A203(359-371), 385–420 (1904).
    [CrossRef]
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  31. See, for example, G. W. Milton, Theory of Composites (Cambridge University Press, 2004).
  32. B. Abeles and J. I. Gittleman, “Composite material films: optical properties and applications,” Appl. Opt.15(10), 2328–2332 (1976).
    [CrossRef] [PubMed]
  33. V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B60(8), 5359–5365 (1999).
    [CrossRef]
  34. N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter4(36), 7389–7400 (1992).
    [CrossRef]
  35. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun.132(1-2), 189–196 (2000).
    [CrossRef]
  36. A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter11(4), 997–1008 (1999).
    [CrossRef]
  37. V. Yannopapas, “Effective-medium description of disordered photonic alloys,” J. Opt. Soc. Am. B23(7), 1414–1419 (2006).
    [CrossRef]

2012 (3)

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.)48(49), 6172–6174 (2012).
[CrossRef] [PubMed]

J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
[CrossRef] [PubMed]

2011 (3)

C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
[CrossRef]

2010 (4)

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
[CrossRef] [PubMed]

R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys.107(6), 063511 (2010).
[CrossRef]

V. A. Tamma, J. H. Lee, Q. Wu, and W. Park, “Visible frequency magnetic activity in silver nanocluster metamaterial,” Appl. Opt.49(7), A11–A17 (2010).
[CrossRef] [PubMed]

2009 (3)

J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett.34(4), 443–445 (2009).
[CrossRef] [PubMed]

R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express17(22), 19459–19469 (2009).
[CrossRef] [PubMed]

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

2008 (3)

J. H. Lee and W. Park, “Three-dimensional metallic photonic crystal based on self-assembled gold nanoshells,” Funct. Mater. Lett.01(01), 65–69 (2008).
[CrossRef]

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
[CrossRef] [PubMed]

2007 (1)

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

2006 (3)

J. H. Lee, Q. Wu, and W. Park, “Fabrication and optical characterization of gold nanoshell opal,” J. Mater. Res.21(12), 3215–3221 (2006).
[CrossRef]

V. Yannopapas, “Effective-medium description of disordered photonic alloys,” J. Opt. Soc. Am. B23(7), 1414–1419 (2006).
[CrossRef]

W. Zhang and J. S. Moore, “Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks,” Angew. Chem. Int. Ed. Engl.45(27), 4416–4439 (2006).
[CrossRef] [PubMed]

2005 (1)

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter17(25), 3717–3734 (2005).
[CrossRef] [PubMed]

2004 (1)

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

2003 (2)

A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
[CrossRef]

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

2002 (1)

A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B106(26), 6740–6747 (2002).
[CrossRef]

2000 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun.132(1-2), 189–196 (2000).
[CrossRef]

1999 (4)

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter11(4), 997–1008 (1999).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B60(8), 5359–5365 (1999).
[CrossRef]

S. H. Park and Y. Xia, “Assembly of Mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir15(1), 266–273 (1999).
[CrossRef]

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
[CrossRef]

1992 (1)

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter4(36), 7389–7400 (1992).
[CrossRef]

1989 (1)

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter39(14), 9852–9858 (1989).
[CrossRef] [PubMed]

1976 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1904 (1)

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A203(359-371), 385–420 (1904).
[CrossRef]

Abeles, B.

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

Baggett, C. T.

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

Bertone, J. F.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
[CrossRef]

Besnard, I.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Bilic, A.

A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B106(26), 6740–6747 (2002).
[CrossRef]

Bürgi, T.

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
[CrossRef]

Caruso, F.

A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
[CrossRef]

Cho, J.

A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
[CrossRef]

Choi, H. J.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Colvin, V. L.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
[CrossRef]

Cunningham, A.

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
[CrossRef]

Diaz, A.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

Doyle, W. T.

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter39(14), 9852–9858 (1989).
[CrossRef] [PubMed]

Gang, O.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
[CrossRef] [PubMed]

Garnett, J. C. M.

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A203(359-371), 385–420 (1904).
[CrossRef]

Gittleman, J. I.

Guse, B.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Hush, N. S.

A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B106(26), 6740–6747 (2002).
[CrossRef]

Hwang, K. S.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
[CrossRef]

Hybertsen, M. S.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Iron, M. A.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Jiang, P.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
[CrossRef]

Jin, A.

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

Jin, Y.

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Joseph, Y.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Kamenetska, M.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Kaminker, R.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Karathanos, V.

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter4(36), 7389–7400 (1992).
[CrossRef]

Khoo, I. C.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

Knop-Gericke, A.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Kubo, S.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

Lahav, M.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Lee, B.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

Lee, J. H.

V. A. Tamma, J. H. Lee, Q. Wu, and W. Park, “Visible frequency magnetic activity in silver nanocluster metamaterial,” Appl. Opt.49(7), A11–A17 (2010).
[CrossRef] [PubMed]

J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett.34(4), 443–445 (2009).
[CrossRef] [PubMed]

J. H. Lee and W. Park, “Three-dimensional metallic photonic crystal based on self-assembled gold nanoshells,” Funct. Mater. Lett.01(01), 65–69 (2008).
[CrossRef]

J. H. Lee, Q. Wu, and W. Park, “Fabrication and optical characterization of gold nanoshell opal,” J. Mater. Res.21(12), 3215–3221 (2006).
[CrossRef]

Liang, Z.

A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
[CrossRef]

Lohrman, J.

J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
[CrossRef] [PubMed]

Long, H.

C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.)48(49), 6172–6174 (2012).
[CrossRef] [PubMed]

C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

Louie, S. G.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Lytton-Jean, A. K. R.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

Mallouk, T. E.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

Maye, M. M.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
[CrossRef] [PubMed]

Mayer, T. S.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

McCaffrey, R.

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

Mirkin, C. A.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

Modinos, A.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun.132(1-2), 189–196 (2000).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B60(8), 5359–5365 (1999).
[CrossRef]

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter4(36), 7389–7400 (1992).
[CrossRef]

Moore, J. S.

W. Zhang and J. S. Moore, “Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks,” Angew. Chem. Int. Ed. Engl.45(27), 4416–4439 (2006).
[CrossRef] [PubMed]

Moroz, A.

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter17(25), 3717–3734 (2005).
[CrossRef] [PubMed]

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter11(4), 997–1008 (1999).
[CrossRef]

Motiei, L.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Mühlig, S.

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
[CrossRef]

Neaton, J. B.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Noble, R. D.

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
[CrossRef] [PubMed]

Nothofer, H.-G.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

Nykypanchuk, D.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
[CrossRef] [PubMed]

Park, K.

Park, S. H.

S. H. Park and Y. Xia, “Assembly of Mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir15(1), 266–273 (1999).
[CrossRef]

Park, S. Y.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

Park, W.

V. A. Tamma, J. H. Lee, Q. Wu, and W. Park, “Visible frequency magnetic activity in silver nanocluster metamaterial,” Appl. Opt.49(7), A11–A17 (2010).
[CrossRef] [PubMed]

R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys.107(6), 063511 (2010).
[CrossRef]

J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett.34(4), 443–445 (2009).
[CrossRef] [PubMed]

R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express17(22), 19459–19469 (2009).
[CrossRef] [PubMed]

J. H. Lee and W. Park, “Three-dimensional metallic photonic crystal based on self-assembled gold nanoshells,” Funct. Mater. Lett.01(01), 65–69 (2008).
[CrossRef]

J. H. Lee, Q. Wu, and W. Park, “Fabrication and optical characterization of gold nanoshell opal,” J. Mater. Res.21(12), 3215–3221 (2006).
[CrossRef]

Popovitz-Biro, R.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Pratibha, R.

R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys.107(6), 063511 (2010).
[CrossRef]

R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express17(22), 19459–19469 (2009).
[CrossRef] [PubMed]

Quek, S. Y.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Reimers, J. R.

A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B106(26), 6740–6747 (2002).
[CrossRef]

Ren, S. Q.

J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
[CrossRef] [PubMed]

Rockstuhl, C.

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
[CrossRef]

Rosenberger, M.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Schatz, G. C.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

Schlogl, R.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Smalyukh, I. I.

R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys.107(6), 063511 (2010).
[CrossRef]

R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express17(22), 19459–19469 (2009).
[CrossRef] [PubMed]

Sommers, C.

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter11(4), 997–1008 (1999).
[CrossRef]

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

Stefanou, N.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun.132(1-2), 189–196 (2000).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B60(8), 5359–5365 (1999).
[CrossRef]

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter4(36), 7389–7400 (1992).
[CrossRef]

Steigerwald, M. L.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Su, D.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Tamma, V. A.

Tang, Y.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

van der Boom, M. E.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

van der Lelie, D.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
[CrossRef] [PubMed]

Vartanian, M.

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Venkataraman, L.

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Voss, B. A.

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
[CrossRef] [PubMed]

Vossmeyer, T.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Wang, Q.

C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
[CrossRef] [PubMed]

Weigand, S.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

Wessels, J. M.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Wild, U.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Wu, Q.

Xia, Y.

S. H. Park and Y. Xia, “Assembly of Mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir15(1), 266–273 (1999).
[CrossRef]

Yannopapas, V.

V. Yannopapas, “Effective-medium description of disordered photonic alloys,” J. Opt. Soc. Am. B23(7), 1414–1419 (2006).
[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter17(25), 3717–3734 (2005).
[CrossRef] [PubMed]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun.132(1-2), 189–196 (2000).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B60(8), 5359–5365 (1999).
[CrossRef]

Yasuda, A.

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

Yu, A.

A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
[CrossRef]

Zhang, C.

J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
[CrossRef] [PubMed]

Zhang, C.-X.

C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.)48(49), 6172–6174 (2012).
[CrossRef] [PubMed]

C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
[CrossRef] [PubMed]

Zhang, W.

C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.)48(49), 6172–6174 (2012).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
[CrossRef] [PubMed]

Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
[CrossRef] [PubMed]

W. Zhang and J. S. Moore, “Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks,” Angew. Chem. Int. Ed. Engl.45(27), 4416–4439 (2006).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

W. Zhang and J. S. Moore, “Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks,” Angew. Chem. Int. Ed. Engl.45(27), 4416–4439 (2006).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010).
[CrossRef] [PubMed]

Appl. Opt. (2)

Chem. Commun. (Camb.) (2)

C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.)48(49), 6172–6174 (2012).
[CrossRef] [PubMed]

J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012).
[CrossRef] [PubMed]

Chem. Sci. (1)

Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012).
[CrossRef]

Chem. Mater. (1)

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999).
[CrossRef]

Comput. Phys. Commun. (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun.132(1-2), 189–196 (2000).
[CrossRef]

Funct. Mater. Lett. (1)

J. H. Lee and W. Park, “Three-dimensional metallic photonic crystal based on self-assembled gold nanoshells,” Funct. Mater. Lett.01(01), 65–69 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys.107(6), 063511 (2010).
[CrossRef]

J. Mater. Res. (1)

J. H. Lee, Q. Wu, and W. Park, “Fabrication and optical characterization of gold nanoshell opal,” J. Mater. Res.21(12), 3215–3221 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B106(26), 6740–6747 (2002).
[CrossRef]

Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003).
[CrossRef]

J. Phys. Chem. C (1)

A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011).
[CrossRef]

J. Phys. Condens. Matter (3)

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter11(4), 997–1008 (1999).
[CrossRef]

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter4(36), 7389–7400 (1992).
[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter17(25), 3717–3734 (2005).
[CrossRef] [PubMed]

Langmuir (1)

S. H. Park and Y. Xia, “Assembly of Mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir15(1), 266–273 (1999).
[CrossRef]

Nano Lett. (1)

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

Nano Lett. (2)

A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003).
[CrossRef]

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009).
[CrossRef] [PubMed]

Nature (2)

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008).
[CrossRef] [PubMed]

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Philos. Trans. R. Soc. Lond. A (1)

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A203(359-371), 385–420 (1904).
[CrossRef]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B60(8), 5359–5365 (1999).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter39(14), 9852–9858 (1989).
[CrossRef] [PubMed]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH & Co. KgaA, 2004).

See, for example, G. W. Milton, Theory of Composites (Cambridge University Press, 2004).

Supplementary Material (2)

» Media 1: PDF (481 KB)     
» Media 2: PDF (209 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagrams of molecules used for self-assembly of gold nanoparticles.

Fig. 2
Fig. 2

Synthesis of COP-3P and COP-6VP (see Media 1).

Fig. 3
Fig. 3

Topography scans obtained by AFM for (a) monolayer of gold nanoparticles and (b) 4 layers of gold nanoparticles self-assembled by COP-3P molecules. (c) Thickness measured by AFM as a function of the number of gold nanoparticle layers for self-assembly mediated by various molecules.

Fig. 4
Fig. 4

Optical extinction spectra for self-assembled gold nanoparticles using linker molecules (a) TP, (b) COP-3P and (c) COP-6VP.

Fig. 5
Fig. 5

Transmission electron micrographs of gold nanoparticle clusters with various linker molecules: (a) bare nanoparticles, (b) TP, (c) COP-3P and (d) COP-6VP. The scale bars indicate 20 nm.

Fig. 6
Fig. 6

Experimental optical extinction spectra and the effective medium theory fitting for 3-layer and 4-layer self-assembled gold nanoparticle films using (a) TP, (b) COP-3P and (c) COP-6VP (see Media 2).

Fig. 7
Fig. 7

Real (εr) and imaginary (εi) parts of permittivity extracted from the effective medium theory fitting presented in Fig. 6. 3-layer samples are plotted with solid lines and 4-layer samples were plotted with symbols.

Fig. 8
Fig. 8

Real (n) and imaginary (κ) parts of refractive index calculated from the effective medium theory (solid lines) and the multiple scattering theory (symbols) for the 4-layer samples prepared with (a) COP-3P and (b) COP-6VP.

Metrics