Abstract

One of the main challenges in optical hydrogen sensing is the stability of the sensor material. We found and studied an optimized material combination for fast and reliable optical palladium-based hydrogen sensing devices. It consists of a palladium-nickel alloy that is buffered by calcium fluoride and capped with a very thin layer of platinum. Our system shows response times below 10 s and almost no short-term aging effects. Furthermore, we successfully incorporated this optimized material system into plasmonic nanostructures, laying the foundation for a stable and sensitive hydrogen detector.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Marbán and T. Valdés-Solís, “Towards the hydrogen economy?” Int. J. Hydrogen Energy32(12), 1625–1637 (2007).
    [CrossRef]
  2. W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy36(3), 2462–2470 (2011).
    [CrossRef]
  3. T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).
    [CrossRef]
  4. D. Nau, A. Seidel, R. B. Orzekowsky, S.-H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett.35(18), 3150–3152 (2010).
    [CrossRef] [PubMed]
  5. E. M. Larsson, S. Syrenova, and C. Langhammer, “Nanoplasmonic sensing for nanomaterials science,” Nanophotonics1(3–4), 249–266 (2012).
  6. P. Albers, J. Pietsch, and S. F. Parker, “Poisoning and deactivation of palladium catalysts,” J. Mol. Catal. Chem.173(1-2), 275–286 (2001).
    [CrossRef]
  7. S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
    [CrossRef] [PubMed]
  8. P. Patnaik, A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd ed. (John Wiley & Sons, 2007), p. 1059.
  9. F. A. Lewis, The Palladium Hydrogen System, 1st ed. (Academic Press Inc., 1967), p. 178.
  10. M. Khanuja, B. R. Mehta, P. Agar, P. K. Kulriya, and D. K. Avasthi, “Hydrogen induced lattice expansion and crystallinity degradation in palladium nanoparticles: Effect of hydrogen concentration, pressure, and temperature,” J. Appl. Phys.106(9), 093515 (2009).
    [CrossRef]
  11. P. Gravil and H. Toulhoat, “Hydrogen, sulphur and chlorine coadsorption on Pd(111): a theoretical study of poisoning and promotion,” Surf. Sci.430(1-3), 176–191 (1999).
    [CrossRef]
  12. L. L. Sheu, Z. Karpinski, and W. M. H. Sachtler, “Effects of palladium particle size and palladium silicide formation on Fourier transform infrared spectra and carbon monoxide adsorbed on palladium/silicon dioxide catalysts,” J. Phys. Chem.93(12), 4890–4894 (1989).
    [CrossRef]
  13. C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
    [CrossRef] [PubMed]
  14. S. Wilke and M. Scheffler, “Poisoning of Pd(100) for the dissociation of H2: a theoretical study of co-adsorption of hydrogen and sulphur,” Surf. Sci.329(1-2), L605–L610 (1995).
    [CrossRef]
  15. J. Oudar, Deactivation and Poisoning of Catalysts (Taylor & Francis, 1985), p. 344.
  16. P. Fedtke, M. Wienecke, M. Bunescu, M. Pietrzak, K. Deistung, and E. Borchardt, “Hydrogen sensor based on optical and electrical switching,” Sens. Actuators B Chem.100(1-2), 151–157 (2004).
    [CrossRef]
  17. D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd rev. ed. (Taylor & Francis, 1994), p. 192.
  18. Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
    [CrossRef] [PubMed]
  19. B. Chadwick, J. Tann, M. Brungs, and M. Gal, “A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy,” Sens. Actuators B Chem.17(3), 215–220 (1994).
    [CrossRef]
  20. R. C. Hughes and W. K. Schubert, “Thin films of Pd/Ni alloys for detection of high hydrogen concentrations,” J. Appl. Phys.71(1), 542–544 (1992).
    [CrossRef]
  21. R. C. Hughes, “Solid-state hydrogen sensors using palladium-nickel alloys: effect of alloy composition on sensor response,” J. Electrochem. Soc.142(1), 249–254 (1995).
    [CrossRef]
  22. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
    [CrossRef] [PubMed]
  23. A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6(11), 9989–9995 (2012).
    [CrossRef] [PubMed]
  24. S. L. Teo, V. K. Lin, R. Marty, N. Large, E. A. Llado, A. Arbouet, C. Girard, J. Aizpurua, S. Tripathy, and A. Mlayah, “Gold nanoring trimers: a versatile structure for infrared sensing,” Opt. Express18(21), 22271–22282 (2010).
    [CrossRef] [PubMed]
  25. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
    [CrossRef] [PubMed]
  26. C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
    [CrossRef] [PubMed]
  27. T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett.12(5), 2464–2469 (2012).
    [CrossRef] [PubMed]
  28. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
    [CrossRef] [PubMed]
  29. M. A. Poyli, V. M. Silkin, I. P. Chernov, P. M. Echenique, R. D. Muiño, and J. Aizpurua, “Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks,” J. Phys. Chem. Lett.3(18), 2556–2561 (2012).
    [CrossRef]
  30. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28(2), 238–244 (2011).
    [CrossRef] [PubMed]
  31. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt.11(11), 114019 (2009).
    [CrossRef]
  32. W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
    [CrossRef]
  33. A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem.78(13), 4416–4423 (2006).
    [CrossRef] [PubMed]

2012 (5)

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

E. M. Larsson, S. Syrenova, and C. Langhammer, “Nanoplasmonic sensing for nanomaterials science,” Nanophotonics1(3–4), 249–266 (2012).

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

M. A. Poyli, V. M. Silkin, I. P. Chernov, P. M. Echenique, R. D. Muiño, and J. Aizpurua, “Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks,” J. Phys. Chem. Lett.3(18), 2556–2561 (2012).
[CrossRef]

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett.12(5), 2464–2469 (2012).
[CrossRef] [PubMed]

2011 (5)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28(2), 238–244 (2011).
[CrossRef] [PubMed]

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy36(3), 2462–2470 (2011).
[CrossRef]

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).
[CrossRef]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

2010 (4)

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
[CrossRef] [PubMed]

D. Nau, A. Seidel, R. B. Orzekowsky, S.-H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett.35(18), 3150–3152 (2010).
[CrossRef] [PubMed]

S. L. Teo, V. K. Lin, R. Marty, N. Large, E. A. Llado, A. Arbouet, C. Girard, J. Aizpurua, S. Tripathy, and A. Mlayah, “Gold nanoring trimers: a versatile structure for infrared sensing,” Opt. Express18(21), 22271–22282 (2010).
[CrossRef] [PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

2009 (2)

M. Khanuja, B. R. Mehta, P. Agar, P. K. Kulriya, and D. K. Avasthi, “Hydrogen induced lattice expansion and crystallinity degradation in palladium nanoparticles: Effect of hydrogen concentration, pressure, and temperature,” J. Appl. Phys.106(9), 093515 (2009).
[CrossRef]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt.11(11), 114019 (2009).
[CrossRef]

2007 (2)

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

G. Marbán and T. Valdés-Solís, “Towards the hydrogen economy?” Int. J. Hydrogen Energy32(12), 1625–1637 (2007).
[CrossRef]

2006 (2)

W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
[CrossRef]

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem.78(13), 4416–4423 (2006).
[CrossRef] [PubMed]

2004 (2)

P. Fedtke, M. Wienecke, M. Bunescu, M. Pietrzak, K. Deistung, and E. Borchardt, “Hydrogen sensor based on optical and electrical switching,” Sens. Actuators B Chem.100(1-2), 151–157 (2004).
[CrossRef]

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

2001 (1)

P. Albers, J. Pietsch, and S. F. Parker, “Poisoning and deactivation of palladium catalysts,” J. Mol. Catal. Chem.173(1-2), 275–286 (2001).
[CrossRef]

1999 (1)

P. Gravil and H. Toulhoat, “Hydrogen, sulphur and chlorine coadsorption on Pd(111): a theoretical study of poisoning and promotion,” Surf. Sci.430(1-3), 176–191 (1999).
[CrossRef]

1995 (2)

S. Wilke and M. Scheffler, “Poisoning of Pd(100) for the dissociation of H2: a theoretical study of co-adsorption of hydrogen and sulphur,” Surf. Sci.329(1-2), L605–L610 (1995).
[CrossRef]

R. C. Hughes, “Solid-state hydrogen sensors using palladium-nickel alloys: effect of alloy composition on sensor response,” J. Electrochem. Soc.142(1), 249–254 (1995).
[CrossRef]

1994 (1)

B. Chadwick, J. Tann, M. Brungs, and M. Gal, “A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy,” Sens. Actuators B Chem.17(3), 215–220 (1994).
[CrossRef]

1992 (1)

R. C. Hughes and W. K. Schubert, “Thin films of Pd/Ni alloys for detection of high hydrogen concentrations,” J. Appl. Phys.71(1), 542–544 (1992).
[CrossRef]

1989 (1)

L. L. Sheu, Z. Karpinski, and W. M. H. Sachtler, “Effects of palladium particle size and palladium silicide formation on Fourier transform infrared spectra and carbon monoxide adsorbed on palladium/silicon dioxide catalysts,” J. Phys. Chem.93(12), 4890–4894 (1989).
[CrossRef]

Agar, P.

M. Khanuja, B. R. Mehta, P. Agar, P. K. Kulriya, and D. K. Avasthi, “Hydrogen induced lattice expansion and crystallinity degradation in palladium nanoparticles: Effect of hydrogen concentration, pressure, and temperature,” J. Appl. Phys.106(9), 093515 (2009).
[CrossRef]

Aizpurua, J.

M. A. Poyli, V. M. Silkin, I. P. Chernov, P. M. Echenique, R. D. Muiño, and J. Aizpurua, “Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks,” J. Phys. Chem. Lett.3(18), 2556–2561 (2012).
[CrossRef]

S. L. Teo, V. K. Lin, R. Marty, N. Large, E. A. Llado, A. Arbouet, C. Girard, J. Aizpurua, S. Tripathy, and A. Mlayah, “Gold nanoring trimers: a versatile structure for infrared sensing,” Opt. Express18(21), 22271–22282 (2010).
[CrossRef] [PubMed]

Albers, P.

P. Albers, J. Pietsch, and S. F. Parker, “Poisoning and deactivation of palladium catalysts,” J. Mol. Catal. Chem.173(1-2), 275–286 (2001).
[CrossRef]

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

Altug, H.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Arbouet, A.

Artar, A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Avasthi, D. K.

M. Khanuja, B. R. Mehta, P. Agar, P. K. Kulriya, and D. K. Avasthi, “Hydrogen induced lattice expansion and crystallinity degradation in palladium nanoparticles: Effect of hydrogen concentration, pressure, and temperature,” J. Appl. Phys.106(9), 093515 (2009).
[CrossRef]

Azofeifa, D.

W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
[CrossRef]

Banach, U.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).
[CrossRef]

Black, G.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).
[CrossRef]

Boon-Brett, L.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).
[CrossRef]

Borchardt, E.

P. Fedtke, M. Wienecke, M. Bunescu, M. Pietrzak, K. Deistung, and E. Borchardt, “Hydrogen sensor based on optical and electrical switching,” Sens. Actuators B Chem.100(1-2), 151–157 (2004).
[CrossRef]

Braun, P. V.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

Brungs, M.

B. Chadwick, J. Tann, M. Brungs, and M. Gal, “A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy,” Sens. Actuators B Chem.17(3), 215–220 (1994).
[CrossRef]

Bunescu, M.

P. Fedtke, M. Wienecke, M. Bunescu, M. Pietrzak, K. Deistung, and E. Borchardt, “Hydrogen sensor based on optical and electrical switching,” Sens. Actuators B Chem.100(1-2), 151–157 (2004).
[CrossRef]

Burgess, R.

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy36(3), 2462–2470 (2011).
[CrossRef]

Buttner, W. J.

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy36(3), 2462–2470 (2011).
[CrossRef]

Carpenter, M. A.

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

Cataldo, S.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

Cetin, A. E.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

Chadwick, B.

B. Chadwick, J. Tann, M. Brungs, and M. Gal, “A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy,” Sens. Actuators B Chem.17(3), 215–220 (1994).
[CrossRef]

Chernov, I. P.

M. A. Poyli, V. M. Silkin, I. P. Chernov, P. M. Echenique, R. D. Muiño, and J. Aizpurua, “Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks,” J. Phys. Chem. Lett.3(18), 2556–2561 (2012).
[CrossRef]

Clark, N.

W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
[CrossRef]

Clemens, B. M.

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

Connor, J. H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Dahlin, A. B.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem.78(13), 4416–4423 (2006).
[CrossRef] [PubMed]

Deb, S.

Deistung, K.

P. Fedtke, M. Wienecke, M. Bunescu, M. Pietrzak, K. Deistung, and E. Borchardt, “Hydrogen sensor based on optical and electrical switching,” Sens. Actuators B Chem.100(1-2), 151–157 (2004).
[CrossRef]

Echenique, P. M.

M. A. Poyli, V. M. Silkin, I. P. Chernov, P. M. Echenique, R. D. Muiño, and J. Aizpurua, “Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks,” J. Phys. Chem. Lett.3(18), 2556–2561 (2012).
[CrossRef]

Fedtke, P.

P. Fedtke, M. Wienecke, M. Bunescu, M. Pietrzak, K. Deistung, and E. Borchardt, “Hydrogen sensor based on optical and electrical switching,” Sens. Actuators B Chem.100(1-2), 151–157 (2004).
[CrossRef]

Frank, B.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

Gal, M.

B. Chadwick, J. Tann, M. Brungs, and M. Gal, “A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy,” Sens. Actuators B Chem.17(3), 215–220 (1994).
[CrossRef]

Geisbert, T. W.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Giessen, H.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28(2), 238–244 (2011).
[CrossRef] [PubMed]

D. Nau, A. Seidel, R. B. Orzekowsky, S.-H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett.35(18), 3150–3152 (2010).
[CrossRef] [PubMed]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt.11(11), 114019 (2009).
[CrossRef]

Gippius, N. A.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28(2), 238–244 (2011).
[CrossRef] [PubMed]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt.11(11), 114019 (2009).
[CrossRef]

Girard, C.

Granet, G.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28(2), 238–244 (2011).
[CrossRef] [PubMed]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt.11(11), 114019 (2009).
[CrossRef]

Gravil, P.

P. Gravil and H. Toulhoat, “Hydrogen, sulphur and chlorine coadsorption on Pd(111): a theoretical study of poisoning and promotion,” Surf. Sci.430(1-3), 176–191 (1999).
[CrossRef]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

Höök, F.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem.78(13), 4416–4423 (2006).
[CrossRef] [PubMed]

Huang, M.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Hübert, T.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).
[CrossRef]

Hughes, R. C.

R. C. Hughes, “Solid-state hydrogen sensors using palladium-nickel alloys: effect of alloy composition on sensor response,” J. Electrochem. Soc.142(1), 249–254 (1995).
[CrossRef]

R. C. Hughes and W. K. Schubert, “Thin films of Pd/Ni alloys for detection of high hydrogen concentrations,” J. Appl. Phys.71(1), 542–544 (1992).
[CrossRef]

Johansson, P.

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett.12(5), 2464–2469 (2012).
[CrossRef] [PubMed]

Käll, M.

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett.12(5), 2464–2469 (2012).
[CrossRef] [PubMed]

Kamohara, O.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Karpinski, Z.

L. L. Sheu, Z. Karpinski, and W. M. H. Sachtler, “Effects of palladium particle size and palladium silicide formation on Fourier transform infrared spectra and carbon monoxide adsorbed on palladium/silicon dioxide catalysts,” J. Phys. Chem.93(12), 4890–4894 (1989).
[CrossRef]

Kasemo, B.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
[CrossRef] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

Khanuja, M.

M. Khanuja, B. R. Mehta, P. Agar, P. K. Kulriya, and D. K. Avasthi, “Hydrogen induced lattice expansion and crystallinity degradation in palladium nanoparticles: Effect of hydrogen concentration, pressure, and temperature,” J. Appl. Phys.106(9), 093515 (2009).
[CrossRef]

Kulriya, P. K.

M. Khanuja, B. R. Mehta, P. Agar, P. K. Kulriya, and D. K. Avasthi, “Hydrogen induced lattice expansion and crystallinity degradation in palladium nanoparticles: Effect of hydrogen concentration, pressure, and temperature,” J. Appl. Phys.106(9), 093515 (2009).
[CrossRef]

Langhammer, C.

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett.12(5), 2464–2469 (2012).
[CrossRef] [PubMed]

E. M. Larsson, S. Syrenova, and C. Langhammer, “Nanoplasmonic sensing for nanomaterials science,” Nanophotonics1(3–4), 249–266 (2012).

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
[CrossRef] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

Large, N.

Larsson, E. M.

E. M. Larsson, S. Syrenova, and C. Langhammer, “Nanoplasmonic sensing for nanomaterials science,” Nanophotonics1(3–4), 249–266 (2012).

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
[CrossRef] [PubMed]

Lee, S.-H.

Lin, V. K.

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

Llado, E. A.

Marbán, G.

G. Marbán and T. Valdés-Solís, “Towards the hydrogen economy?” Int. J. Hydrogen Energy32(12), 1625–1637 (2007).
[CrossRef]

Marty, R.

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

Mehta, B. R.

M. Khanuja, B. R. Mehta, P. Agar, P. K. Kulriya, and D. K. Avasthi, “Hydrogen induced lattice expansion and crystallinity degradation in palladium nanoparticles: Effect of hydrogen concentration, pressure, and temperature,” J. Appl. Phys.106(9), 093515 (2009).
[CrossRef]

Mlayah, A.

Muiño, R. D.

M. A. Poyli, V. M. Silkin, I. P. Chernov, P. M. Echenique, R. D. Muiño, and J. Aizpurua, “Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks,” J. Phys. Chem. Lett.3(18), 2556–2561 (2012).
[CrossRef]

Nau, D.

Neubrech, F.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

Orzekowsky, R. B.

Parker, S. F.

P. Albers, J. Pietsch, and S. F. Parker, “Poisoning and deactivation of palladium catalysts,” J. Mol. Catal. Chem.173(1-2), 275–286 (2001).
[CrossRef]

Pietrzak, M.

P. Fedtke, M. Wienecke, M. Bunescu, M. Pietrzak, K. Deistung, and E. Borchardt, “Hydrogen sensor based on optical and electrical switching,” Sens. Actuators B Chem.100(1-2), 151–157 (2004).
[CrossRef]

Pietsch, J.

P. Albers, J. Pietsch, and S. F. Parker, “Poisoning and deactivation of palladium catalysts,” J. Mol. Catal. Chem.173(1-2), 275–286 (2001).
[CrossRef]

Post, M. B.

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy36(3), 2462–2470 (2011).
[CrossRef]

Poyli, M. A.

M. A. Poyli, V. M. Silkin, I. P. Chernov, P. M. Echenique, R. D. Muiño, and J. Aizpurua, “Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks,” J. Phys. Chem. Lett.3(18), 2556–2561 (2012).
[CrossRef]

Rivkin, C.

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy36(3), 2462–2470 (2011).
[CrossRef]

Rojas, I.

W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
[CrossRef]

Sachtler, W. M. H.

L. L. Sheu, Z. Karpinski, and W. M. H. Sachtler, “Effects of palladium particle size and palladium silicide formation on Fourier transform infrared spectra and carbon monoxide adsorbed on palladium/silicon dioxide catalysts,” J. Phys. Chem.93(12), 4890–4894 (1989).
[CrossRef]

Scheffler, M.

S. Wilke and M. Scheffler, “Poisoning of Pd(100) for the dissociation of H2: a theoretical study of co-adsorption of hydrogen and sulphur,” Surf. Sci.329(1-2), L605–L610 (1995).
[CrossRef]

Schubert, W. K.

R. C. Hughes and W. K. Schubert, “Thin films of Pd/Ni alloys for detection of high hydrogen concentrations,” J. Appl. Phys.71(1), 542–544 (1992).
[CrossRef]

Seidel, A.

Sevryugina, Y.

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

Shegai, T.

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett.12(5), 2464–2469 (2012).
[CrossRef] [PubMed]

Sheu, L. L.

L. L. Sheu, Z. Karpinski, and W. M. H. Sachtler, “Effects of palladium particle size and palladium silicide formation on Fourier transform infrared spectra and carbon monoxide adsorbed on palladium/silicon dioxide catalysts,” J. Phys. Chem.93(12), 4890–4894 (1989).
[CrossRef]

Silkin, V. M.

M. A. Poyli, V. M. Silkin, I. P. Chernov, P. M. Echenique, R. D. Muiño, and J. Aizpurua, “Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks,” J. Phys. Chem. Lett.3(18), 2556–2561 (2012).
[CrossRef]

Syrenova, S.

E. M. Larsson, S. Syrenova, and C. Langhammer, “Nanoplasmonic sensing for nanomaterials science,” Nanophotonics1(3–4), 249–266 (2012).

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

Tann, J.

B. Chadwick, J. Tann, M. Brungs, and M. Gal, “A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy,” Sens. Actuators B Chem.17(3), 215–220 (1994).
[CrossRef]

Tegenfeldt, J. O.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem.78(13), 4416–4423 (2006).
[CrossRef] [PubMed]

Teo, S. L.

Tikhodeev, S. G.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28(2), 238–244 (2011).
[CrossRef] [PubMed]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt.11(11), 114019 (2009).
[CrossRef]

Toulhoat, H.

P. Gravil and H. Toulhoat, “Hydrogen, sulphur and chlorine coadsorption on Pd(111): a theoretical study of poisoning and promotion,” Surf. Sci.430(1-3), 176–191 (1999).
[CrossRef]

Tripathy, S.

Valdés-Solís, T.

G. Marbán and T. Valdés-Solís, “Towards the hydrogen economy?” Int. J. Hydrogen Energy32(12), 1625–1637 (2007).
[CrossRef]

Vargas, W.

W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
[CrossRef]

Weiss, T.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28(2), 238–244 (2011).
[CrossRef] [PubMed]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt.11(11), 114019 (2009).
[CrossRef]

Welch, D.

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

Wienecke, M.

P. Fedtke, M. Wienecke, M. Bunescu, M. Pietrzak, K. Deistung, and E. Borchardt, “Hydrogen sensor based on optical and electrical switching,” Sens. Actuators B Chem.100(1-2), 151–157 (2004).
[CrossRef]

Wilke, S.

S. Wilke and M. Scheffler, “Poisoning of Pd(100) for the dissociation of H2: a theoretical study of co-adsorption of hydrogen and sulphur,” Surf. Sci.329(1-2), L605–L610 (1995).
[CrossRef]

Xia, H.

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

Yanik, A. A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Zhang, C.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

Zhao, J.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

Zhao, Z.

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

Zoric, I.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
[CrossRef] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

ACS Nano (2)

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012).
[CrossRef] [PubMed]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

Anal. Chem. (2)

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem.78(13), 4416–4423 (2006).
[CrossRef] [PubMed]

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

Int. J. Hydrogen Energy (2)

G. Marbán and T. Valdés-Solís, “Towards the hydrogen economy?” Int. J. Hydrogen Energy32(12), 1625–1637 (2007).
[CrossRef]

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy36(3), 2462–2470 (2011).
[CrossRef]

J. Appl. Phys. (2)

R. C. Hughes and W. K. Schubert, “Thin films of Pd/Ni alloys for detection of high hydrogen concentrations,” J. Appl. Phys.71(1), 542–544 (1992).
[CrossRef]

M. Khanuja, B. R. Mehta, P. Agar, P. K. Kulriya, and D. K. Avasthi, “Hydrogen induced lattice expansion and crystallinity degradation in palladium nanoparticles: Effect of hydrogen concentration, pressure, and temperature,” J. Appl. Phys.106(9), 093515 (2009).
[CrossRef]

J. Electrochem. Soc. (1)

R. C. Hughes, “Solid-state hydrogen sensors using palladium-nickel alloys: effect of alloy composition on sensor response,” J. Electrochem. Soc.142(1), 249–254 (1995).
[CrossRef]

J. Mol. Catal. Chem. (1)

P. Albers, J. Pietsch, and S. F. Parker, “Poisoning and deactivation of palladium catalysts,” J. Mol. Catal. Chem.173(1-2), 275–286 (2001).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt.11(11), 114019 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

L. L. Sheu, Z. Karpinski, and W. M. H. Sachtler, “Effects of palladium particle size and palladium silicide formation on Fourier transform infrared spectra and carbon monoxide adsorbed on palladium/silicon dioxide catalysts,” J. Phys. Chem.93(12), 4890–4894 (1989).
[CrossRef]

J. Phys. Chem. Lett. (1)

M. A. Poyli, V. M. Silkin, I. P. Chernov, P. M. Echenique, R. D. Muiño, and J. Aizpurua, “Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks,” J. Phys. Chem. Lett.3(18), 2556–2561 (2012).
[CrossRef]

Nano Lett. (4)

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
[CrossRef] [PubMed]

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett.12(5), 2464–2469 (2012).
[CrossRef] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Nanophotonics (1)

E. M. Larsson, S. Syrenova, and C. Langhammer, “Nanoplasmonic sensing for nanomaterials science,” Nanophotonics1(3–4), 249–266 (2012).

Nat. Mater. (1)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Sens. Actuators B Chem. (3)

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem.157(2), 329–352 (2011).
[CrossRef]

B. Chadwick, J. Tann, M. Brungs, and M. Gal, “A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy,” Sens. Actuators B Chem.17(3), 215–220 (1994).
[CrossRef]

P. Fedtke, M. Wienecke, M. Bunescu, M. Pietrzak, K. Deistung, and E. Borchardt, “Hydrogen sensor based on optical and electrical switching,” Sens. Actuators B Chem.100(1-2), 151–157 (2004).
[CrossRef]

Surf. Sci. (2)

P. Gravil and H. Toulhoat, “Hydrogen, sulphur and chlorine coadsorption on Pd(111): a theoretical study of poisoning and promotion,” Surf. Sci.430(1-3), 176–191 (1999).
[CrossRef]

S. Wilke and M. Scheffler, “Poisoning of Pd(100) for the dissociation of H2: a theoretical study of co-adsorption of hydrogen and sulphur,” Surf. Sci.329(1-2), L605–L610 (1995).
[CrossRef]

Thin Solid Films (1)

W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006).
[CrossRef]

Other (4)

J. Oudar, Deactivation and Poisoning of Catalysts (Taylor & Francis, 1985), p. 344.

P. Patnaik, A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd ed. (John Wiley & Sons, 2007), p. 1059.

F. A. Lewis, The Palladium Hydrogen System, 1st ed. (Academic Press Inc., 1967), p. 178.

D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd rev. ed. (Taylor & Francis, 1994), p. 192.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Left) Overview of the complete sensor device. (Right) Schematic drawing of the H2-sensor head used to measure the reflected and transmitted light from our thin film samples. The sample is surrounded by a sinter metal cylinder which permits hydrogen diffusion but blocks stray light. Illumination is done by a red LED with a center wavelength of 630 nm.

Fig. 2
Fig. 2

(a) Sensor signal S of a 20 nm pure palladium thin film sample exposed to different concentrations of hydrogen. Measurements were performed for freshly evaporated, 4 days and 11 days old samples, as well as for a 6 days old sample without prior hydrogen exposure. (b) Improved sensor geometry consisting of a 20 nm Pd thin film buffered by 10 nm CaF2 and capped by 3 nm Pt, minimizing sample degradation. (c) Sensor response of a capped and buffered Pd-Ni alloy sample (Pd98Ni2), showing improved response times and linearity. All measurements were performed under identical experimental conditions using the gas cycle displayed in (d).

Fig. 3
Fig. 3

Maximum amplitude of the sensor signal S for different aged thin film material systems at H2 concentrations ranging from 0.5 to 5 vol.% H2 in N2. For the Pd98Ni2 layers both with and without capping and buffering, we observe a nearly linear response whereas the non-alloyed Pd samples exhibit logistic like behavior. However, utilizing palladium-nickel alloys in place of pure Pd reduces the maximum sensor response S.

Fig. 4
Fig. 4

(a) Response time TR8 of the H2 sensor for a 4 days old CaF2 / Pd98Ni2 / Pt sample exposed to 2 vol.% hydrogen. TG is the time till the gas reaches the sample volume and TR8 is the time until 80% of the maximum sensor signal S is reached. The inset shows response times for different material systems at different ages. (b) The relaxation time of the CaF2 / Pd98Ni2 / Pt sample. TF8 is the time when 80% of the initial state (0% H2 in N2) is restored. The inset again shows the comparison with the other material systems. In both cases, the optimized material system (CaF2 / Pd98Ni2 / Pt) shows greatly reduced time constants TR8 and TF8 compared to pure Pd and Pd98Ni2 films.

Fig. 5
Fig. 5

(a) Transmission spectra of a CaF2 / Pd / Pt nanodisk array, exposed to cycles of 0.5 to 3.0 vol.% H2 in N2, showing a redshift and broadening of the plasmon resonance. (b) Time-resolved dynamics of the plasmon centroid wavelength under hydrogen exposure, measured for a newly fabricated pure Pd nanodisk array sample. (c) Centroid wavelength trace of the same sample two days later, showing substantially increased response time and reduced redshift under hydrogen exposure. (d) Time-resolved dynamics of the plasmon centroid wavelength, measured at Pd disks capped with 3 nm Pt and buffered with 10 nm CaF2. (e) Centroid wavelength trace of the CaF2 / Pd / Pt sample. It was prepared, stored and measured under the same conditions as in (c) but shows almost no degradation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ST t r

Metrics