Abstract

We report a study of ultrafast laser waveguide inscription in two magneto-optical glasses. Two types of femtosecond laser systems operating in kHz and MHz repetition rate regimes are used for waveguide fabrication. Single mode waveguides in the visible are obtained in both writing regimes and exhibit distinct optical properties depending on laser writing conditions and the nature of glasses. Photodarkening, produced as a fabrication byproduct and associated with waveguide propagation loss, is shown to be reversible via annealing. Photodarkening behaves differently in the magneto-optical glasses studied, most likely due to large differences in the concentration of lanthanum and/or gallium in the materials.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. E. Glezer, M. Milosavljevic, L. Huang, R. Finlay, T. Her, J. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21, 2023–2025 (1996).
    [CrossRef] [PubMed]
  3. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon.2, 219–225 (2008).
    [CrossRef]
  4. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008).
    [CrossRef] [PubMed]
  5. D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
    [CrossRef]
  6. T. Shih, R. Gattass, C. Mendonca, and E. Mazur, “Faraday rotation in femtosecond laser micromachined waveguides,” Opt. Express15, 5809–5814 (2007).
    [CrossRef] [PubMed]
  7. J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids213, 193–198 (1997).
    [CrossRef]
  8. A. Villaverde, D. Donatti, and D. Gozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C: Solid State Phys.11, L495–L498 (1978).
    [CrossRef]
  9. http://www.laserglass.com.cn/english-page/index/product/Faraday.htm .
  10. http://www.xaot.com/sdp/173803/4/cp-4304059/0/Magneto-Optical_Glass.html .
  11. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses.” Opt. Express13, 5676–5681 (2005).
    [CrossRef] [PubMed]
  12. “BeamPROP by RSoft Design Group, Inc.” http://www.rsoftdesign.com .
  13. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass,” Opt. Lett.37, 996–998 (2012).
    [CrossRef] [PubMed]
  14. C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A Mater. Sci. Process.76, 351–354 (2003).
    [CrossRef]
  15. G. R. Atkins and A. L. G. Carter, “Photodarkening in Tb3+-doped phosphosilicate and germanosilicate optical fibers,” Opt. Lett.19, 874–876 (1994).
    [CrossRef] [PubMed]
  16. H. Dachraoui, R. Rupp, K. Lengyel, M. Ellabban, M. Fally, G. Corradi, L. Kovacs, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B: Condens. Matter74, 144104 (2006).
    [CrossRef]
  17. S. Zhang, B. Zhu, S. Zhou, S. Xu, and J. Qiu, “Multi-photon absorption upconversion luminescence of a Tb3+-doped glass excited by an infrared femtosecond laser,” Opt. Express15, 6883–6888 (2007).
    [CrossRef] [PubMed]
  18. H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater.15, 7–25 (2000).
    [CrossRef]
  19. H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys.: Condens. Matter10, 9541–9547 (1998).
    [CrossRef]
  20. Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, H. Machida, and T. Fukuda, “Annealing Effect in Terbium-Scandium-Aluminum Garnet Single Crystal,” Jpn. J. Appl. Phys.41, 6020–6022 (2002).
    [CrossRef]
  21. R. Verma, K. Kumar, and S. Rai, “Inter-conversion of Tb3+and Tb4+states and its fluorescence properties in MO-Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci.12, 1146–1151 (2010).
    [CrossRef]
  22. R. M. Almeida, “Vibrational Spectroscopy of Glasses,” J. Non-Cryst. Solids106, 347–358 (1988).
    [CrossRef]
  23. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
    [CrossRef]
  24. P. Colomban, A. Tournie, and L. Bellot-Gurlet, “Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide,” J. Raman Spectrosc.37, 841–852 (2006).
    [CrossRef]
  25. P. McMillan, “Structural studies of silicate glasses and melts – applications and limitations of Raman spectroscopy,” Am. Mineral.69, 622–644 (1984).
  26. D. Manara, A. Grandjean, and D. Neuville, “Structure of borosilicate glasses and melts: A revision of the Yun, Bray and Dell model,” J. Non-Cryst. Solids355, 2528–2531 (2009).
    [CrossRef]
  27. T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. III. Relation between the rearrangement of super-structures and the properties of glass,” J. Non-Cryst. Solids321, 157–168 (2003).
    [CrossRef]
  28. D. Maniu, T. Iliescu, I. Ardelean, S. Cinta-Pinzaru, N. Tarcea, and W. Kiefer, “Raman study on B2O3-CaO glasses,” J. Mol. Struct.651, 485–488 (2003).
    [CrossRef]
  29. V. N. Bykov, T. N. Ivanova, and O. N. Koroleva, “Raman spectroscopy of borosilicate and germanate-silicate glasses and melts,” Russ. Metall. (Metally)2011, 719–722 (2011).
    [CrossRef]
  30. T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. I. Quantitative evaluation of structural units,” J. Non-Cryst. Solids321, 137–146 (2003).
    [CrossRef]
  31. A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. Tuthill, S. Olaizola, A. Fuerbach, and M. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express21, 2978–2986 (2013).
    [CrossRef] [PubMed]
  32. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett.34, 1285–1287 (2009).
    [CrossRef] [PubMed]
  33. M. C. Paul, A. V. Kir, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Yb2O3 Doped Yttrium-Alumino-Silicate Nano-Particles Based LMA Optical Fibers for High-Power Fiber Lasers,” J. Lightwave Technol.30, 2062–2068 (2012).
    [CrossRef]
  34. S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010).
    [CrossRef]
  35. M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. of SPIE6873, 68731E (2008).
    [CrossRef]
  36. T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+in codoped SiO2–Al2O3–P2O5 glass fiber and its relevance to photodarkening.” J. Chem. Phys.136, 014503 (2012).
    [CrossRef]

2013 (1)

2012 (3)

2011 (2)

V. N. Bykov, T. N. Ivanova, and O. N. Koroleva, “Raman spectroscopy of borosilicate and germanate-silicate glasses and melts,” Russ. Metall. (Metally)2011, 719–722 (2011).
[CrossRef]

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

2010 (3)

R. Verma, K. Kumar, and S. Rai, “Inter-conversion of Tb3+and Tb4+states and its fluorescence properties in MO-Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci.12, 1146–1151 (2010).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010).
[CrossRef]

2009 (2)

M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett.34, 1285–1287 (2009).
[CrossRef] [PubMed]

D. Manara, A. Grandjean, and D. Neuville, “Structure of borosilicate glasses and melts: A revision of the Yun, Bray and Dell model,” J. Non-Cryst. Solids355, 2528–2531 (2009).
[CrossRef]

2008 (3)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon.2, 219–225 (2008).
[CrossRef]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008).
[CrossRef] [PubMed]

M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. of SPIE6873, 68731E (2008).
[CrossRef]

2007 (2)

2006 (2)

P. Colomban, A. Tournie, and L. Bellot-Gurlet, “Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide,” J. Raman Spectrosc.37, 841–852 (2006).
[CrossRef]

H. Dachraoui, R. Rupp, K. Lengyel, M. Ellabban, M. Fally, G. Corradi, L. Kovacs, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B: Condens. Matter74, 144104 (2006).
[CrossRef]

2005 (1)

2003 (4)

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A Mater. Sci. Process.76, 351–354 (2003).
[CrossRef]

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. III. Relation between the rearrangement of super-structures and the properties of glass,” J. Non-Cryst. Solids321, 157–168 (2003).
[CrossRef]

D. Maniu, T. Iliescu, I. Ardelean, S. Cinta-Pinzaru, N. Tarcea, and W. Kiefer, “Raman study on B2O3-CaO glasses,” J. Mol. Struct.651, 485–488 (2003).
[CrossRef]

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. I. Quantitative evaluation of structural units,” J. Non-Cryst. Solids321, 137–146 (2003).
[CrossRef]

2002 (1)

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, H. Machida, and T. Fukuda, “Annealing Effect in Terbium-Scandium-Aluminum Garnet Single Crystal,” Jpn. J. Appl. Phys.41, 6020–6022 (2002).
[CrossRef]

2000 (1)

H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater.15, 7–25 (2000).
[CrossRef]

1998 (1)

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys.: Condens. Matter10, 9541–9547 (1998).
[CrossRef]

1997 (1)

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids213, 193–198 (1997).
[CrossRef]

1996 (2)

1994 (1)

1988 (1)

R. M. Almeida, “Vibrational Spectroscopy of Glasses,” J. Non-Cryst. Solids106, 347–358 (1988).
[CrossRef]

1984 (1)

P. McMillan, “Structural studies of silicate glasses and melts – applications and limitations of Raman spectroscopy,” Am. Mineral.69, 622–644 (1984).

1978 (1)

A. Villaverde, D. Donatti, and D. Gozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C: Solid State Phys.11, L495–L498 (1978).
[CrossRef]

Ackermann, L.

H. Dachraoui, R. Rupp, K. Lengyel, M. Ellabban, M. Fally, G. Corradi, L. Kovacs, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B: Condens. Matter74, 144104 (2006).
[CrossRef]

Almeida, R. M.

R. M. Almeida, “Vibrational Spectroscopy of Glasses,” J. Non-Cryst. Solids106, 347–358 (1988).
[CrossRef]

Ams, M.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses.” Opt. Express13, 5676–5681 (2005).
[CrossRef] [PubMed]

Ardelean, I.

D. Maniu, T. Iliescu, I. Ardelean, S. Cinta-Pinzaru, N. Tarcea, and W. Kiefer, “Raman study on B2O3-CaO glasses,” J. Mol. Struct.651, 485–488 (2003).
[CrossRef]

Arriola, A.

Atkins, G. R.

Barmenkov, Y. O.

Bellot-Gurlet, L.

P. Colomban, A. Tournie, and L. Bellot-Gurlet, “Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide,” J. Raman Spectrosc.37, 841–852 (2006).
[CrossRef]

Bhadra, S. K.

M. C. Paul, A. V. Kir, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Yb2O3 Doped Yttrium-Alumino-Silicate Nano-Particles Based LMA Optical Fibers for High-Power Fiber Lasers,” J. Lightwave Technol.30, 2062–2068 (2012).
[CrossRef]

S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010).
[CrossRef]

Boyland, A.

S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010).
[CrossRef]

Boyland, A. J.

Bykov, V. N.

V. N. Bykov, T. N. Ivanova, and O. N. Koroleva, “Raman spectroscopy of borosilicate and germanate-silicate glasses and melts,” Russ. Metall. (Metally)2011, 719–722 (2011).
[CrossRef]

Callan, J.

Carter, A. L. G.

Charles, N.

Chen, W.

Cinta-Pinzaru, S.

D. Maniu, T. Iliescu, I. Ardelean, S. Cinta-Pinzaru, N. Tarcea, and W. Kiefer, “Raman study on B2O3-CaO glasses,” J. Mol. Struct.651, 485–488 (2003).
[CrossRef]

Colomban, P.

P. Colomban, A. Tournie, and L. Bellot-Gurlet, “Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide,” J. Raman Spectrosc.37, 841–852 (2006).
[CrossRef]

Corradi, G.

H. Dachraoui, R. Rupp, K. Lengyel, M. Ellabban, M. Fally, G. Corradi, L. Kovacs, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B: Condens. Matter74, 144104 (2006).
[CrossRef]

Dachraoui, H.

H. Dachraoui, R. Rupp, K. Lengyel, M. Ellabban, M. Fally, G. Corradi, L. Kovacs, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B: Condens. Matter74, 144104 (2006).
[CrossRef]

Das, S.

M. C. Paul, A. V. Kir, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Yb2O3 Doped Yttrium-Alumino-Silicate Nano-Particles Based LMA Optical Fibers for High-Power Fiber Lasers,” J. Lightwave Technol.30, 2062–2068 (2012).
[CrossRef]

S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010).
[CrossRef]

Davis, K.

Dekker, P.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

Deschamps, T.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+in codoped SiO2–Al2O3–P2O5 glass fiber and its relevance to photodarkening.” J. Chem. Phys.136, 014503 (2012).
[CrossRef]

Donatti, D.

A. Villaverde, D. Donatti, and D. Gozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C: Solid State Phys.11, L495–L498 (1978).
[CrossRef]

Eaton, S. M.

Ebendorff-Heidepriem, H.

Ehrt, D.

H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater.15, 7–25 (2000).
[CrossRef]

Ellabban, M.

H. Dachraoui, R. Rupp, K. Lengyel, M. Ellabban, M. Fally, G. Corradi, L. Kovacs, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B: Condens. Matter74, 144104 (2006).
[CrossRef]

Engholm, M.

Fally, M.

H. Dachraoui, R. Rupp, K. Lengyel, M. Ellabban, M. Fally, G. Corradi, L. Kovacs, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B: Condens. Matter74, 144104 (2006).
[CrossRef]

Finlay, R.

Fuerbach, A.

Fukuda, T.

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, H. Machida, and T. Fukuda, “Annealing Effect in Terbium-Scandium-Aluminum Garnet Single Crystal,” Jpn. J. Appl. Phys.41, 6020–6022 (2002).
[CrossRef]

García, J.

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A Mater. Sci. Process.76, 351–354 (2003).
[CrossRef]

Gattass, R.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon.2, 219–225 (2008).
[CrossRef]

T. Shih, R. Gattass, C. Mendonca, and E. Mazur, “Faraday rotation in femtosecond laser micromachined waveguides,” Opt. Express15, 5809–5814 (2007).
[CrossRef] [PubMed]

Glezer, E.

Gonnet, C.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+in codoped SiO2–Al2O3–P2O5 glass fiber and its relevance to photodarkening.” J. Chem. Phys.136, 014503 (2012).
[CrossRef]

Gozinis, D.

A. Villaverde, D. Donatti, and D. Gozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C: Solid State Phys.11, L495–L498 (1978).
[CrossRef]

Grandjean, A.

D. Manara, A. Grandjean, and D. Neuville, “Structure of borosilicate glasses and melts: A revision of the Yun, Bray and Dell model,” J. Non-Cryst. Solids355, 2528–2531 (2009).
[CrossRef]

Gross, S.

Her, T.

Herman, P. R.

Hirao, K.

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids213, 193–198 (1997).
[CrossRef]

K. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
[CrossRef] [PubMed]

Ho, S.

Hosono, H.

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys.: Condens. Matter10, 9541–9547 (1998).
[CrossRef]

Huang, L.

Iliescu, T.

D. Maniu, T. Iliescu, I. Ardelean, S. Cinta-Pinzaru, N. Tarcea, and W. Kiefer, “Raman study on B2O3-CaO glasses,” J. Mol. Struct.651, 485–488 (2003).
[CrossRef]

Ivanova, T. N.

V. N. Bykov, T. N. Ivanova, and O. N. Koroleva, “Raman spectroscopy of borosilicate and germanate-silicate glasses and melts,” Russ. Metall. (Metally)2011, 719–722 (2011).
[CrossRef]

Jelger, P.

Jovanovic, N.

Kagamitani, Y.

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, H. Machida, and T. Fukuda, “Annealing Effect in Terbium-Scandium-Aluminum Garnet Single Crystal,” Jpn. J. Appl. Phys.41, 6020–6022 (2002).
[CrossRef]

Kalita, M.

S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010).
[CrossRef]

Kawazoe, H.

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys.: Condens. Matter10, 9541–9547 (1998).
[CrossRef]

Kiefer, W.

D. Maniu, T. Iliescu, I. Ardelean, S. Cinta-Pinzaru, N. Tarcea, and W. Kiefer, “Raman study on B2O3-CaO glasses,” J. Mol. Struct.651, 485–488 (2003).
[CrossRef]

Kinoshita, T.

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys.: Condens. Matter10, 9541–9547 (1998).
[CrossRef]

Kir, A. V.

Koroleva, O. N.

V. N. Bykov, T. N. Ivanova, and O. N. Koroleva, “Raman spectroscopy of borosilicate and germanate-silicate glasses and melts,” Russ. Metall. (Metally)2011, 719–722 (2011).
[CrossRef]

Kovacs, L.

H. Dachraoui, R. Rupp, K. Lengyel, M. Ellabban, M. Fally, G. Corradi, L. Kovacs, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B: Condens. Matter74, 144104 (2006).
[CrossRef]

Kumar, K.

R. Verma, K. Kumar, and S. Rai, “Inter-conversion of Tb3+and Tb4+states and its fluorescence properties in MO-Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci.12, 1146–1151 (2010).
[CrossRef]

Kunimine, N.

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. III. Relation between the rearrangement of super-structures and the properties of glass,” J. Non-Cryst. Solids321, 157–168 (2003).
[CrossRef]

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. I. Quantitative evaluation of structural units,” J. Non-Cryst. Solids321, 137–146 (2003).
[CrossRef]

Lancaster, D. G.

Laurell, F.

Lengyel, K.

H. Dachraoui, R. Rupp, K. Lengyel, M. Ellabban, M. Fally, G. Corradi, L. Kovacs, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B: Condens. Matter74, 144104 (2006).
[CrossRef]

Li, J.

Little, D. J.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

Machida, H.

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, H. Machida, and T. Fukuda, “Annealing Effect in Terbium-Scandium-Aluminum Garnet Single Crystal,” Jpn. J. Appl. Phys.41, 6020–6022 (2002).
[CrossRef]

Manara, D.

D. Manara, A. Grandjean, and D. Neuville, “Structure of borosilicate glasses and melts: A revision of the Yun, Bray and Dell model,” J. Non-Cryst. Solids355, 2528–2531 (2009).
[CrossRef]

Maniu, D.

D. Maniu, T. Iliescu, I. Ardelean, S. Cinta-Pinzaru, N. Tarcea, and W. Kiefer, “Raman study on B2O3-CaO glasses,” J. Mol. Struct.651, 485–488 (2003).
[CrossRef]

Marshall, G.

Marshall, G. D.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

Mazur, E.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon.2, 219–225 (2008).
[CrossRef]

T. Shih, R. Gattass, C. Mendonca, and E. Mazur, “Faraday rotation in femtosecond laser micromachined waveguides,” Opt. Express15, 5809–5814 (2007).
[CrossRef] [PubMed]

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A Mater. Sci. Process.76, 351–354 (2003).
[CrossRef]

E. Glezer, M. Milosavljevic, L. Huang, R. Finlay, T. Her, J. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21, 2023–2025 (1996).
[CrossRef] [PubMed]

McMillan, P.

P. McMillan, “Structural studies of silicate glasses and melts – applications and limitations of Raman spectroscopy,” Am. Mineral.69, 622–644 (1984).

Mendonca, C.

Miese, C. T.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

Milosavljevic, M.

Miura, K.

Monro, T. M.

Neuville, D.

D. Manara, A. Grandjean, and D. Neuville, “Structure of borosilicate glasses and melts: A revision of the Yun, Bray and Dell model,” J. Non-Cryst. Solids355, 2528–2531 (2009).
[CrossRef]

Ng, M. L.

Norin, L.

Olaizola, S.

Ollier, N.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+in codoped SiO2–Al2O3–P2O5 glass fiber and its relevance to photodarkening.” J. Chem. Phys.136, 014503 (2012).
[CrossRef]

Pal, M.

M. C. Paul, A. V. Kir, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Yb2O3 Doped Yttrium-Alumino-Silicate Nano-Particles Based LMA Optical Fibers for High-Power Fiber Lasers,” J. Lightwave Technol.30, 2062–2068 (2012).
[CrossRef]

S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010).
[CrossRef]

Paul, M. C.

M. C. Paul, A. V. Kir, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Yb2O3 Doped Yttrium-Alumino-Silicate Nano-Particles Based LMA Optical Fibers for High-Power Fiber Lasers,” J. Lightwave Technol.30, 2062–2068 (2012).
[CrossRef]

S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010).
[CrossRef]

Pawlak, D. A.

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, H. Machida, and T. Fukuda, “Annealing Effect in Terbium-Scandium-Aluminum Garnet Single Crystal,” Jpn. J. Appl. Phys.41, 6020–6022 (2002).
[CrossRef]

Qiu, J.

S. Zhang, B. Zhu, S. Zhou, S. Xu, and J. Qiu, “Multi-photon absorption upconversion luminescence of a Tb3+-doped glass excited by an infrared femtosecond laser,” Opt. Express15, 6883–6888 (2007).
[CrossRef] [PubMed]

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids213, 193–198 (1997).
[CrossRef]

Rai, S.

R. Verma, K. Kumar, and S. Rai, “Inter-conversion of Tb3+and Tb4+states and its fluorescence properties in MO-Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci.12, 1146–1151 (2010).
[CrossRef]

Rupp, R.

H. Dachraoui, R. Rupp, K. Lengyel, M. Ellabban, M. Fally, G. Corradi, L. Kovacs, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B: Condens. Matter74, 144104 (2006).
[CrossRef]

Sahu, J. K.

M. C. Paul, A. V. Kir, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Yb2O3 Doped Yttrium-Alumino-Silicate Nano-Particles Based LMA Optical Fibers for High-Power Fiber Lasers,” J. Lightwave Technol.30, 2062–2068 (2012).
[CrossRef]

S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010).
[CrossRef]

Sato, H.

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, H. Machida, and T. Fukuda, “Annealing Effect in Terbium-Scandium-Aluminum Garnet Single Crystal,” Jpn. J. Appl. Phys.41, 6020–6022 (2002).
[CrossRef]

Sawanobori, N.

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys.: Condens. Matter10, 9541–9547 (1998).
[CrossRef]

Schaffer, C.

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A Mater. Sci. Process.76, 351–354 (2003).
[CrossRef]

Shibata, S.

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. III. Relation between the rearrangement of super-structures and the properties of glass,” J. Non-Cryst. Solids321, 157–168 (2003).
[CrossRef]

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. I. Quantitative evaluation of structural units,” J. Non-Cryst. Solids321, 137–146 (2003).
[CrossRef]

Shih, T.

Spence, D.

Standish, R.

S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010).
[CrossRef]

Sugimoto, N.

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids213, 193–198 (1997).
[CrossRef]

K. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
[CrossRef] [PubMed]

Tanaka, K.

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids213, 193–198 (1997).
[CrossRef]

Tarcea, N.

D. Maniu, T. Iliescu, I. Ardelean, S. Cinta-Pinzaru, N. Tarcea, and W. Kiefer, “Raman study on B2O3-CaO glasses,” J. Mol. Struct.651, 485–488 (2003).
[CrossRef]

Tournie, A.

P. Colomban, A. Tournie, and L. Bellot-Gurlet, “Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide,” J. Raman Spectrosc.37, 841–852 (2006).
[CrossRef]

Tuthill, P.

Verma, R.

R. Verma, K. Kumar, and S. Rai, “Inter-conversion of Tb3+and Tb4+states and its fluorescence properties in MO-Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci.12, 1146–1151 (2010).
[CrossRef]

Vezin, H.

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+in codoped SiO2–Al2O3–P2O5 glass fiber and its relevance to photodarkening.” J. Chem. Phys.136, 014503 (2012).
[CrossRef]

Villaverde, A.

A. Villaverde, D. Donatti, and D. Gozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C: Solid State Phys.11, L495–L498 (1978).
[CrossRef]

Webb, A.

S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010).
[CrossRef]

Withford, M.

Withford, M. J.

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass,” Opt. Lett.37, 996–998 (2012).
[CrossRef] [PubMed]

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

Xu, S.

Yamamoto, Y.

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys.: Condens. Matter10, 9541–9547 (1998).
[CrossRef]

Yamane, M.

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. I. Quantitative evaluation of structural units,” J. Non-Cryst. Solids321, 137–146 (2003).
[CrossRef]

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. III. Relation between the rearrangement of super-structures and the properties of glass,” J. Non-Cryst. Solids321, 157–168 (2003).
[CrossRef]

Yamazaki, M.

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys.: Condens. Matter10, 9541–9547 (1998).
[CrossRef]

Yano, T.

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. I. Quantitative evaluation of structural units,” J. Non-Cryst. Solids321, 137–146 (2003).
[CrossRef]

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. III. Relation between the rearrangement of super-structures and the properties of glass,” J. Non-Cryst. Solids321, 157–168 (2003).
[CrossRef]

Yoo, S.

M. C. Paul, A. V. Kir, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Yb2O3 Doped Yttrium-Alumino-Silicate Nano-Particles Based LMA Optical Fibers for High-Power Fiber Lasers,” J. Lightwave Technol.30, 2062–2068 (2012).
[CrossRef]

S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010).
[CrossRef]

Yoshikawa, A.

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, H. Machida, and T. Fukuda, “Annealing Effect in Terbium-Scandium-Aluminum Garnet Single Crystal,” Jpn. J. Appl. Phys.41, 6020–6022 (2002).
[CrossRef]

Zhang, H.

Zhang, S.

Zhou, S.

Zhu, B.

Am. Mineral. (1)

P. McMillan, “Structural studies of silicate glasses and melts – applications and limitations of Raman spectroscopy,” Am. Mineral.69, 622–644 (1984).

Appl. Phys. A Mater. Sci. Process. (1)

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A Mater. Sci. Process.76, 351–354 (2003).
[CrossRef]

J. Appl. Phys. (1)

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010).
[CrossRef]

J. Chem. Phys. (1)

T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+in codoped SiO2–Al2O3–P2O5 glass fiber and its relevance to photodarkening.” J. Chem. Phys.136, 014503 (2012).
[CrossRef]

J. Lightwave Technol. (1)

J. Mol. Struct. (1)

D. Maniu, T. Iliescu, I. Ardelean, S. Cinta-Pinzaru, N. Tarcea, and W. Kiefer, “Raman study on B2O3-CaO glasses,” J. Mol. Struct.651, 485–488 (2003).
[CrossRef]

J. Non-Cryst. Solids (5)

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. I. Quantitative evaluation of structural units,” J. Non-Cryst. Solids321, 137–146 (2003).
[CrossRef]

R. M. Almeida, “Vibrational Spectroscopy of Glasses,” J. Non-Cryst. Solids106, 347–358 (1988).
[CrossRef]

D. Manara, A. Grandjean, and D. Neuville, “Structure of borosilicate glasses and melts: A revision of the Yun, Bray and Dell model,” J. Non-Cryst. Solids355, 2528–2531 (2009).
[CrossRef]

T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. III. Relation between the rearrangement of super-structures and the properties of glass,” J. Non-Cryst. Solids321, 157–168 (2003).
[CrossRef]

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids213, 193–198 (1997).
[CrossRef]

J. Phys. C: Solid State Phys. (1)

A. Villaverde, D. Donatti, and D. Gozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C: Solid State Phys.11, L495–L498 (1978).
[CrossRef]

J. Phys.: Condens. Matter (1)

H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys.: Condens. Matter10, 9541–9547 (1998).
[CrossRef]

J. Raman Spectrosc. (2)

P. Colomban, A. Tournie, and L. Bellot-Gurlet, “Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide,” J. Raman Spectrosc.37, 841–852 (2006).
[CrossRef]

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, H. Machida, and T. Fukuda, “Annealing Effect in Terbium-Scandium-Aluminum Garnet Single Crystal,” Jpn. J. Appl. Phys.41, 6020–6022 (2002).
[CrossRef]

Nature Photon. (1)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon.2, 219–225 (2008).
[CrossRef]

Opt. Commun. (1)

S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

Opt. Mater. (1)

H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater.15, 7–25 (2000).
[CrossRef]

Phys. Rev. B: Condens. Matter (1)

H. Dachraoui, R. Rupp, K. Lengyel, M. Ellabban, M. Fally, G. Corradi, L. Kovacs, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B: Condens. Matter74, 144104 (2006).
[CrossRef]

Proc. of SPIE (1)

M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. of SPIE6873, 68731E (2008).
[CrossRef]

Russ. Metall. (Metally) (1)

V. N. Bykov, T. N. Ivanova, and O. N. Koroleva, “Raman spectroscopy of borosilicate and germanate-silicate glasses and melts,” Russ. Metall. (Metally)2011, 719–722 (2011).
[CrossRef]

Solid State Sci. (1)

R. Verma, K. Kumar, and S. Rai, “Inter-conversion of Tb3+and Tb4+states and its fluorescence properties in MO-Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci.12, 1146–1151 (2010).
[CrossRef]

Other (3)

“BeamPROP by RSoft Design Group, Inc.” http://www.rsoftdesign.com .

http://www.laserglass.com.cn/english-page/index/product/Faraday.htm .

http://www.xaot.com/sdp/173803/4/cp-4304059/0/Magneto-Optical_Glass.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Properties of waveguides in TG20 created in kHz regime. Zero values mean no guiding was observed. Waveguides created by 325 nJ laser with 8, 12, 16 exhibited multi-mode at 632 nm. a) waveguide diameter d; b) MFD w of single-mode waveguides; c) waveguide propagation losses.

Fig. 2
Fig. 2

Bright field microscope images of cross-sections of waveguides in TG20 fabricated using 2 different pulse energies. a) for writing laser 300 nJ, 1 pass; b) for writing laser 325 nJ, 1 pass.

Fig. 3
Fig. 3

Properties of waveguides in MR3-2 created in kHz regime. Zero values indicate the edges were too faint to measure the structure diameter. a) waveguide diameter d; b) MFDs of single mode waveguide w; c) waveguide propagation losses.

Fig. 4
Fig. 4

TDIC microscopy image of waveguides in TG20 created on MHz femtosecond laser system.

Fig. 5
Fig. 5

Bright field microscope image of cross section (highest power end face) of IR photodarkening scan. Writing laser incident from left.

Fig. 6
Fig. 6

Absorption spectra of IR induced photodarkening in MR3-2. Inset: Energy dependence of IR photodarkening in both Faraday glasses examined.

Fig. 7
Fig. 7

UV photodarkening scan pattern.

Fig. 8
Fig. 8

Absorption spectra of UV induced photodarkening in MR3-2. Inset: Absorption spectra corrected by subtraction of the spectrum of the unirradiated glass.

Fig. 9
Fig. 9

Experimental Raman spectra of Faraday glasses pump at 532 nm. a) TG20; b) MR3-2.

Fig. 10
Fig. 10

Raman spectra of Faraday glasses pump at 442 nm. a) Experimental data; b) Normalized data (for the range unaffected by Tb3+ emission).

Fig. 11
Fig. 11

Photodarkening reduction after thermal annealing. a) absorption (at 420 nm) of photodarkening; b) waveguide propagation loss (waveguide created by 300 nJ pulse energy with 1 over-writing pass).

Fig. 12
Fig. 12

MFDs of waveguides after thermal annealing. a) TG20; b) MR3-2.

Fig. 13
Fig. 13

Waveguide propagation losses after thermal annealing. a) TG20; b) MR3-2.

Fig. 14
Fig. 14

LA-ICP-MS results of Tb3+ doped borosilicate glasses.

Tables (2)

Tables Icon

Table 1 Basic properties of magneto-optical glasses.

Tables Icon

Table 2 Processing conditions for the UV exposure study.

Metrics