Abstract

Imaging micro-Raman spectroscopy is used to investigate the materials physics of radiation damage in congruent LiNbO3 as a result of high-energy (~MeV) He+ irradiation. This study uses a scanning confocal microscope for high-resolution three-dimensional micro-Raman imaging along with reflection optical microscopy (OM), and scanning electron microscopy (SEM). The tight optical excitation beam in the Raman system allows spatial mapping of the Raman spectra both laterally and normal to the irradiation axis with ≤1 μm resolution. Point defects and compositional changes after irradiation and surface deformation including blistering and microstress are observed in the stopping region. We demonstrate that the probed area of the damaged region is effectively “expanded” by a beveled geometry, formed through off-angle polishing of a crystal facet; this technique enables higher-resolution probing of the ion-induced changes in the Raman spectra and imaging of dislocation line defects that are otherwise inaccessible by conventional probing (depth and edge scan). Two-dimensional (2D) Raman imaging is also used to determine the defect uniformity across an irradiated sample and to examine the damage on a sample with patterned implantation. The effects of different He+ doses and energies, together with post-irradiation treatments such as annealing, are also discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A201(2), 253–283 (2004).
    [CrossRef]
  2. J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys.87(7), 3199–3202 (2000).
    [CrossRef]
  3. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293–2295 (1998).
    [CrossRef]
  4. A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Meth. B175–177(0), 394–397 (2001).
    [CrossRef]
  5. R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006).
    [CrossRef]
  6. T. Volk and M. Wohlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer-Verlag, Berlin, Heidelberg, 2008).
  7. J. E. Spanier, M. Levy, I. P. Herman, R. M. Osgood, and A. S. Bhalla, “Single-crystal, mesoscopic films of lead zinc niobate-lead titanate: Formation and micro-Raman analysis,” Appl. Phys. Lett.79(10), 1510–1512 (2001).
    [CrossRef]
  8. J. E. Spanier, R. Robinson, F. Zhang, S.-W. Chan, and I. P. Herman, “Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering,” Phys. Rev. B64(24), 245407 (2001).
    [CrossRef]
  9. S. Banerjee, D.-I. Kim, R. D. Robinson, I. P. Herman, Y. Mao, and S. S. Wong, “Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1-xTiO3 perovskite nanocubes,” Appl. Phys. Lett.89(22), 223130 (2006).
    [CrossRef]
  10. P. S. Dobal and R. S. Katiyar, “Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy,” J. Raman Spectrosc.33(6), 405–423 (2002).
    [CrossRef]
  11. D. N. Jamieson, S. Prawer, K. W. Nugent, and S. P. Dooley, “Cross-sectional Raman microscopy of MeV implanted diamond,” Nucl. Instrum. Meth. B106(1–4), 641–645 (1995).
    [CrossRef]
  12. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
    [CrossRef] [PubMed]
  13. I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol.11(2), 139–154 (1996).
    [CrossRef]
  14. S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C1(11), 3126–3129 (2004).
    [CrossRef]
  15. B.-U. Chen and A. C. Pastor, “Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3,” Appl. Phys. Lett.30(11), 570–571 (1977).
    [CrossRef]
  16. J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
    [CrossRef]
  17. K. K. Wong, ed., Properties of Lithium Niobate (INSPEC, The Institution of Electrical Engineers, London, UK, 2002).
  18. G. R. Paz-Pujalt and D. D. Tuschel, “Depth profiling of proton exchanged LiNbO3 waveguides by micro-Raman spectroscopy,” Appl. Phys. Lett.62(26), 3411–3413 (1993).
    [CrossRef]
  19. A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett.93(18), 181906 (2008).
    [CrossRef]
  20. A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B83(6), 064104 (2011).
    [CrossRef]
  21. J. Ziegler, 2008, http://www.srim.org .
  22. A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
    [CrossRef]
  23. U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Solids Surf.56(4), 311–315 (1993).
    [CrossRef]
  24. P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, “Micro-Raman analysis on LiNbO3 substrates and surfaces: compositional homogeneity and effects of etching and polishing processes on structural properties,” Opt. Lasers Eng.45(3), 380–384 (2007).
    [CrossRef]
  25. A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
    [CrossRef]
  26. E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
    [CrossRef]
  27. Y. Avrahami and E. Zolotoyabko, “Structural modifications in He-implanted waveguide layers of LiNbO3,” Nucl. Instrum. Meth. B120(1–4), 84–87 (1996).
    [CrossRef]
  28. F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Meth. B250(1–2), 164–168 (2006).
    [CrossRef]
  29. Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, and G. Zhang, “Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra,” J. Appl. Phys.87(9), 4410–4414 (2000).
    [CrossRef]
  30. M. M. Sushchinskiy, ed., Inelastic Light Scattering in Crystals (Nova Science Publishers, 1987), Vol. 180, p. 81.
  31. J. F. Ziegler, ed., Handbook of Ion Implantation Technology (Elsevier Science Publishers B.V. Netherlands, 1992), p. 13.
  32. R. Srnanek, R. Kinder, B. Sciana, D. Radziewicz, D. S. McPhail, S. D. Littlewood, and I. Novotny, “Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy,” Appl. Surf. Sci.177(1–2), 139–145 (2001).
    [CrossRef]
  33. W. Primak, “Expansion, crazing and exfoliation of lithium niobate on ion bombardment and comparison results for sapphire,” J. Appl. Phys.43(12), 4927–4933 (1972).
    [CrossRef]

2011 (1)

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B83(6), 064104 (2011).
[CrossRef]

2010 (1)

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

2008 (2)

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett.93(18), 181906 (2008).
[CrossRef]

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

2007 (1)

P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, “Micro-Raman analysis on LiNbO3 substrates and surfaces: compositional homogeneity and effects of etching and polishing processes on structural properties,” Opt. Lasers Eng.45(3), 380–384 (2007).
[CrossRef]

2006 (3)

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Meth. B250(1–2), 164–168 (2006).
[CrossRef]

S. Banerjee, D.-I. Kim, R. D. Robinson, I. P. Herman, Y. Mao, and S. S. Wong, “Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1-xTiO3 perovskite nanocubes,” Appl. Phys. Lett.89(22), 223130 (2006).
[CrossRef]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006).
[CrossRef]

2004 (3)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A201(2), 253–283 (2004).
[CrossRef]

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C1(11), 3126–3129 (2004).
[CrossRef]

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
[CrossRef]

2002 (1)

P. S. Dobal and R. S. Katiyar, “Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy,” J. Raman Spectrosc.33(6), 405–423 (2002).
[CrossRef]

2001 (4)

J. E. Spanier, M. Levy, I. P. Herman, R. M. Osgood, and A. S. Bhalla, “Single-crystal, mesoscopic films of lead zinc niobate-lead titanate: Formation and micro-Raman analysis,” Appl. Phys. Lett.79(10), 1510–1512 (2001).
[CrossRef]

J. E. Spanier, R. Robinson, F. Zhang, S.-W. Chan, and I. P. Herman, “Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering,” Phys. Rev. B64(24), 245407 (2001).
[CrossRef]

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Meth. B175–177(0), 394–397 (2001).
[CrossRef]

R. Srnanek, R. Kinder, B. Sciana, D. Radziewicz, D. S. McPhail, S. D. Littlewood, and I. Novotny, “Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy,” Appl. Surf. Sci.177(1–2), 139–145 (2001).
[CrossRef]

2000 (2)

Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, and G. Zhang, “Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra,” J. Appl. Phys.87(9), 4410–4414 (2000).
[CrossRef]

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys.87(7), 3199–3202 (2000).
[CrossRef]

1998 (1)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293–2295 (1998).
[CrossRef]

1997 (1)

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
[CrossRef]

1996 (3)

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol.11(2), 139–154 (1996).
[CrossRef]

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

Y. Avrahami and E. Zolotoyabko, “Structural modifications in He-implanted waveguide layers of LiNbO3,” Nucl. Instrum. Meth. B120(1–4), 84–87 (1996).
[CrossRef]

1995 (1)

D. N. Jamieson, S. Prawer, K. W. Nugent, and S. P. Dooley, “Cross-sectional Raman microscopy of MeV implanted diamond,” Nucl. Instrum. Meth. B106(1–4), 641–645 (1995).
[CrossRef]

1993 (2)

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Solids Surf.56(4), 311–315 (1993).
[CrossRef]

G. R. Paz-Pujalt and D. D. Tuschel, “Depth profiling of proton exchanged LiNbO3 waveguides by micro-Raman spectroscopy,” Appl. Phys. Lett.62(26), 3411–3413 (1993).
[CrossRef]

1977 (1)

B.-U. Chen and A. C. Pastor, “Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3,” Appl. Phys. Lett.30(11), 570–571 (1977).
[CrossRef]

1972 (1)

W. Primak, “Expansion, crazing and exfoliation of lithium niobate on ion bombardment and comparison results for sapphire,” J. Appl. Phys.43(12), 4927–4933 (1972).
[CrossRef]

Amaral, L.

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Meth. B175–177(0), 394–397 (2001).
[CrossRef]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A201(2), 253–283 (2004).
[CrossRef]

Avrahami, Y.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

Y. Avrahami and E. Zolotoyabko, “Structural modifications in He-implanted waveguide layers of LiNbO3,” Nucl. Instrum. Meth. B120(1–4), 84–87 (1996).
[CrossRef]

Bakhru, H.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B83(6), 064104 (2011).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett.93(18), 181906 (2008).
[CrossRef]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006).
[CrossRef]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293–2295 (1998).
[CrossRef]

Bakhru, S.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B83(6), 064104 (2011).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett.93(18), 181906 (2008).
[CrossRef]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006).
[CrossRef]

Balandin, A. A.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Banerjee, S.

S. Banerjee, D.-I. Kim, R. D. Robinson, I. P. Herman, Y. Mao, and S. S. Wong, “Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1-xTiO3 perovskite nanocubes,” Appl. Phys. Lett.89(22), 223130 (2006).
[CrossRef]

Bao, W. Z.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Betzler, K.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Solids Surf.56(4), 311–315 (1993).
[CrossRef]

Bhalla, A. S.

J. E. Spanier, M. Levy, I. P. Herman, R. M. Osgood, and A. S. Bhalla, “Single-crystal, mesoscopic films of lead zinc niobate-lead titanate: Formation and micro-Raman analysis,” Appl. Phys. Lett.79(10), 1510–1512 (2001).
[CrossRef]

Bourson, P.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
[CrossRef]

Caccavale, F.

P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, “Micro-Raman analysis on LiNbO3 substrates and surfaces: compositional homogeneity and effects of etching and polishing processes on structural properties,” Opt. Lasers Eng.45(3), 380–384 (2007).
[CrossRef]

Calizo, I.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293–2295 (1998).
[CrossRef]

Chan, S.-W.

J. E. Spanier, R. Robinson, F. Zhang, S.-W. Chan, and I. P. Herman, “Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering,” Phys. Rev. B64(24), 245407 (2001).
[CrossRef]

Chandler, P. J.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys.87(7), 3199–3202 (2000).
[CrossRef]

Chen, B.-U.

B.-U. Chen and A. C. Pastor, “Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3,” Appl. Phys. Lett.30(11), 570–571 (1977).
[CrossRef]

Chen, X.

Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, and G. Zhang, “Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra,” J. Appl. Phys.87(9), 4410–4414 (2000).
[CrossRef]

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293–2295 (1998).
[CrossRef]

da Silva, M. F.

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Meth. B175–177(0), 394–397 (2001).
[CrossRef]

De Wolf, I.

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol.11(2), 139–154 (1996).
[CrossRef]

Djukic, D.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006).
[CrossRef]

Dobal, P. S.

P. S. Dobal and R. S. Katiyar, “Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy,” J. Raman Spectrosc.33(6), 405–423 (2002).
[CrossRef]

Dooley, S. P.

D. N. Jamieson, S. Prawer, K. W. Nugent, and S. P. Dooley, “Cross-sectional Raman microscopy of MeV implanted diamond,” Nucl. Instrum. Meth. B106(1–4), 641–645 (1995).
[CrossRef]

Dunn, K.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006).
[CrossRef]

Eason, R. W.

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
[CrossRef]

Evans-Lutterodt, K.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B83(6), 064104 (2011).
[CrossRef]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett.93(18), 181906 (2008).
[CrossRef]

Fichtner, P. F. P.

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Meth. B175–177(0), 394–397 (2001).
[CrossRef]

Fontana, M. D.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
[CrossRef]

Gaathon, O.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B83(6), 064104 (2011).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett.93(18), 181906 (2008).
[CrossRef]

Galinetto, P.

P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, “Micro-Raman analysis on LiNbO3 substrates and surfaces: compositional homogeneity and effects of etching and polishing processes on structural properties,” Opt. Lasers Eng.45(3), 380–384 (2007).
[CrossRef]

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Gischkat, T.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Meth. B250(1–2), 164–168 (2006).
[CrossRef]

Grando, D.

P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, “Micro-Raman analysis on LiNbO3 substrates and surfaces: compositional homogeneity and effects of etching and polishing processes on structural properties,” Opt. Lasers Eng.45(3), 380–384 (2007).
[CrossRef]

Hartung, H.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Meth. B250(1–2), 164–168 (2006).
[CrossRef]

Herman, I. P.

S. Banerjee, D.-I. Kim, R. D. Robinson, I. P. Herman, Y. Mao, and S. S. Wong, “Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1-xTiO3 perovskite nanocubes,” Appl. Phys. Lett.89(22), 223130 (2006).
[CrossRef]

J. E. Spanier, R. Robinson, F. Zhang, S.-W. Chan, and I. P. Herman, “Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering,” Phys. Rev. B64(24), 245407 (2001).
[CrossRef]

J. E. Spanier, M. Levy, I. P. Herman, R. M. Osgood, and A. S. Bhalla, “Single-crystal, mesoscopic films of lead zinc niobate-lead titanate: Formation and micro-Raman analysis,” Appl. Phys. Lett.79(10), 1510–1512 (2001).
[CrossRef]

Huang, M.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006).
[CrossRef]

Jamieson, D. N.

D. N. Jamieson, S. Prawer, K. W. Nugent, and S. P. Dooley, “Cross-sectional Raman microscopy of MeV implanted diamond,” Nucl. Instrum. Meth. B106(1–4), 641–645 (1995).
[CrossRef]

Katiyar, R. S.

P. S. Dobal and R. S. Katiyar, “Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy,” J. Raman Spectrosc.33(6), 405–423 (2002).
[CrossRef]

Kim, D.-I.

S. Banerjee, D.-I. Kim, R. D. Robinson, I. P. Herman, Y. Mao, and S. S. Wong, “Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1-xTiO3 perovskite nanocubes,” Appl. Phys. Lett.89(22), 223130 (2006).
[CrossRef]

Kinder, R.

R. Srnanek, R. Kinder, B. Sciana, D. Radziewicz, D. S. McPhail, S. D. Littlewood, and I. Novotny, “Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy,” Appl. Surf. Sci.177(1–2), 139–145 (2001).
[CrossRef]

Klauer, S.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Solids Surf.56(4), 311–315 (1993).
[CrossRef]

Kley, E.-B.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Meth. B250(1–2), 164–168 (2006).
[CrossRef]

Kling, A.

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Meth. B175–177(0), 394–397 (2001).
[CrossRef]

Kong, Y.

Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, and G. Zhang, “Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra,” J. Appl. Phys.87(9), 4410–4414 (2000).
[CrossRef]

Kostritskii, S. M.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C1(11), 3126–3129 (2004).
[CrossRef]

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293–2295 (1998).
[CrossRef]

Lau, C. N.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Laulicht, B.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006).
[CrossRef]

Lee, Y. S.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006).
[CrossRef]

Levy, M.

J. E. Spanier, M. Levy, I. P. Herman, R. M. Osgood, and A. S. Bhalla, “Single-crystal, mesoscopic films of lead zinc niobate-lead titanate: Formation and micro-Raman analysis,” Appl. Phys. Lett.79(10), 1510–1512 (2001).
[CrossRef]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293–2295 (1998).
[CrossRef]

Littlewood, S. D.

R. Srnanek, R. Kinder, B. Sciana, D. Radziewicz, D. S. McPhail, S. D. Littlewood, and I. Novotny, “Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy,” Appl. Surf. Sci.177(1–2), 139–145 (2001).
[CrossRef]

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293–2295 (1998).
[CrossRef]

Mailis, S.

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
[CrossRef]

Malovichko, G.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
[CrossRef]

Mao, Y.

S. Banerjee, D.-I. Kim, R. D. Robinson, I. P. Herman, Y. Mao, and S. S. Wong, “Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1-xTiO3 perovskite nanocubes,” Appl. Phys. Lett.89(22), 223130 (2006).
[CrossRef]

Marinone, M.

P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, “Micro-Raman analysis on LiNbO3 substrates and surfaces: compositional homogeneity and effects of etching and polishing processes on structural properties,” Opt. Lasers Eng.45(3), 380–384 (2007).
[CrossRef]

McPhail, D. S.

R. Srnanek, R. Kinder, B. Sciana, D. Radziewicz, D. S. McPhail, S. D. Littlewood, and I. Novotny, “Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy,” Appl. Surf. Sci.177(1–2), 139–145 (2001).
[CrossRef]

Metzger, T. H.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

Miao, F.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Morbiato, A.

P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, “Micro-Raman analysis on LiNbO3 substrates and surfaces: compositional homogeneity and effects of etching and polishing processes on structural properties,” Opt. Lasers Eng.45(3), 380–384 (2007).
[CrossRef]

Moretti, P.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C1(11), 3126–3129 (2004).
[CrossRef]

Musolino, M.

P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, “Micro-Raman analysis on LiNbO3 substrates and surfaces: compositional homogeneity and effects of etching and polishing processes on structural properties,” Opt. Lasers Eng.45(3), 380–384 (2007).
[CrossRef]

Novotny, I.

R. Srnanek, R. Kinder, B. Sciana, D. Radziewicz, D. S. McPhail, S. D. Littlewood, and I. Novotny, “Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy,” Appl. Surf. Sci.177(1–2), 139–145 (2001).
[CrossRef]

Nugent, K. W.

D. N. Jamieson, S. Prawer, K. W. Nugent, and S. P. Dooley, “Cross-sectional Raman microscopy of MeV implanted diamond,” Nucl. Instrum. Meth. B106(1–4), 641–645 (1995).
[CrossRef]

Ofan, A.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B83(6), 064104 (2011).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett.93(18), 181906 (2008).
[CrossRef]

Olivares, J.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys.87(7), 3199–3202 (2000).
[CrossRef]

Osgood, R. M.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B83(6), 064104 (2011).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett.93(18), 181906 (2008).
[CrossRef]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006).
[CrossRef]

J. E. Spanier, M. Levy, I. P. Herman, R. M. Osgood, and A. S. Bhalla, “Single-crystal, mesoscopic films of lead zinc niobate-lead titanate: Formation and micro-Raman analysis,” Appl. Phys. Lett.79(10), 1510–1512 (2001).
[CrossRef]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293–2295 (1998).
[CrossRef]

Pastor, A. C.

B.-U. Chen and A. C. Pastor, “Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3,” Appl. Phys. Lett.30(11), 570–571 (1977).
[CrossRef]

Paz-Pujalt, G. R.

G. R. Paz-Pujalt and D. D. Tuschel, “Depth profiling of proton exchanged LiNbO3 waveguides by micro-Raman spectroscopy,” Appl. Phys. Lett.62(26), 3411–3413 (1993).
[CrossRef]

Peisl, J.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

Prawer, S.

D. N. Jamieson, S. Prawer, K. W. Nugent, and S. P. Dooley, “Cross-sectional Raman microscopy of MeV implanted diamond,” Nucl. Instrum. Meth. B106(1–4), 641–645 (1995).
[CrossRef]

Primak, W.

W. Primak, “Expansion, crazing and exfoliation of lithium niobate on ion bombardment and comparison results for sapphire,” J. Appl. Phys.43(12), 4927–4933 (1972).
[CrossRef]

Radziewicz, D.

R. Srnanek, R. Kinder, B. Sciana, D. Radziewicz, D. S. McPhail, S. D. Littlewood, and I. Novotny, “Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy,” Appl. Surf. Sci.177(1–2), 139–145 (2001).
[CrossRef]

Rams, J.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys.87(7), 3199–3202 (2000).
[CrossRef]

Ridah, A.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
[CrossRef]

Robinson, R.

J. E. Spanier, R. Robinson, F. Zhang, S.-W. Chan, and I. P. Herman, “Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering,” Phys. Rev. B64(24), 245407 (2001).
[CrossRef]

Robinson, R. D.

S. Banerjee, D.-I. Kim, R. D. Robinson, I. P. Herman, Y. Mao, and S. S. Wong, “Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1-xTiO3 perovskite nanocubes,” Appl. Phys. Lett.89(22), 223130 (2006).
[CrossRef]

Roth, R. M.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006).
[CrossRef]

Samoggia, G.

P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, “Micro-Raman analysis on LiNbO3 substrates and surfaces: compositional homogeneity and effects of etching and polishing processes on structural properties,” Opt. Lasers Eng.45(3), 380–384 (2007).
[CrossRef]

Sauer, W.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

Schlarb, U.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Solids Surf.56(4), 311–315 (1993).
[CrossRef]

Schrempel, F.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Meth. B250(1–2), 164–168 (2006).
[CrossRef]

Sciana, B.

R. Srnanek, R. Kinder, B. Sciana, D. Radziewicz, D. S. McPhail, S. D. Littlewood, and I. Novotny, “Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy,” Appl. Surf. Sci.177(1–2), 139–145 (2001).
[CrossRef]

Scott, J. G.

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
[CrossRef]

Soares, J. C.

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Meth. B175–177(0), 394–397 (2001).
[CrossRef]

Sones, C. L.

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
[CrossRef]

Spanier, J. E.

J. E. Spanier, R. Robinson, F. Zhang, S.-W. Chan, and I. P. Herman, “Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering,” Phys. Rev. B64(24), 245407 (2001).
[CrossRef]

J. E. Spanier, M. Levy, I. P. Herman, R. M. Osgood, and A. S. Bhalla, “Single-crystal, mesoscopic films of lead zinc niobate-lead titanate: Formation and micro-Raman analysis,” Appl. Phys. Lett.79(10), 1510–1512 (2001).
[CrossRef]

Srnanek, R.

R. Srnanek, R. Kinder, B. Sciana, D. Radziewicz, D. S. McPhail, S. D. Littlewood, and I. Novotny, “Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy,” Appl. Surf. Sci.177(1–2), 139–145 (2001).
[CrossRef]

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Townsend, P. D.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys.87(7), 3199–3202 (2000).
[CrossRef]

Tuschel, D. D.

G. R. Paz-Pujalt and D. D. Tuschel, “Depth profiling of proton exchanged LiNbO3 waveguides by micro-Raman spectroscopy,” Appl. Phys. Lett.62(26), 3411–3413 (1993).
[CrossRef]

Vanamurthy, L.

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett.93(18), 181906 (2008).
[CrossRef]

Welch, D.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B83(6), 064104 (2011).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

Wesch, W.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Meth. B250(1–2), 164–168 (2006).
[CrossRef]

Wesselmann, M.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Solids Surf.56(4), 311–315 (1993).
[CrossRef]

Wöhlecke, M.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Solids Surf.56(4), 311–315 (1993).
[CrossRef]

Wong, S. S.

S. Banerjee, D.-I. Kim, R. D. Robinson, I. P. Herman, Y. Mao, and S. S. Wong, “Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1-xTiO3 perovskite nanocubes,” Appl. Phys. Lett.89(22), 223130 (2006).
[CrossRef]

Wu, L.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006).
[CrossRef]

Xu, J.

Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, and G. Zhang, “Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra,” J. Appl. Phys.87(9), 4410–4414 (2000).
[CrossRef]

Zawislak, F.

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Meth. B175–177(0), 394–397 (2001).
[CrossRef]

Zhang, C.

Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, and G. Zhang, “Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra,” J. Appl. Phys.87(9), 4410–4414 (2000).
[CrossRef]

Zhang, F.

J. E. Spanier, R. Robinson, F. Zhang, S.-W. Chan, and I. P. Herman, “Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering,” Phys. Rev. B64(24), 245407 (2001).
[CrossRef]

Zhang, G.

Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, and G. Zhang, “Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra,” J. Appl. Phys.87(9), 4410–4414 (2000).
[CrossRef]

Zhang, L.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B83(6), 064104 (2011).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

Zhang, W.

Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, and G. Zhang, “Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra,” J. Appl. Phys.87(9), 4410–4414 (2000).
[CrossRef]

Zhu, Y.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B83(6), 064104 (2011).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

Zolotoyabko, E.

Y. Avrahami and E. Zolotoyabko, “Structural modifications in He-implanted waveguide layers of LiNbO3,” Nucl. Instrum. Meth. B120(1–4), 84–87 (1996).
[CrossRef]

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

Appl. Phys. Lett. (7)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293–2295 (1998).
[CrossRef]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006).
[CrossRef]

J. E. Spanier, M. Levy, I. P. Herman, R. M. Osgood, and A. S. Bhalla, “Single-crystal, mesoscopic films of lead zinc niobate-lead titanate: Formation and micro-Raman analysis,” Appl. Phys. Lett.79(10), 1510–1512 (2001).
[CrossRef]

S. Banerjee, D.-I. Kim, R. D. Robinson, I. P. Herman, Y. Mao, and S. S. Wong, “Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1-xTiO3 perovskite nanocubes,” Appl. Phys. Lett.89(22), 223130 (2006).
[CrossRef]

G. R. Paz-Pujalt and D. D. Tuschel, “Depth profiling of proton exchanged LiNbO3 waveguides by micro-Raman spectroscopy,” Appl. Phys. Lett.62(26), 3411–3413 (1993).
[CrossRef]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett.93(18), 181906 (2008).
[CrossRef]

B.-U. Chen and A. C. Pastor, “Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3,” Appl. Phys. Lett.30(11), 570–571 (1977).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
[CrossRef]

Appl. Phys., A Solids Surf. (1)

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Solids Surf.56(4), 311–315 (1993).
[CrossRef]

Appl. Surf. Sci. (1)

R. Srnanek, R. Kinder, B. Sciana, D. Radziewicz, D. S. McPhail, S. D. Littlewood, and I. Novotny, “Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy,” Appl. Surf. Sci.177(1–2), 139–145 (2001).
[CrossRef]

J. Appl. Phys. (3)

W. Primak, “Expansion, crazing and exfoliation of lithium niobate on ion bombardment and comparison results for sapphire,” J. Appl. Phys.43(12), 4927–4933 (1972).
[CrossRef]

Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, and G. Zhang, “Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra,” J. Appl. Phys.87(9), 4410–4414 (2000).
[CrossRef]

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys.87(7), 3199–3202 (2000).
[CrossRef]

J. Phys. Condens. Matter (1)

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
[CrossRef]

J. Raman Spectrosc. (1)

P. S. Dobal and R. S. Katiyar, “Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy,” J. Raman Spectrosc.33(6), 405–423 (2002).
[CrossRef]

Mater. Lett. (1)

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

Nano Lett. (1)

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Nucl. Instrum. Meth. B (4)

D. N. Jamieson, S. Prawer, K. W. Nugent, and S. P. Dooley, “Cross-sectional Raman microscopy of MeV implanted diamond,” Nucl. Instrum. Meth. B106(1–4), 641–645 (1995).
[CrossRef]

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Meth. B175–177(0), 394–397 (2001).
[CrossRef]

Y. Avrahami and E. Zolotoyabko, “Structural modifications in He-implanted waveguide layers of LiNbO3,” Nucl. Instrum. Meth. B120(1–4), 84–87 (1996).
[CrossRef]

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Meth. B250(1–2), 164–168 (2006).
[CrossRef]

Opt. Lasers Eng. (1)

P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, “Micro-Raman analysis on LiNbO3 substrates and surfaces: compositional homogeneity and effects of etching and polishing processes on structural properties,” Opt. Lasers Eng.45(3), 380–384 (2007).
[CrossRef]

Phys. Rev. B (3)

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

J. E. Spanier, R. Robinson, F. Zhang, S.-W. Chan, and I. P. Herman, “Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering,” Phys. Rev. B64(24), 245407 (2001).
[CrossRef]

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B83(6), 064104 (2011).
[CrossRef]

Phys. Status Solidi A (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A201(2), 253–283 (2004).
[CrossRef]

Phys. Status Solidi C (1)

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C1(11), 3126–3129 (2004).
[CrossRef]

Semicond. Sci. Technol. (1)

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol.11(2), 139–154 (1996).
[CrossRef]

Other (5)

J. Ziegler, 2008, http://www.srim.org .

T. Volk and M. Wohlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer-Verlag, Berlin, Heidelberg, 2008).

K. K. Wong, ed., Properties of Lithium Niobate (INSPEC, The Institution of Electrical Engineers, London, UK, 2002).

M. M. Sushchinskiy, ed., Inelastic Light Scattering in Crystals (Nova Science Publishers, 1987), Vol. 180, p. 81.

J. F. Ziegler, ed., Handbook of Ion Implantation Technology (Elsevier Science Publishers B.V. Netherlands, 1992), p. 13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic of the three experimental orientations for our micro-Raman probing beam: (a) depth scan from the surface into the bulk along the Z-axis, (b) edge scan along the X-axis and (c) bevel scan along the polished side (beveled plane).

Fig. 2
Fig. 2

Comparison of the Raman spectra made on unirradiated (“virgin”) with depth scan, irradiated (“after implantation”), and post-irradiation annealed (“after annealing”) samples: (a) at the depth of the ion stopping region and (b) at the surface. Furnace annealing was carried out at 250°C for 30 min. In (a), a shoulder is apparent in spectra between 600 cm−1 and 750 cm−1.

Fig. 3
Fig. 3

Examples of irradiation damage measured using the depth scan optical configuration over the 500 to 700 cm−1 spectral region: (a) comparison of peak shapes before and after irradiation, showing the change of the peak width and the appearance of the shoulder in higher frequency region after irradiation; inset: example of Lorentzian peak fitting to resolve the appearance of the normally forbidden 631 cm−1 mode besides the active 581 cm−1 mode; 3.8 MeV, 5 × 1016 cm−2 dose. (b) Plot of the intensity of the 631 cm−1 mode, in the irradiated sample minus that in the virgin sample, after the subtraction of the respective backgrounds. Note that there is a strong signal in the region of maximum damage or ion range; the signal drops once the focal point of the probe beam is one Rayleigh length deeper than the defect region. The inset shows the integrated-peak-area ratio between 631 cm−1 and 581 cm−1 phonon modes as a function of the probing depth. It is clear that the maximum is in the ion range region.

Fig. 4
Fig. 4

Depth-profile analysis of the normalized 631 cm−1 intensity of the implanted sample less that for the virgin sample; data obtained with depth scanning. The peaks shift toward the surface as the irradiation energy is decreased. The dashed lines indicate the positions of the stopping range for the three different energies as simulated by SRIM. Note that the depth read from the scanning stage is corrected, as is described in the text, for the change in focus in the high-refractive-index crystal.

Fig. 5
Fig. 5

Depth profile analysis with respect to the E(TO1) 152 cm−1 Raman mode obtained with a depth scan. For the He+-irradiated LiNbO3 (3.8 MeV, 5 × 1016 cm−2 dose), there is an intensity drop in the stopping range and straggle region indicating that concentration of Li was reduced.

Fig. 6
Fig. 6

(a) The intensity of the 631 cm−1 feature with depth scanning vs. irradiation dose of 1.5 MeV He+ ions. A signal is seen only when the dose is >1016 cm−2. (b) Effect of annealing for 30 minutes at different temperatures on the peak intensity of 631 cm−1 following irradiation at 3.8 MeV to a total dose of 5 × 1016 cm−2. This change is due to annealing-induced recovery of damage. The inset shows an Arrhenius plot of the peak intensity irradiated sample relative to that for the virgin sample for T 3 250°C, which gives an activation energy of 0.32 ± 0.07 eV.

Fig. 7
Fig. 7

(a) Raman spectra of a defect mode in nonstoichiometric LiNbO3 at ~738 cm−1, which is attributed to an ilmenite-like stacking defect in the virgin sample, and an irradiation-induced mode at about 766 cm−1. The sample was irradiated by 3.8 MeV He+ to a dose of 5 × 1016 cm−2. For comparison, the inset shows the 738 cm−1 mode in the pristine sample in the absence of irradiation. The points are the experimental data and the curves are Gaussian fits after a linear background is subtracted. (b) Effect of annealing for 30 minutes at different temperatures on the recovery of damage of the peak intensity of ~766 cm−1 (shown by the arrow). The spectra have been vertically displaced for clarity. The activation energy of the annealing process is Ea = 0.30 ± 0.05 eV.

Fig. 8
Fig. 8

2D Raman images showing the intensity variation of two Raman modes after irradiation of a masked sample. The patterning of the ion beam (3.8 MeV He+, 5 × 1016 cm−2 dose) utilized a shadow mask consisting of a metal circular grid affixed to the sample. The optical image (a) labels the regions being with or without irradiation (regions I and II, respectively). The inset box indicates the region where the Raman imaging was carried out. In (b) and (c), the Raman maps were analyzed using an allowed (875 cm−1) and forbidden mode (631 cm−1). In the irradiated regions the signals of active modes decrease while the forbidden modes are “turned on”, respectively, due to irradiation-induced crystal disorder. In (d) and (e), a finer and smaller scan was performed and the results show that the patterned implantation process was uniform.

Fig. 9
Fig. 9

Fine spatial resolution of Raman mapping of a defect region in a patterned sample. Panels (a) and (b) show 2D scans of the active 875 cm−1 and normally forbidden 631 cm−1 modes, with scan step of 0.4 μm, respectively, while (c) is a line scan across the boundary, as indicated by the arrows in (a) and (b), with a scan step of 0.2 μm. From (c), it is clear that the signals of the two modes decrease/increase within a specific width of the boundary, denoted by (III) in (a) and (b), and stay uniform outside the transition regions, marked by (I) and (II). The data have been normalized with respect to their maximum values.

Fig. 10
Fig. 10

Raman spectra obtained from an edge scan at three depths from the surface: in the near surface, at the ion stopping region, and deep in the bulk, where there is a negligible effect of irradiation (shown in the optical image to the right). The sample was irradiated by 3.8 MeV He+ with a dose of 5 × 1016 cm−2. Note the intensities of the active modes drop and the appearance of a shoulder in the 800 to 900 cm−1 region.

Fig. 11
Fig. 11

A plot of signal versus distance using scanned distance from the edge of the top surface for three modes. The sample was irradiated by 3.8 MeV, 5 × 1016 cm−2 He+ doses. For all three curves the maxima or minima of the intensities (relative to those in the virgin sample) occur at the position of the ion range, which is a depth of ~10 μm (shown in dashed line).

Fig. 12
Fig. 12

The optical images (left) and SEM picture (right) show the defect network in the stopping range. The sample was irradiated by 3.8 MeV He+ to a dose of 5 × 1016 cm−2. This implant energy gives a projected range Rp~10 μm. Our optical image on the beveled plane shows the distance of the defect network to be ~115 μm from Z + surface edge to the deepest extent of the stopping region, which agrees well with SRIM calculation of the stopping range (10 μm * csc(5°) ~115 μm).

Fig. 13
Fig. 13

The intensity of the 631 cm−1 mode of the irradiated sample, relative to that from the virgin sample, as a function of lateral position, using a bevel scan. (a): the scan direction was carefully chosen such that no obvious dislocation line defects were crossed. Note that the width of the heavily damaged stopping region is now spread over 10 µm due to the beveled edge. The two black arrows in the inset optical image indicate positions of typical dislocation line defects; the relative widths of these features are discussed in the text. (b): Besides the broad peak from the spatially spread-out damaged region, three additional spatial peaks (A, B and C) are observed. These narrow peaks occur when the scan crosses a line defect as a result of changes in the sample crystallinity in this region.

Fig. 14
Fig. 14

Optical imaging showing the effect of annealing at 250°C: (a), (b) are top views (XY plane [22]) while (c), (d) are planes of beveled region. Figures (a) and (c) were taken before annealing, while (b) and (d) were taken after annealing.

Fig. 15
Fig. 15

Micro-Raman spectra on an irradiated sample by scanning on a 5° beveled polished plane. The optical image shows the location of the probe beam focal point. In going from point D to B the probe successively probes regions of greater ion-beam irradiation. Note that the data obtained at point A is distorted by local light guiding/coupling into the partially exfoliated region.

Fig. 16
Fig. 16

Micro-Raman area mapping in the neighborhood of the stopping range. The 2D intensity analysis of the 631 cm−1 peak (the upper inset) indicates that the peak reaches a maximum at the edge of the blister/exfoliation region and drops quickly when the beam scans away from this region. The lower inset is an SEM imaging showing the blistering in the stopping range of the polished plane. The raised sample edge is indicative of partial exfoliation.

Tables (1)

Tables Icon

Table 1 SRIM Simulation Results of Ion Ranges and Straggle for the Ion Energies Given in the Experiments Shown in Fig. 4

Metrics