Abstract

Nonlinear optical properties such as the nonlinear refractive index and nonlinear absorption are characterized by z-scan measurements for a series of silicate glasses upon irradiation with laser pulses of 130 fs duration and 800 nm center wavelength. The stoichiometry of the silicate glasses is varied systematically to reveal the influence of the glass composition on the nonlinear optical properties. Additionally, the thermal properties such as glass–transformation temperature and thermal expansion coefficient are obtained from dilatometric measurements. It is found that the nonlinear refractive index is mainly related to the silica matrix. The nonlinear absorption is increased with the addition of network–forming ions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive-index measurements with picosecond laser pulses,” Phys. Rev. B 12(2), 706–714 (1975).
    [CrossRef]
  2. D. Milam, M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time resolved interferometry - Application to optical-materials for high power neodym lasers,” J. Appl. Phys. 47(6), 2497–2501 (1976).
    [CrossRef]
  3. M. J. Weber, D. Milam, W. L. Smith, “Nonlinear refractive-index of glass and crystals,” Opt. Eng. 17(5), 175463(1978).
    [CrossRef]
  4. K. Jamshidi–Ghaleh, N. Mansour, A. Namdar, “Nonlinear optical properties of soda-lime glass at 800 nm femtosecond irradiation,” Laser Phys. 15, 1714–1717 (2005).
  5. C. B. de Araújo, E. L. Falcão–Filho, A. Humeau, D. Guichaoua, G. Boudebs, L. R. P. Kassab, “Picosecond third-order nonlinearity of lead-oxide glasses in the infrared,” Appl. Phys. Lett. 87(22), 221904 (2005).
    [CrossRef]
  6. K. Jamshidi–Ghaleh, N. Mansour, D. Ashkenasi, H.-J. Hoffmann, “Nonlinear optical response in alkali-silicate glasses at 800 nm femtosecond irradiation,” Opt. Commun. 246(1-3), 213–218 (2005).
    [CrossRef]
  7. K. Jamshidi–Ghaleh, H. Masalehdan, “Modeling of nonlinear responses in BK7 glass under irradiation of femtosecond laser pulses,” Opt. Quantum Electron. 41(1), 47–53 (2009).
    [CrossRef]
  8. S. A. Moghaddam, G. K. Jamshidi–Galeh, “Nonlinear optical response and optical properties modification in crown B270 glass sample with fs-laser pulses,” J. Theor. Appl. Phys. 4, 21–25 (2010).
  9. M. Sheik–Bahae, A. A. Said, T. H. Wei, D. Hagan, E. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [CrossRef]
  10. R. Adair, L. L. Chase, S. Payne, “Nonlinear refractive-index measurements of glass using three-wave frequency mixing,” J. Opt. Soc. Am. B 4(6), 875–881 (1987).
    [CrossRef]
  11. X. Lu, Q. Liu, Z. Liu, S. Sun, P. Ding, B. Ding, B. Hu, “Measurement of nonlinear refractive index coefficient using emission spectrum of filament induced by gigawatt-femtosecond pulse in BK7 glass,” Appl. Opt. 51(12), 2045–2050 (2012).
    [CrossRef] [PubMed]
  12. N. L. Boling, A. J. Glass, A. Owyoung, “Empirical relations for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
    [CrossRef]
  13. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 711–723 (2011).
    [CrossRef]
  14. A. Royon, C. Rivero-Baleine, A. Zoubir, L. Canioni, M. Couzi, T. Cardinal, K. Richardson, “Evolution of the linear and nonlinear optical properties of femtosecond laser exposed fused silica,” J. Opt. Soc. Am. B 26(11), 2077–2083 (2009).
    [CrossRef]
  15. T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett. 100(22), 224101 (2012).
    [CrossRef]
  16. T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express 3(6), 755–764 (2013).
    [CrossRef]
  17. R. L. Sutherland, ed., Handbook of Nonlinear Optics (Marcel Dekker, 1996).
  18. J. Tauc, R. Grigorovici, A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi B 15(2), 627–637 (1966).
    [CrossRef]
  19. A. I. Priven, “General method for calculating the properties of oxide glasses and glass forming melts from their composition and temperature,” Glass Technol. 45, 244–254 (2004).
  20. D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
    [CrossRef]
  21. A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A. Mater. 69(7), S373–S376 (1999).
    [CrossRef]
  22. T. Bakos, S. N. Rashkeev, S. T. Pantelides, “Optically active defects in SiO2: The nonbridging oxygen center and the interstitial OH molecule,” Phys. Rev. B 70(7), 075203 (2004).
    [CrossRef]
  23. A. Hertwig, S. Martin, J. Krüger, W. Kautek, F. Krausz, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A. Mater. 79, 1075–1077 (1999).
  24. L. Pan, N. Tamai, K. Kamada, S. Deki, “Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region,” Appl. Phys. Lett. 91(5), 051902 (2007).
    [CrossRef]
  25. M. Sheik-Bahae, A. A. Said, E. W. van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989).
    [CrossRef] [PubMed]
  26. H. Scholze, Glas (Springer, 1988).
  27. J. R. Tessman, A. H. Kahn, W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92(4), 890–895 (1953).
    [CrossRef]
  28. M. Rumi, J. W. Perry, “Two photon absorption: an overview of measurements and principles,” Adv. Opt. Phot. 2(4), 451–518 (2010).
    [CrossRef]
  29. J. He, Y. Qu, H. Li, J. Mi, W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13(23), 9235–9247 (2005).
    [CrossRef] [PubMed]
  30. D. Puerto, J. Siegel, W. Gawelda, M. Galvan–Sosa, L. Ehrentraut, J. Bonse, J. Solis, “Dynamics in plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27(5), 1065–1076 (2010).
    [CrossRef]
  31. G. M. Petrov, J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. At. Mol. Opt. Phys. 41(2), 025601 (2008).
    [CrossRef]
  32. P. Balling, J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
    [CrossRef] [PubMed]
  33. G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
    [CrossRef]
  34. A. J. Taylor, G. Rodriguez, T. S. Clement, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett. 21(22), 1812–1814 (1996).
    [CrossRef] [PubMed]
  35. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, E. W. van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2(1), 60–200 (2010).
    [CrossRef]
  36. M. A. Verspui, G. De With, “Three-body abrasion: influence of applied load on bed thickness and particle size distribution in abrasive processes,” J. Eur. Ceram. Soc. 17(2-3), 473–477 (1997).
    [CrossRef]

2013 (2)

2012 (2)

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett. 100(22), 224101 (2012).
[CrossRef]

X. Lu, Q. Liu, Z. Liu, S. Sun, P. Ding, B. Ding, B. Hu, “Measurement of nonlinear refractive index coefficient using emission spectrum of filament induced by gigawatt-femtosecond pulse in BK7 glass,” Appl. Opt. 51(12), 2045–2050 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (4)

2009 (2)

K. Jamshidi–Ghaleh, H. Masalehdan, “Modeling of nonlinear responses in BK7 glass under irradiation of femtosecond laser pulses,” Opt. Quantum Electron. 41(1), 47–53 (2009).
[CrossRef]

A. Royon, C. Rivero-Baleine, A. Zoubir, L. Canioni, M. Couzi, T. Cardinal, K. Richardson, “Evolution of the linear and nonlinear optical properties of femtosecond laser exposed fused silica,” J. Opt. Soc. Am. B 26(11), 2077–2083 (2009).
[CrossRef]

2008 (1)

G. M. Petrov, J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. At. Mol. Opt. Phys. 41(2), 025601 (2008).
[CrossRef]

2007 (1)

L. Pan, N. Tamai, K. Kamada, S. Deki, “Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region,” Appl. Phys. Lett. 91(5), 051902 (2007).
[CrossRef]

2005 (4)

J. He, Y. Qu, H. Li, J. Mi, W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13(23), 9235–9247 (2005).
[CrossRef] [PubMed]

K. Jamshidi–Ghaleh, N. Mansour, A. Namdar, “Nonlinear optical properties of soda-lime glass at 800 nm femtosecond irradiation,” Laser Phys. 15, 1714–1717 (2005).

C. B. de Araújo, E. L. Falcão–Filho, A. Humeau, D. Guichaoua, G. Boudebs, L. R. P. Kassab, “Picosecond third-order nonlinearity of lead-oxide glasses in the infrared,” Appl. Phys. Lett. 87(22), 221904 (2005).
[CrossRef]

K. Jamshidi–Ghaleh, N. Mansour, D. Ashkenasi, H.-J. Hoffmann, “Nonlinear optical response in alkali-silicate glasses at 800 nm femtosecond irradiation,” Opt. Commun. 246(1-3), 213–218 (2005).
[CrossRef]

2004 (2)

A. I. Priven, “General method for calculating the properties of oxide glasses and glass forming melts from their composition and temperature,” Glass Technol. 45, 244–254 (2004).

T. Bakos, S. N. Rashkeev, S. T. Pantelides, “Optically active defects in SiO2: The nonbridging oxygen center and the interstitial OH molecule,” Phys. Rev. B 70(7), 075203 (2004).
[CrossRef]

2003 (1)

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[CrossRef]

1999 (3)

A. Hertwig, S. Martin, J. Krüger, W. Kautek, F. Krausz, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A. Mater. 79, 1075–1077 (1999).

D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A. Mater. 69(7), S373–S376 (1999).
[CrossRef]

1997 (1)

M. A. Verspui, G. De With, “Three-body abrasion: influence of applied load on bed thickness and particle size distribution in abrasive processes,” J. Eur. Ceram. Soc. 17(2-3), 473–477 (1997).
[CrossRef]

1996 (1)

1990 (1)

M. Sheik–Bahae, A. A. Said, T. H. Wei, D. Hagan, E. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

1989 (1)

1987 (1)

1978 (2)

M. J. Weber, D. Milam, W. L. Smith, “Nonlinear refractive-index of glass and crystals,” Opt. Eng. 17(5), 175463(1978).
[CrossRef]

N. L. Boling, A. J. Glass, A. Owyoung, “Empirical relations for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[CrossRef]

1976 (1)

D. Milam, M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time resolved interferometry - Application to optical-materials for high power neodym lasers,” J. Appl. Phys. 47(6), 2497–2501 (1976).
[CrossRef]

1975 (1)

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive-index measurements with picosecond laser pulses,” Phys. Rev. B 12(2), 706–714 (1975).
[CrossRef]

1966 (1)

J. Tauc, R. Grigorovici, A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi B 15(2), 627–637 (1966).
[CrossRef]

1953 (1)

J. R. Tessman, A. H. Kahn, W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92(4), 890–895 (1953).
[CrossRef]

Adair, R.

Ashkenasi, D.

K. Jamshidi–Ghaleh, N. Mansour, D. Ashkenasi, H.-J. Hoffmann, “Nonlinear optical response in alkali-silicate glasses at 800 nm femtosecond irradiation,” Opt. Commun. 246(1-3), 213–218 (2005).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A. Mater. 69(7), S373–S376 (1999).
[CrossRef]

Bakos, T.

T. Bakos, S. N. Rashkeev, S. T. Pantelides, “Optically active defects in SiO2: The nonbridging oxygen center and the interstitial OH molecule,” Phys. Rev. B 70(7), 075203 (2004).
[CrossRef]

Balling, P.

P. Balling, J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
[CrossRef] [PubMed]

Bechtel, J. H.

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive-index measurements with picosecond laser pulses,” Phys. Rev. B 12(2), 706–714 (1975).
[CrossRef]

Beresna, M.

Bloembergen, N.

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive-index measurements with picosecond laser pulses,” Phys. Rev. B 12(2), 706–714 (1975).
[CrossRef]

Boling, N. L.

N. L. Boling, A. J. Glass, A. Owyoung, “Empirical relations for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[CrossRef]

Bonse, J.

Boudebs, G.

C. B. de Araújo, E. L. Falcão–Filho, A. Humeau, D. Guichaoua, G. Boudebs, L. R. P. Kassab, “Picosecond third-order nonlinearity of lead-oxide glasses in the infrared,” Appl. Phys. Lett. 87(22), 221904 (2005).
[CrossRef]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[CrossRef]

Canioni, L.

Cardinal, T.

Chahid-Erraji, A.

Chase, L. L.

Cherukulappurath, S.

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[CrossRef]

Christodoulides, D. N.

Clement, T. S.

Couzi, M.

Davis, J.

G. M. Petrov, J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. At. Mol. Opt. Phys. 41(2), 025601 (2008).
[CrossRef]

de Araújo, C. B.

C. B. de Araújo, E. L. Falcão–Filho, A. Humeau, D. Guichaoua, G. Boudebs, L. R. P. Kassab, “Picosecond third-order nonlinearity of lead-oxide glasses in the infrared,” Appl. Phys. Lett. 87(22), 221904 (2005).
[CrossRef]

De With, G.

M. A. Verspui, G. De With, “Three-body abrasion: influence of applied load on bed thickness and particle size distribution in abrasive processes,” J. Eur. Ceram. Soc. 17(2-3), 473–477 (1997).
[CrossRef]

Deki, S.

L. Pan, N. Tamai, K. Kamada, S. Deki, “Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region,” Appl. Phys. Lett. 91(5), 051902 (2007).
[CrossRef]

Ding, B.

Ding, P.

Eberstein, M.

T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express 3(6), 755–764 (2013).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett. 100(22), 224101 (2012).
[CrossRef]

Ehrentraut, L.

Eichler, H. J.

T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express 3(6), 755–764 (2013).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett. 100(22), 224101 (2012).
[CrossRef]

Falcão–Filho, E. L.

C. B. de Araújo, E. L. Falcão–Filho, A. Humeau, D. Guichaoua, G. Boudebs, L. R. P. Kassab, “Picosecond third-order nonlinearity of lead-oxide glasses in the infrared,” Appl. Phys. Lett. 87(22), 221904 (2005).
[CrossRef]

Galvan–Sosa, M.

Gawelda, W.

Glass, A. J.

N. L. Boling, A. J. Glass, A. Owyoung, “Empirical relations for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[CrossRef]

Grehn, M.

T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express 3(6), 755–764 (2013).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett. 100(22), 224101 (2012).
[CrossRef]

Grigorovici, R.

J. Tauc, R. Grigorovici, A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi B 15(2), 627–637 (1966).
[CrossRef]

Guichaoua, D.

C. B. de Araújo, E. L. Falcão–Filho, A. Humeau, D. Guichaoua, G. Boudebs, L. R. P. Kassab, “Picosecond third-order nonlinearity of lead-oxide glasses in the infrared,” Appl. Phys. Lett. 87(22), 221904 (2005).
[CrossRef]

Hagan, D.

M. Sheik–Bahae, A. A. Said, T. H. Wei, D. Hagan, E. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

He, J.

Hertwig, A.

A. Hertwig, S. Martin, J. Krüger, W. Kautek, F. Krausz, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A. Mater. 79, 1075–1077 (1999).

Hoffmann, H.-J.

K. Jamshidi–Ghaleh, N. Mansour, D. Ashkenasi, H.-J. Hoffmann, “Nonlinear optical response in alkali-silicate glasses at 800 nm femtosecond irradiation,” Opt. Commun. 246(1-3), 213–218 (2005).
[CrossRef]

Höfner, M.

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett. 100(22), 224101 (2012).
[CrossRef]

Hu, B.

Humeau, A.

C. B. de Araújo, E. L. Falcão–Filho, A. Humeau, D. Guichaoua, G. Boudebs, L. R. P. Kassab, “Picosecond third-order nonlinearity of lead-oxide glasses in the infrared,” Appl. Phys. Lett. 87(22), 221904 (2005).
[CrossRef]

Jamshidi–Galeh, G. K.

S. A. Moghaddam, G. K. Jamshidi–Galeh, “Nonlinear optical response and optical properties modification in crown B270 glass sample with fs-laser pulses,” J. Theor. Appl. Phys. 4, 21–25 (2010).

Jamshidi–Ghaleh, K.

K. Jamshidi–Ghaleh, H. Masalehdan, “Modeling of nonlinear responses in BK7 glass under irradiation of femtosecond laser pulses,” Opt. Quantum Electron. 41(1), 47–53 (2009).
[CrossRef]

K. Jamshidi–Ghaleh, N. Mansour, A. Namdar, “Nonlinear optical properties of soda-lime glass at 800 nm femtosecond irradiation,” Laser Phys. 15, 1714–1717 (2005).

K. Jamshidi–Ghaleh, N. Mansour, D. Ashkenasi, H.-J. Hoffmann, “Nonlinear optical response in alkali-silicate glasses at 800 nm femtosecond irradiation,” Opt. Commun. 246(1-3), 213–218 (2005).
[CrossRef]

Ji, W.

Kahn, A. H.

J. R. Tessman, A. H. Kahn, W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92(4), 890–895 (1953).
[CrossRef]

Kamada, K.

L. Pan, N. Tamai, K. Kamada, S. Deki, “Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region,” Appl. Phys. Lett. 91(5), 051902 (2007).
[CrossRef]

Kassab, L. R. P.

C. B. de Araújo, E. L. Falcão–Filho, A. Humeau, D. Guichaoua, G. Boudebs, L. R. P. Kassab, “Picosecond third-order nonlinearity of lead-oxide glasses in the infrared,” Appl. Phys. Lett. 87(22), 221904 (2005).
[CrossRef]

Kautek, W.

A. Hertwig, S. Martin, J. Krüger, W. Kautek, F. Krausz, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A. Mater. 79, 1075–1077 (1999).

Kazansky, P. G.

Khoo, I. C.

Krausz, F.

A. Hertwig, S. Martin, J. Krüger, W. Kautek, F. Krausz, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A. Mater. 79, 1075–1077 (1999).

Krüger, J.

A. Hertwig, S. Martin, J. Krüger, W. Kautek, F. Krausz, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A. Mater. 79, 1075–1077 (1999).

Lancry, M.

Leblond, H.

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[CrossRef]

Li, H.

Liu, Q.

Liu, Z.

Lorenz, M.

D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A. Mater. 69(7), S373–S376 (1999).
[CrossRef]

Lu, X.

Mansour, N.

K. Jamshidi–Ghaleh, N. Mansour, D. Ashkenasi, H.-J. Hoffmann, “Nonlinear optical response in alkali-silicate glasses at 800 nm femtosecond irradiation,” Opt. Commun. 246(1-3), 213–218 (2005).
[CrossRef]

K. Jamshidi–Ghaleh, N. Mansour, A. Namdar, “Nonlinear optical properties of soda-lime glass at 800 nm femtosecond irradiation,” Laser Phys. 15, 1714–1717 (2005).

Martin, S.

A. Hertwig, S. Martin, J. Krüger, W. Kautek, F. Krausz, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A. Mater. 79, 1075–1077 (1999).

Masalehdan, H.

K. Jamshidi–Ghaleh, H. Masalehdan, “Modeling of nonlinear responses in BK7 glass under irradiation of femtosecond laser pulses,” Opt. Quantum Electron. 41(1), 47–53 (2009).
[CrossRef]

Mermillod-Blondin, A.

Mi, J.

Milam, D.

M. J. Weber, D. Milam, W. L. Smith, “Nonlinear refractive-index of glass and crystals,” Opt. Eng. 17(5), 175463(1978).
[CrossRef]

D. Milam, M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time resolved interferometry - Application to optical-materials for high power neodym lasers,” J. Appl. Phys. 47(6), 2497–2501 (1976).
[CrossRef]

Moghaddam, S. A.

S. A. Moghaddam, G. K. Jamshidi–Galeh, “Nonlinear optical response and optical properties modification in crown B270 glass sample with fs-laser pulses,” J. Theor. Appl. Phys. 4, 21–25 (2010).

Namdar, A.

K. Jamshidi–Ghaleh, N. Mansour, A. Namdar, “Nonlinear optical properties of soda-lime glass at 800 nm femtosecond irradiation,” Laser Phys. 15, 1714–1717 (2005).

Owyoung, A.

N. L. Boling, A. J. Glass, A. Owyoung, “Empirical relations for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[CrossRef]

Pan, L.

L. Pan, N. Tamai, K. Kamada, S. Deki, “Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region,” Appl. Phys. Lett. 91(5), 051902 (2007).
[CrossRef]

Pantelides, S. T.

T. Bakos, S. N. Rashkeev, S. T. Pantelides, “Optically active defects in SiO2: The nonbridging oxygen center and the interstitial OH molecule,” Phys. Rev. B 70(7), 075203 (2004).
[CrossRef]

Payne, S.

Perry, J. W.

M. Rumi, J. W. Perry, “Two photon absorption: an overview of measurements and principles,” Adv. Opt. Phot. 2(4), 451–518 (2010).
[CrossRef]

Petrov, G. M.

G. M. Petrov, J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. At. Mol. Opt. Phys. 41(2), 025601 (2008).
[CrossRef]

Poumellec, B.

Priven, A. I.

A. I. Priven, “General method for calculating the properties of oxide glasses and glass forming melts from their composition and temperature,” Glass Technol. 45, 244–254 (2004).

Puerto, D.

Qu, Y.

Rashkeev, S. N.

T. Bakos, S. N. Rashkeev, S. T. Pantelides, “Optically active defects in SiO2: The nonbridging oxygen center and the interstitial OH molecule,” Phys. Rev. B 70(7), 075203 (2004).
[CrossRef]

Reinhardt, F.

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett. 100(22), 224101 (2012).
[CrossRef]

Richardson, K.

Rivero-Baleine, C.

Rodriguez, G.

Rosenfeld, A.

D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A. Mater. 69(7), S373–S376 (1999).
[CrossRef]

Royon, A.

Rumi, M.

M. Rumi, J. W. Perry, “Two photon absorption: an overview of measurements and principles,” Adv. Opt. Phot. 2(4), 451–518 (2010).
[CrossRef]

Said, A. A.

M. Sheik–Bahae, A. A. Said, T. H. Wei, D. Hagan, E. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, E. W. van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989).
[CrossRef] [PubMed]

Salamo, G. J.

Sanchez, F.

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[CrossRef]

Schou, J.

P. Balling, J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
[CrossRef] [PubMed]

Seuthe, T.

T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express 3(6), 755–764 (2013).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett. 100(22), 224101 (2012).
[CrossRef]

Sheik-Bahae, M.

Sheik–Bahae, M.

M. Sheik–Bahae, A. A. Said, T. H. Wei, D. Hagan, E. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Shockley, W.

J. R. Tessman, A. H. Kahn, W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92(4), 890–895 (1953).
[CrossRef]

Siegel, J.

Smektala, F.

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[CrossRef]

Smith, W. L.

M. J. Weber, D. Milam, W. L. Smith, “Nonlinear refractive-index of glass and crystals,” Opt. Eng. 17(5), 175463(1978).
[CrossRef]

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive-index measurements with picosecond laser pulses,” Phys. Rev. B 12(2), 706–714 (1975).
[CrossRef]

Solis, J.

Stegeman, G. I.

Stoian, R.

A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A. Mater. 69(7), S373–S376 (1999).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Sun, S.

Tamai, N.

L. Pan, N. Tamai, K. Kamada, S. Deki, “Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region,” Appl. Phys. Lett. 91(5), 051902 (2007).
[CrossRef]

Tauc, J.

J. Tauc, R. Grigorovici, A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi B 15(2), 627–637 (1966).
[CrossRef]

Taylor, A. J.

Tessman, J. R.

J. R. Tessman, A. H. Kahn, W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92(4), 890–895 (1953).
[CrossRef]

Troles, J.

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[CrossRef]

Tsai, W. J.

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett. 100(22), 224101 (2012).
[CrossRef]

van Stryland, E.

M. Sheik–Bahae, A. A. Said, T. H. Wei, D. Hagan, E. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

van Stryland, E. W.

Vancu, A.

J. Tauc, R. Grigorovici, A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi B 15(2), 627–637 (1966).
[CrossRef]

Verspui, M. A.

M. A. Verspui, G. De With, “Three-body abrasion: influence of applied load on bed thickness and particle size distribution in abrasive processes,” J. Eur. Ceram. Soc. 17(2-3), 473–477 (1997).
[CrossRef]

Weber, M. J.

M. J. Weber, D. Milam, W. L. Smith, “Nonlinear refractive-index of glass and crystals,” Opt. Eng. 17(5), 175463(1978).
[CrossRef]

D. Milam, M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time resolved interferometry - Application to optical-materials for high power neodym lasers,” J. Appl. Phys. 47(6), 2497–2501 (1976).
[CrossRef]

Wei, T. H.

M. Sheik–Bahae, A. A. Said, T. H. Wei, D. Hagan, E. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Zoubir, A.

Adv. Opt. Phot. (1)

M. Rumi, J. W. Perry, “Two photon absorption: an overview of measurements and principles,” Adv. Opt. Phot. 2(4), 451–518 (2010).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. A. Mater. (2)

A. Hertwig, S. Martin, J. Krüger, W. Kautek, F. Krausz, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A. Mater. 79, 1075–1077 (1999).

A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A. Mater. 69(7), S373–S376 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

L. Pan, N. Tamai, K. Kamada, S. Deki, “Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region,” Appl. Phys. Lett. 91(5), 051902 (2007).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett. 100(22), 224101 (2012).
[CrossRef]

C. B. de Araújo, E. L. Falcão–Filho, A. Humeau, D. Guichaoua, G. Boudebs, L. R. P. Kassab, “Picosecond third-order nonlinearity of lead-oxide glasses in the infrared,” Appl. Phys. Lett. 87(22), 221904 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Glass Technol. (1)

A. I. Priven, “General method for calculating the properties of oxide glasses and glass forming melts from their composition and temperature,” Glass Technol. 45, 244–254 (2004).

IEEE J. Quantum Electron. (2)

N. L. Boling, A. J. Glass, A. Owyoung, “Empirical relations for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[CrossRef]

M. Sheik–Bahae, A. A. Said, T. H. Wei, D. Hagan, E. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

J. Appl. Phys. (1)

D. Milam, M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time resolved interferometry - Application to optical-materials for high power neodym lasers,” J. Appl. Phys. 47(6), 2497–2501 (1976).
[CrossRef]

J. Eur. Ceram. Soc. (1)

M. A. Verspui, G. De With, “Three-body abrasion: influence of applied load on bed thickness and particle size distribution in abrasive processes,” J. Eur. Ceram. Soc. 17(2-3), 473–477 (1997).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. At. Mol. Opt. Phys. (1)

G. M. Petrov, J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. At. Mol. Opt. Phys. 41(2), 025601 (2008).
[CrossRef]

J. Theor. Appl. Phys. (1)

S. A. Moghaddam, G. K. Jamshidi–Galeh, “Nonlinear optical response and optical properties modification in crown B270 glass sample with fs-laser pulses,” J. Theor. Appl. Phys. 4, 21–25 (2010).

Laser Phys. (1)

K. Jamshidi–Ghaleh, N. Mansour, A. Namdar, “Nonlinear optical properties of soda-lime glass at 800 nm femtosecond irradiation,” Laser Phys. 15, 1714–1717 (2005).

Opt. Commun. (2)

K. Jamshidi–Ghaleh, N. Mansour, D. Ashkenasi, H.-J. Hoffmann, “Nonlinear optical response in alkali-silicate glasses at 800 nm femtosecond irradiation,” Opt. Commun. 246(1-3), 213–218 (2005).
[CrossRef]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[CrossRef]

Opt. Eng. (1)

M. J. Weber, D. Milam, W. L. Smith, “Nonlinear refractive-index of glass and crystals,” Opt. Eng. 17(5), 175463(1978).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

K. Jamshidi–Ghaleh, H. Masalehdan, “Modeling of nonlinear responses in BK7 glass under irradiation of femtosecond laser pulses,” Opt. Quantum Electron. 41(1), 47–53 (2009).
[CrossRef]

Phys. Rev. (1)

J. R. Tessman, A. H. Kahn, W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92(4), 890–895 (1953).
[CrossRef]

Phys. Rev. B (2)

T. Bakos, S. N. Rashkeev, S. T. Pantelides, “Optically active defects in SiO2: The nonbridging oxygen center and the interstitial OH molecule,” Phys. Rev. B 70(7), 075203 (2004).
[CrossRef]

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive-index measurements with picosecond laser pulses,” Phys. Rev. B 12(2), 706–714 (1975).
[CrossRef]

Phys. Status Solidi B (1)

J. Tauc, R. Grigorovici, A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi B 15(2), 627–637 (1966).
[CrossRef]

Rep. Prog. Phys. (1)

P. Balling, J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
[CrossRef] [PubMed]

Other (2)

H. Scholze, Glas (Springer, 1988).

R. L. Sutherland, ed., Handbook of Nonlinear Optics (Marcel Dekker, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Closed aperture z–scan transmission for fused silica at three different laser intensities I0 between 0.7 and 1.65 × 1011 W/cm2. The solid lines represent least–squares–fits using Eq. (1). The inset displays the deduced values of the n2 for five peak intensities I0 with the dashed line as the average of the measured values.

Fig. 2
Fig. 2

Open aperture z–scan transmission for LiMg10Si60 glass at four different laser peak intensities I0 between 1.9 and 4.3 × 1011 W/cm2. The lines represent least squares fits to Eq. (5). The inset displays the deduced values of α3 for three peak intensities I0.

Fig. 3
Fig. 3

Plot of ( 1 T O A ) vs. I for LiMg10Si60 upon z–variation, measured for three different peak intensities I0. Note that the apparent scatter in the data at low transmission change values arises from the logarithmic data representation.

Tables (3)

Tables Icon

Table 1 Stoichiometric batch-composition of the glass samples.

Tables Icon

Table 2 Thermal and optical properties of the glass samples

Tables Icon

Table 3 Nonlinear refractive index (n2) and three–photon absorption (3–PA) coefficient α3 for several silicate based glasses (λ = 800 nm).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

  T C A ( Δ Φ 0 , z ) = 1 4 x Δ Φ 0 ( x ² + 9 ) ( x ² + 1 ) ,
| Δ Φ 0 | = Δ T P V 0.406 ( 1 S ) 0.27 .
n 2 = λ Δ Φ 0 2 π I 0 L ,
d I ( z ) d z = α 3 I 3 ( z ) .
T O A ( z ) = 1 3 3 / 2 α 3 I 2 ( z ) L ,
ln ( 1 T O A ) = 2 ln I + ln ( 3 3 / 2 α 3 L ) .

Metrics