Abstract

ZnO and Zn2SiO4 nanoparticles embedded SiO2 waveguides, a new candidate for fabrication of low-loss glass-ceramic active-waveguides for integrated optic applications, were fabricated by the sol-gel technique using dip-coating process. The waveguides fabricated from the sol-gel solution composed of (100-x) SiO2–x ZnO (x = 25, 30, and 35 mol %) exhibited uniform thickness (1.5 ± 0.1 µm), and refractive index of 1.529 ± 0.005 (for x = 35 mol %) at 632.8 nm. Propagation loss of 1.4 ± 0.2 dB/cm at 632.8 nm was observed in the transparent glass-ceramic waveguides. The as-prepared waveguides contained nanoparticles of average size ~15 nm uniformly dispersed in the SiO2 matrix. Formation of Zn2SiO4 along with ZnO nanoparticles in the waveguides is confirmed from the X-ray diffraction patterns and photoluminescence spectra. The tuning of the optical and spectroscopic properties by controlled heat-treatment of the as-prepared active-waveguides has been demonstrated.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett.76(21), 2997–2999 (2000).
    [CrossRef]
  2. D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol.7(7), 465–471 (2012).
    [PubMed]
  3. K.-K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S.-J. Park, and J. H. Song, “The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering,” J. Appl. Phys.87(7), 3573–3575 (2000).
    [CrossRef]
  4. L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem.162(1), 237–243 (2012).
    [CrossRef]
  5. X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett.8(4), 1219–1223 (2008).
    [CrossRef] [PubMed]
  6. J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett.8(5), 1477–1481 (2008).
    [CrossRef] [PubMed]
  7. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
    [CrossRef] [PubMed]
  8. X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002).
    [CrossRef]
  9. E. J. Ibanga, C. L. Luyer, and J. Mugnier, “Zinc oxide waveguide produced by thermal oxidation of chemical bath deposited zinc sulphide thin films,” Mater. Chem. Phys.80(2), 490–495 (2003).
    [CrossRef]
  10. X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun.285(6), 1225–1228 (2012).
    [CrossRef]
  11. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol.3(2), 160–175 (2007).
    [CrossRef]
  12. M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
    [CrossRef]
  13. Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, and G. C. Righini, “Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach,” Appl. Phys. Lett. 91(7), 071909 (2007).
  14. S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).
  15. M. Nogami, T. Enomoto, and T. Hayakawa, “Enhanced fluorescence of Eu3+ induced by energy transfer from nano sized SnO2 crystals in glass,” J. Lumin.97(3-4), 147–152 (2002).
    [CrossRef]
  16. S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared in an organic–inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
    [CrossRef]
  17. J. El Ghoul, K. Omri, L. El Mir, C. Barthou, and S. Alaya, “Sol–gel synthesis and luminescent properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:V composite materials,” J. Lumin.132(9), 2288–2292 (2012).
    [CrossRef]
  18. Z. Fu, B. Yang, L. Li, W. Dong, C. Jia, and W. Wu, “An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites,” J. Phys. Condens. Matter15(17), 2867–2873 (2003).
    [CrossRef]
  19. S. Chakrabarti, D. Ganguli, and S. Chaudhuri, “Excitonic and defect related transitions in ZnO–SiO2 nanocomposites synthesized by sol-gel technique,” Phys. Status Solidi201(9), 2134–2142 (2004).
    [CrossRef]
  20. O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, and Y. Gao, “Erbium doped fluoride glass–ceramics waveguides fabricated by PVD,” J. Non-Cryst. Solids354(30), 3586–3591 (2008).
    [CrossRef]
  21. A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G. C. Righini, M. Ferrari, L. Zampedri, A. Monteil, and P. Lazzeri, “Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+ -activated silica–titania planar waveguides fabricated by rf-sputtering,” Opt. Mater.25(2), 117–122 (2004).
    [CrossRef]
  22. R. R. Gonçalves, G. Carturan, M. Montagna, A. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
    [CrossRef]
  23. X. Liu, X. Wu, H. Cao, and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” J. Appl. Phys.95(6), 3141–3147 (2004).
    [CrossRef]

2012 (4)

L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem.162(1), 237–243 (2012).
[CrossRef]

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol.7(7), 465–471 (2012).
[PubMed]

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun.285(6), 1225–1228 (2012).
[CrossRef]

J. El Ghoul, K. Omri, L. El Mir, C. Barthou, and S. Alaya, “Sol–gel synthesis and luminescent properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:V composite materials,” J. Lumin.132(9), 2288–2292 (2012).
[CrossRef]

2009 (1)

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

2008 (4)

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett.8(4), 1219–1223 (2008).
[CrossRef] [PubMed]

J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett.8(5), 1477–1481 (2008).
[CrossRef] [PubMed]

O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, and Y. Gao, “Erbium doped fluoride glass–ceramics waveguides fabricated by PVD,” J. Non-Cryst. Solids354(30), 3586–3591 (2008).
[CrossRef]

2007 (3)

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
[CrossRef] [PubMed]

Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, and G. C. Righini, “Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach,” Appl. Phys. Lett. 91(7), 071909 (2007).

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol.3(2), 160–175 (2007).
[CrossRef]

2004 (4)

A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G. C. Righini, M. Ferrari, L. Zampedri, A. Monteil, and P. Lazzeri, “Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+ -activated silica–titania planar waveguides fabricated by rf-sputtering,” Opt. Mater.25(2), 117–122 (2004).
[CrossRef]

R. R. Gonçalves, G. Carturan, M. Montagna, A. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

X. Liu, X. Wu, H. Cao, and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” J. Appl. Phys.95(6), 3141–3147 (2004).
[CrossRef]

S. Chakrabarti, D. Ganguli, and S. Chaudhuri, “Excitonic and defect related transitions in ZnO–SiO2 nanocomposites synthesized by sol-gel technique,” Phys. Status Solidi201(9), 2134–2142 (2004).
[CrossRef]

2003 (2)

Z. Fu, B. Yang, L. Li, W. Dong, C. Jia, and W. Wu, “An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites,” J. Phys. Condens. Matter15(17), 2867–2873 (2003).
[CrossRef]

E. J. Ibanga, C. L. Luyer, and J. Mugnier, “Zinc oxide waveguide produced by thermal oxidation of chemical bath deposited zinc sulphide thin films,” Mater. Chem. Phys.80(2), 490–495 (2003).
[CrossRef]

2002 (2)

X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002).
[CrossRef]

M. Nogami, T. Enomoto, and T. Hayakawa, “Enhanced fluorescence of Eu3+ induced by energy transfer from nano sized SnO2 crystals in glass,” J. Lumin.97(3-4), 147–152 (2002).
[CrossRef]

2000 (3)

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared in an organic–inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett.76(21), 2997–2999 (2000).
[CrossRef]

K.-K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S.-J. Park, and J. H. Song, “The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering,” J. Appl. Phys.87(7), 3573–3575 (2000).
[CrossRef]

Aegerter, M. A.

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared in an organic–inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Alaya, S.

J. El Ghoul, K. Omri, L. El Mir, C. Barthou, and S. Alaya, “Sol–gel synthesis and luminescent properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:V composite materials,” J. Lumin.132(9), 2288–2292 (2012).
[CrossRef]

Angadi, B.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol.7(7), 465–471 (2012).
[PubMed]

Anikeeva, P. O.

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
[CrossRef] [PubMed]

Armellini, C.

Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, and G. C. Righini, “Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach,” Appl. Phys. Lett. 91(7), 071909 (2007).

Barthou, C.

J. El Ghoul, K. Omri, L. El Mir, C. Barthou, and S. Alaya, “Sol–gel synthesis and luminescent properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:V composite materials,” J. Lumin.132(9), 2288–2292 (2012).
[CrossRef]

Bawendi, M. G.

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
[CrossRef] [PubMed]

Beclin, F.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).

Bhaktha, S. N. B.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).

Bouazaoui, M.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).

Boulard, B.

O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, and Y. Gao, “Erbium doped fluoride glass–ceramics waveguides fabricated by PVD,” J. Non-Cryst. Solids354(30), 3586–3591 (2008).
[CrossRef]

Bulovic, V.

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
[CrossRef] [PubMed]

Cao, H.

X. Liu, X. Wu, H. Cao, and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” J. Appl. Phys.95(6), 3141–3147 (2004).
[CrossRef]

H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett.76(21), 2997–2999 (2000).
[CrossRef]

Capoen, B.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).

Carturan, G.

R. R. Gonçalves, G. Carturan, M. Montagna, A. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Chakrabarti, S.

S. Chakrabarti, D. Ganguli, and S. Chaudhuri, “Excitonic and defect related transitions in ZnO–SiO2 nanocomposites synthesized by sol-gel technique,” Phys. Status Solidi201(9), 2134–2142 (2004).
[CrossRef]

Chang, R. P. H.

X. Liu, X. Wu, H. Cao, and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” J. Appl. Phys.95(6), 3141–3147 (2004).
[CrossRef]

H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett.76(21), 2997–2999 (2000).
[CrossRef]

Chaudhuri, S.

S. Chakrabarti, D. Ganguli, and S. Chaudhuri, “Excitonic and defect related transitions in ZnO–SiO2 nanocomposites synthesized by sol-gel technique,” Phys. Status Solidi201(9), 2134–2142 (2004).
[CrossRef]

Chen, M.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun.285(6), 1225–1228 (2012).
[CrossRef]

Chiappini, A.

Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, and G. C. Righini, “Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach,” Appl. Phys. Lett. 91(7), 071909 (2007).

Chiasera, A.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).

Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, and G. C. Righini, “Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach,” Appl. Phys. Lett. 91(7), 071909 (2007).

A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G. C. Righini, M. Ferrari, L. Zampedri, A. Monteil, and P. Lazzeri, “Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+ -activated silica–titania planar waveguides fabricated by rf-sputtering,” Opt. Mater.25(2), 117–122 (2004).
[CrossRef]

Choi, W. K.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol.7(7), 465–471 (2012).
[PubMed]

K.-K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S.-J. Park, and J. H. Song, “The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering,” J. Appl. Phys.87(7), 3573–3575 (2000).
[CrossRef]

Chong, C.

X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002).
[CrossRef]

Cole, J. J.

J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett.8(5), 1477–1481 (2008).
[CrossRef] [PubMed]

Craford, M. G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol.3(2), 160–175 (2007).
[CrossRef]

Crawford, M. H.

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

Dong, W.

Z. Fu, B. Yang, L. Li, W. Dong, C. Jia, and W. Wu, “An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites,” J. Phys. Condens. Matter15(17), 2867–2873 (2003).
[CrossRef]

Duverger-Arfuso, C.

O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, and Y. Gao, “Erbium doped fluoride glass–ceramics waveguides fabricated by PVD,” J. Non-Cryst. Solids354(30), 3586–3591 (2008).
[CrossRef]

El Ghoul, J.

J. El Ghoul, K. Omri, L. El Mir, C. Barthou, and S. Alaya, “Sol–gel synthesis and luminescent properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:V composite materials,” J. Lumin.132(9), 2288–2292 (2012).
[CrossRef]

El Mir, L.

J. El Ghoul, K. Omri, L. El Mir, C. Barthou, and S. Alaya, “Sol–gel synthesis and luminescent properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:V composite materials,” J. Lumin.132(9), 2288–2292 (2012).
[CrossRef]

Enomoto, T.

M. Nogami, T. Enomoto, and T. Hayakawa, “Enhanced fluorescence of Eu3+ induced by energy transfer from nano sized SnO2 crystals in glass,” J. Lumin.97(3-4), 147–152 (2002).
[CrossRef]

Ferrari, A.

R. R. Gonçalves, G. Carturan, M. Montagna, A. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Ferrari, M.

O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, and Y. Gao, “Erbium doped fluoride glass–ceramics waveguides fabricated by PVD,” J. Non-Cryst. Solids354(30), 3586–3591 (2008).
[CrossRef]

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).

Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, and G. C. Righini, “Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach,” Appl. Phys. Lett. 91(7), 071909 (2007).

A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G. C. Righini, M. Ferrari, L. Zampedri, A. Monteil, and P. Lazzeri, “Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+ -activated silica–titania planar waveguides fabricated by rf-sputtering,” Opt. Mater.25(2), 117–122 (2004).
[CrossRef]

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared in an organic–inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Fu, Z.

Z. Fu, B. Yang, L. Li, W. Dong, C. Jia, and W. Wu, “An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites,” J. Phys. Condens. Matter15(17), 2867–2873 (2003).
[CrossRef]

Ganguli, D.

S. Chakrabarti, D. Ganguli, and S. Chaudhuri, “Excitonic and defect related transitions in ZnO–SiO2 nanocomposites synthesized by sol-gel technique,” Phys. Status Solidi201(9), 2134–2142 (2004).
[CrossRef]

Gao, Y.

O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, and Y. Gao, “Erbium doped fluoride glass–ceramics waveguides fabricated by PVD,” J. Non-Cryst. Solids354(30), 3586–3591 (2008).
[CrossRef]

Gonçalves, R. R.

R. R. Gonçalves, G. Carturan, M. Montagna, A. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared in an organic–inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Guo, C.

X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002).
[CrossRef]

Halpert, J. E.

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
[CrossRef] [PubMed]

Harbers, G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol.3(2), 160–175 (2007).
[CrossRef]

Hayakawa, T.

M. Nogami, T. Enomoto, and T. Hayakawa, “Enhanced fluorescence of Eu3+ induced by energy transfer from nano sized SnO2 crystals in glass,” J. Lumin.97(3-4), 147–152 (2002).
[CrossRef]

Huang, J. Z.

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett.8(4), 1219–1223 (2008).
[CrossRef] [PubMed]

Huang, W.

L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem.162(1), 237–243 (2012).
[CrossRef]

X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002).
[CrossRef]

Ibanga, E. J.

E. J. Ibanga, C. L. Luyer, and J. Mugnier, “Zinc oxide waveguide produced by thermal oxidation of chemical bath deposited zinc sulphide thin films,” Mater. Chem. Phys.80(2), 490–495 (2003).
[CrossRef]

Jacobs, H. O.

J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett.8(5), 1477–1481 (2008).
[CrossRef] [PubMed]

Jestin, Y.

O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, and Y. Gao, “Erbium doped fluoride glass–ceramics waveguides fabricated by PVD,” J. Non-Cryst. Solids354(30), 3586–3591 (2008).
[CrossRef]

Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, and G. C. Righini, “Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach,” Appl. Phys. Lett. 91(7), 071909 (2007).

Jia, C.

Z. Fu, B. Yang, L. Li, W. Dong, C. Jia, and W. Wu, “An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites,” J. Phys. Condens. Matter15(17), 2867–2873 (2003).
[CrossRef]

Jung, H. J.

K.-K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S.-J. Park, and J. H. Song, “The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering,” J. Appl. Phys.87(7), 3573–3575 (2000).
[CrossRef]

Kang, Y.

L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem.162(1), 237–243 (2012).
[CrossRef]

Kim, K.-K.

K.-K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S.-J. Park, and J. H. Song, “The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering,” J. Appl. Phys.87(7), 3573–3575 (2000).
[CrossRef]

Kinowski, C.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).

Knuesel, R. J.

J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett.8(5), 1477–1481 (2008).
[CrossRef] [PubMed]

Kodjikian, S.

O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, and Y. Gao, “Erbium doped fluoride glass–ceramics waveguides fabricated by PVD,” J. Non-Cryst. Solids354(30), 3586–3591 (2008).
[CrossRef]

Krames, M. R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol.3(2), 160–175 (2007).
[CrossRef]

Kwon, B. W.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol.7(7), 465–471 (2012).
[PubMed]

Lazzeri, P.

A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G. C. Righini, M. Ferrari, L. Zampedri, A. Monteil, and P. Lazzeri, “Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+ -activated silica–titania planar waveguides fabricated by rf-sputtering,” Opt. Mater.25(2), 117–122 (2004).
[CrossRef]

Lee, C.-L.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol.7(7), 465–471 (2012).
[PubMed]

Li, L.

Z. Fu, B. Yang, L. Li, W. Dong, C. Jia, and W. Wu, “An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites,” J. Phys. Condens. Matter15(17), 2867–2873 (2003).
[CrossRef]

Liu, H.

X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002).
[CrossRef]

Liu, X.

L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem.162(1), 237–243 (2012).
[CrossRef]

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun.285(6), 1225–1228 (2012).
[CrossRef]

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun.285(6), 1225–1228 (2012).
[CrossRef]

X. Liu, X. Wu, H. Cao, and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” J. Appl. Phys.95(6), 3141–3147 (2004).
[CrossRef]

Lu, F.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun.285(6), 1225–1228 (2012).
[CrossRef]

Luyer, C. L.

E. J. Ibanga, C. L. Luyer, and J. Mugnier, “Zinc oxide waveguide produced by thermal oxidation of chemical bath deposited zinc sulphide thin films,” Mater. Chem. Phys.80(2), 490–495 (2003).
[CrossRef]

Ma, Y.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun.285(6), 1225–1228 (2012).
[CrossRef]

Messaddeq, Y.

R. R. Gonçalves, G. Carturan, M. Montagna, A. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared in an organic–inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Ming, X.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun.285(6), 1225–1228 (2012).
[CrossRef]

Montagna, M.

A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G. C. Righini, M. Ferrari, L. Zampedri, A. Monteil, and P. Lazzeri, “Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+ -activated silica–titania planar waveguides fabricated by rf-sputtering,” Opt. Mater.25(2), 117–122 (2004).
[CrossRef]

R. R. Gonçalves, G. Carturan, M. Montagna, A. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared in an organic–inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Monteil, A.

A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G. C. Righini, M. Ferrari, L. Zampedri, A. Monteil, and P. Lazzeri, “Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+ -activated silica–titania planar waveguides fabricated by rf-sputtering,” Opt. Mater.25(2), 117–122 (2004).
[CrossRef]

Moser, E.

Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, and G. C. Righini, “Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach,” Appl. Phys. Lett. 91(7), 071909 (2007).

Mueller, G. O.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol.3(2), 160–175 (2007).
[CrossRef]

Mueller-Mach, R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol.3(2), 160–175 (2007).
[CrossRef]

Mugnier, J.

E. J. Ibanga, C. L. Luyer, and J. Mugnier, “Zinc oxide waveguide produced by thermal oxidation of chemical bath deposited zinc sulphide thin films,” Mater. Chem. Phys.80(2), 490–495 (2003).
[CrossRef]

Nogami, M.

M. Nogami, T. Enomoto, and T. Hayakawa, “Enhanced fluorescence of Eu3+ induced by energy transfer from nano sized SnO2 crystals in glass,” J. Lumin.97(3-4), 147–152 (2002).
[CrossRef]

Omri, K.

J. El Ghoul, K. Omri, L. El Mir, C. Barthou, and S. Alaya, “Sol–gel synthesis and luminescent properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:V composite materials,” J. Lumin.132(9), 2288–2292 (2012).
[CrossRef]

Park, D. H.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol.7(7), 465–471 (2012).
[PubMed]

Park, S.-J.

K.-K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S.-J. Park, and J. H. Song, “The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering,” J. Appl. Phys.87(7), 3573–3575 (2000).
[CrossRef]

Pelli, S.

A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G. C. Righini, M. Ferrari, L. Zampedri, A. Monteil, and P. Lazzeri, “Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+ -activated silica–titania planar waveguides fabricated by rf-sputtering,” Opt. Mater.25(2), 117–122 (2004).
[CrossRef]

R. R. Gonçalves, G. Carturan, M. Montagna, A. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Péron, O.

O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, and Y. Gao, “Erbium doped fluoride glass–ceramics waveguides fabricated by PVD,” J. Non-Cryst. Solids354(30), 3586–3591 (2008).
[CrossRef]

Qi, Z.

X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002).
[CrossRef]

Retoux, R.

Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, and G. C. Righini, “Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach,” Appl. Phys. Lett. 91(7), 071909 (2007).

Ribeiro, S. J. L.

R. R. Gonçalves, G. Carturan, M. Montagna, A. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared in an organic–inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Righini, G. C.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).

Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, and G. C. Righini, “Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach,” Appl. Phys. Lett. 91(7), 071909 (2007).

A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G. C. Righini, M. Ferrari, L. Zampedri, A. Monteil, and P. Lazzeri, “Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+ -activated silica–titania planar waveguides fabricated by rf-sputtering,” Opt. Mater.25(2), 117–122 (2004).
[CrossRef]

R. R. Gonçalves, G. Carturan, M. Montagna, A. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Robbe, O.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).

Seeling, E. W.

H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett.76(21), 2997–2999 (2000).
[CrossRef]

Seo, W.-S.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol.7(7), 465–471 (2012).
[PubMed]

Shchekin, O. B.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol.3(2), 160–175 (2007).
[CrossRef]

Shi, C.

X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002).
[CrossRef]

Son, D. I.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol.7(7), 465–471 (2012).
[PubMed]

Song, J. H.

K.-K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S.-J. Park, and J. H. Song, “The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering,” J. Appl. Phys.87(7), 3573–3575 (2000).
[CrossRef]

K.-K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S.-J. Park, and J. H. Song, “The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering,” J. Appl. Phys.87(7), 3573–3575 (2000).
[CrossRef]

Sun, X. W.

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett.8(4), 1219–1223 (2008).
[CrossRef] [PubMed]

Tosello, C.

A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G. C. Righini, M. Ferrari, L. Zampedri, A. Monteil, and P. Lazzeri, “Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+ -activated silica–titania planar waveguides fabricated by rf-sputtering,” Opt. Mater.25(2), 117–122 (2004).
[CrossRef]

Turrell, S.

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).

Wang, J. X.

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett.8(4), 1219–1223 (2008).
[CrossRef] [PubMed]

Wang, L.

L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem.162(1), 237–243 (2012).
[CrossRef]

Wang, S.

L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem.162(1), 237–243 (2012).
[CrossRef]

Wang, X.

J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett.8(5), 1477–1481 (2008).
[CrossRef] [PubMed]

Wu, W.

Z. Fu, B. Yang, L. Li, W. Dong, C. Jia, and W. Wu, “An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites,” J. Phys. Condens. Matter15(17), 2867–2873 (2003).
[CrossRef]

Wu, X.

X. Liu, X. Wu, H. Cao, and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” J. Appl. Phys.95(6), 3141–3147 (2004).
[CrossRef]

Xu, C.

X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002).
[CrossRef]

Xu, J.

X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002).
[CrossRef]

Xu, J. Y.

H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett.76(21), 2997–2999 (2000).
[CrossRef]

Xu, X.

X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002).
[CrossRef]

Xu, Z.

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett.8(4), 1219–1223 (2008).
[CrossRef] [PubMed]

Yang, B.

Z. Fu, B. Yang, L. Li, W. Dong, C. Jia, and W. Wu, “An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites,” J. Phys. Condens. Matter15(17), 2867–2873 (2003).
[CrossRef]

Yi, Y.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol.7(7), 465–471 (2012).
[PubMed]

Yin, J.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun.285(6), 1225–1228 (2012).
[CrossRef]

Zampedri, L.

A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G. C. Righini, M. Ferrari, L. Zampedri, A. Monteil, and P. Lazzeri, “Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+ -activated silica–titania planar waveguides fabricated by rf-sputtering,” Opt. Mater.25(2), 117–122 (2004).
[CrossRef]

R. R. Gonçalves, G. Carturan, M. Montagna, A. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Zhang, S.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun.285(6), 1225–1228 (2012).
[CrossRef]

L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem.162(1), 237–243 (2012).
[CrossRef]

Zhao, J.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun.285(6), 1225–1228 (2012).
[CrossRef]

Zhou, L.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol.3(2), 160–175 (2007).
[CrossRef]

Zhou, Y.

X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002).
[CrossRef]

Appl. Phys. Lett (1)

S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).

Appl. Phys. Lett (1)

Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, and G. C. Righini, “Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach,” Appl. Phys. Lett. 91(7), 071909 (2007).

Appl. Phys. Lett. (2)

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared in an organic–inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett.76(21), 2997–2999 (2000).
[CrossRef]

Chem. Phys. Lett. (1)

X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

J. Lumin. (1)

M. Nogami, T. Enomoto, and T. Hayakawa, “Enhanced fluorescence of Eu3+ induced by energy transfer from nano sized SnO2 crystals in glass,” J. Lumin.97(3-4), 147–152 (2002).
[CrossRef]

J. Appl. Phys. (1)

X. Liu, X. Wu, H. Cao, and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” J. Appl. Phys.95(6), 3141–3147 (2004).
[CrossRef]

J. Appl. Phys. (1)

K.-K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S.-J. Park, and J. H. Song, “The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering,” J. Appl. Phys.87(7), 3573–3575 (2000).
[CrossRef]

J. Disp. Technol. (1)

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol.3(2), 160–175 (2007).
[CrossRef]

J. Lumin. (1)

J. El Ghoul, K. Omri, L. El Mir, C. Barthou, and S. Alaya, “Sol–gel synthesis and luminescent properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:V composite materials,” J. Lumin.132(9), 2288–2292 (2012).
[CrossRef]

J. Non-Cryst. Solids (1)

O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, and Y. Gao, “Erbium doped fluoride glass–ceramics waveguides fabricated by PVD,” J. Non-Cryst. Solids354(30), 3586–3591 (2008).
[CrossRef]

J. Phys. Condens. Matter (1)

Z. Fu, B. Yang, L. Li, W. Dong, C. Jia, and W. Wu, “An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites,” J. Phys. Condens. Matter15(17), 2867–2873 (2003).
[CrossRef]

Mater. Chem. Phys. (1)

E. J. Ibanga, C. L. Luyer, and J. Mugnier, “Zinc oxide waveguide produced by thermal oxidation of chemical bath deposited zinc sulphide thin films,” Mater. Chem. Phys.80(2), 490–495 (2003).
[CrossRef]

Nano Lett. (1)

J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett.8(5), 1477–1481 (2008).
[CrossRef] [PubMed]

Nano Lett. (2)

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007).
[CrossRef] [PubMed]

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett.8(4), 1219–1223 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol.7(7), 465–471 (2012).
[PubMed]

Opt. Commun. (1)

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun.285(6), 1225–1228 (2012).
[CrossRef]

Opt. Mater. (2)

A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G. C. Righini, M. Ferrari, L. Zampedri, A. Monteil, and P. Lazzeri, “Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+ -activated silica–titania planar waveguides fabricated by rf-sputtering,” Opt. Mater.25(2), 117–122 (2004).
[CrossRef]

R. R. Gonçalves, G. Carturan, M. Montagna, A. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004).
[CrossRef]

Phys. Status Solidi (1)

S. Chakrabarti, D. Ganguli, and S. Chaudhuri, “Excitonic and defect related transitions in ZnO–SiO2 nanocomposites synthesized by sol-gel technique,” Phys. Status Solidi201(9), 2134–2142 (2004).
[CrossRef]

Sens. Actuators B Chem. (1)

L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem.162(1), 237–243 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics